Geometric Quantization via integrable systems

Eva Miranda

UPC \& CRM \& Observatoire de Paris
GEOQUANT 2021, Day 2, Geometric Quantization via action-angle coordinates

Classical vs. Quantum: A love story.

(1) Classical systems
(2) Observables $C^{\infty}(M)$
(3) Bracket $\{f, g\}$
(1) Quantum System
(2) Operators in \mathcal{H} (Hilbert)
(3) Commutator $[A, B]_{h}=\frac{2 \pi i}{h}(A B-B A)$

"At this point we notice that this equation is
beautifully simplified if we assume that space-time has 92 dimensions."

"I still don't understand quantum theory."

Geometric Quantization in a nutshell

$$
\left[\frac{\Omega}{2 \pi i}\right]=c_{1}(L)
$$

- $\left(M^{2 n}, \omega\right)$ symplectic manifold with integral [ω].
- (\mathbb{L}, ∇) a complex (and hermitian) line bundle with a connection ∇) such that $\operatorname{curv}(\nabla)=-i \omega)$ (prequantum line bundle).
- A real polarization \mathcal{P} is a Lagrangian foliation. integrable systems provide natural examples of real polarizations.
- Flat sections equation: $\nabla_{X} s=0, \forall X$ tangent to \mathcal{P}.

Basics of Quantization

A connection on a vector bundle V is a map $\nabla: \Gamma(V) \rightarrow \Omega^{1}(M) \otimes \Gamma(V)$ satisfying:
(1) $\nabla\left(\sigma_{1}+\sigma_{2}\right)=\nabla \sigma_{1}+\nabla \sigma_{2}$
(2) $\nabla\left(f \sigma_{1}\right)=(d f) \otimes \sigma_{1}+f \nabla \sigma_{1}$
for all sections σ_{1} and σ_{2} and functions f.
We write $\nabla_{X} \sigma$ for $\nabla \sigma$ applied to the vector field X (the covariant derivative of σ in the direction X.)

Basics of Quantization

- Let \mathbb{L} be a complex line bundle and s the unit section in some local trivialization. Fix a connection ∇ on \mathbb{L}. Define the potential one-form Θ of ∇, by

$$
\nabla_{X} s=-i \Theta(X) s
$$

- Changing s by another section $s^{\prime}=f s$ $\nabla_{X} s^{\prime}=d f(X) s-f i \Theta(X) s$.
and $\Theta^{\prime}=\Theta-i \frac{1}{\psi} d \psi$.
- Locally as $\psi=e^{i f}$ for some real-valued function f, and $d \psi=e^{i f} i d f$. thus $i \frac{1}{\psi} d \psi=-d f$ is real-valued.
- So as $\operatorname{curv} \nabla=i \omega /$ we can take locally a given Θ connection one-form with $d \Theta=\omega$.

Space for proofs
$[\omega] \in H^{2}(M, X)(\Rightarrow$ complex line bunalle
Prop Boations lecture today.
hecall $[a] \in H_{D R}^{2}(M) \rightarrow[c] \in H_{(a c h}^{2}\left(M, H^{2}\right)$

- dliy sood cover (contractible intersecturs) $a_{i}=d b_{i}$ on l_{i}
on $h_{i} h_{j} \rightarrow d b_{j}=d b_{j}^{i} \Rightarrow J\left(c_{j}^{\circ}\right.$ on $k_{i} h_{j} a_{g}=d p_{j}$ iemma on l_{j}

Let's phy this ganez for $[w] \quad \omega=d \theta_{i}$ on linnti $=-0$
$\left(Q_{i}-\theta_{j}=d \log \left(g_{i j}(i)\right)\right] c_{1}(L)=\left[\frac{1}{2 \pi} \pi\right)^{\omega} \rightarrow[C] \in H_{(\text {ed }}^{2}(M,(R)$

$$
\left.C_{i j \beta}=\frac{1}{2 \pi T_{i}}\left(\log \left(s_{i j}\right)+\log g_{j x}+\log _{2 k+i}\right)\right)
$$

Bohr-Sommerfeld leaves

Definition
A Bohr-Sommerfeld leaf is a leaf of a polarization admitting global flat sections.

Example: Take $M=S^{1} \times \mathbb{R}$ with $\omega=d t \wedge d \theta, \mathcal{P}=<\frac{\partial}{\partial \theta}>\mathbb{L}$ the trivial bundle with connection 1-form $\Theta=t d \theta \rightsquigarrow \nabla V^{\prime} \sigma=X(\sigma)<i<\Theta, X>\sigma$ \rightsquigarrow Flat sections: $\sigma(t, \theta)=a(t) \cdot e^{i t \theta}(\rightsquigarrow$ Bohr-Sommerfeld leaves are given by the condition $t=2 \pi k, k \in \mathbb{Z}$.
Liouville-Mineur-Arnold $\leftrightarrow \rightsquigarrow$ this example is the canonical one.

$$
\begin{aligned}
& <\theta, 0,0\rangle \\
& \begin{array}{l}
\text { o } \\
=t
\end{array} \\
& T^{\prime}\left(S^{\prime}\right)^{2} D_{0} \nabla_{x} s=0 \quad X(s)=i\langle\theta, \times\rangle s \\
& \begin{array}{c}
D_{x} s=0 \quad x(s)=i(\theta, x\rangle s \\
\frac{\partial}{\partial \theta}(s)=i t s \quad s=a(t) e^{i(t)}
\end{array}
\end{aligned}
$$

Bohr-Sommerfeld leaves: continued...

Theorem (Guillemin-Sternberg)

If the polarization is a regular fibration with compact leaves over a simply connected base B, then the Bohr-Sommerfeld is given by,

$$
B S=\left\{p \in M,\left(f_{1}(p), \ldots, f_{n}(p)\right) \in \mathbb{Z}^{n}\right\}
$$

where f_{1}, \ldots, f are global action coordinates on B.

- In a semilocal cotangent model for the connection given by Liouville-Mineur-Arnold, Bohr-Sommerfeld leaves coincide with integral points.
- For toxic manifolds the base B may be identified with the image of the moment map.

Space for proofs

Bohr-Sommerfeld leaves and Delzant polytopes

Theorem (Delzant)

Toric manifolds are classified by Delzant's polytopes and the bijective correspondence is given by the image of the moment map:

\{toric manifolds\} \longrightarrow \{Delzant polytopes\}

$\left(M^{2 n}, \omega, \mathbb{T}^{n}, F\right)$
$\longrightarrow \quad F(M)$

The case of fibrations
Restart $\left.\overline{Q(M)}=\Phi H^{P}(M, J)\right] J \rightarrow$ shear

- "Quantize" these systems counting Bohr-Sommerfeld leaves.
- For real polarization given by integrable systems Bohr-Sommerfeld leaves are just "integral" Liouville tori.

Theorem (Sniatycki)
If the leaf space B^{n} is Hausdorff and the natural projection $\pi: M^{2 n} \rightarrow B^{n}$ is a fibration with compact fibers, then quantization is given by the count of Bohr-Sommerfeld leaves.

Quantization: The cohomological approach

- Following the idea of Kostant when there are no global sections we define the quantization of $\left(M^{2 n}, \omega, \mathbb{L}, \nabla, P\right)$ as

$$
\mathcal{Q}(M)=\bigoplus_{k \geq 0} H^{k}(M, \mathcal{J})
$$

- \mathcal{J} is the sheaf of flat sections.

Then quantization is given by:

Theorem (Sniatycki)

$\mathcal{Q}\left(M^{2 n}\right)=H^{n}\left(M^{2 n}, \mathcal{J}\right)$, with dimension the number of Bohr-Sommerfeld leaves.

What is this cohomology?

(1) Define the sheaf: $\Omega_{\mathcal{P}}^{i}(U)=\Gamma\left(U, \wedge^{i} \mathcal{P}\right)$..

$$
H(M, J)
$$

(2) Define \mathcal{C} as the sheaf of complex-valued functions that are locally constant along \mathcal{P}. Consider the natural (fine) resolution
$d^{2}=0$

$$
0 \rightarrow\left(\mathcal{C} \xrightarrow{i} \Omega_{\mathcal{P}}^{0} \xrightarrow{d_{\mathcal{P}}} \Omega_{\mathcal{P}}^{1} \xrightarrow{d_{\mathcal{P}}} \Omega_{\mathcal{P}}^{1} \xrightarrow{d_{\mathcal{P}}} \Omega_{\mathcal{P}}^{2} \xrightarrow{d_{\mathcal{P}}}\right.
$$

The differential operator $d_{\mathcal{P}}$ is the one of foliated cotromology.
(3) Use this resolution to obtain a fine resolution of \mathcal{J} by twisting the previous resolution with the sheaf \mathcal{J}.

$$
0 \rightarrow \mathcal{J} \xrightarrow{i} \mathcal{S} \xrightarrow{\nabla_{\mathcal{P}}} \mathcal{S} \otimes \Omega_{\mathcal{P}}^{1} \xrightarrow{\nabla_{\mathcal{P}}} \mathcal{S} \otimes \Omega_{\mathcal{P}}^{2} \leftrightharpoons \ldots
$$

with \mathcal{S} the sheaf of sections of the line bundle $\mathbb{L}\left(\otimes N^{1 / 2}\right)$.

SPOILE
 AISATI

(4) Computation kit: Mayer-Vietoris, Künneth formula, Remarkable fact: S^{1}-actions help prove semilocal Poincaré lemma (toric, almost toric, semitoric case).

Applications to the general case of Lagrangian foliations

This fine resolution approach can be useful for polarizations given by general Lagrangian foliations.
Classification of foliations on the torus (Kneser-Denjoy-Schwartz theorem).

The case of the torus: irrational slope.

Consider $X_{\eta}=\eta \frac{\partial}{\partial x}+\frac{\partial}{\partial y}$, with $\eta \in \mathbb{R} \backslash \mathbb{Q}$. This vector field descends to the quotient torus denote by \mathcal{P}_{η} the associated foliation in \mathbb{T}^{2}. Let $\left(\mathbb{T}^{2}, \omega\right)$ be the 2 -torus with a symplectic structure ω of integer class, then,

Theorem (Presas-Miranda)

- $\mathcal{Q}\left(T^{2}, \mathcal{J}\right)$ is always infinite dimensional.
- For the limit case of foliated cohomology $\omega=0 \mathcal{Q}\left(\mathbb{T}^{2}, \mathcal{J}\right)=\mathbb{C} \oplus \mathbb{C}$ if the irrationality measure of η is finite and $\mathcal{Q}\left(\mathbb{T}^{2}, \mathcal{J}\right)$ is infinite dimensional if the irrationality measure of η is infinite.

This generalizes a result El Kacimi for foliated cohomology.

"Quantization Computation kit" for regular foliations

Most computations rely on proving Künneth and Mayer-Vietoris (joint with Presas)
(1) Künneth formula: Let $\left(M_{1}, \mathcal{P}_{1}\right)$ and $\left(M_{2}, \mathcal{P}_{2}\right)$ be symplectic manifolds endowed with Lagrangian foliations and let \mathcal{J}_{12} be the induced sheaf of basic sections, then:
$H^{n}\left(M_{1} \times M_{2}, \mathcal{J}_{12}\right)=\bigoplus_{p+q=n} H^{p}\left(M_{1}, \mathcal{J}_{1}\right) \otimes H^{q}\left(M_{2}, \mathcal{J}_{2}\right)$.
(2) Mayer-Vietoris: Consider $M \leftarrow U \sqcup V \leftleftarrows U \cap V$, then the following sequence is exact,

$$
0 \rightarrow \mathcal{S} \otimes \Omega_{\mathcal{P}}^{*}(M) \xrightarrow{r} \mathcal{S} \otimes \Omega_{\mathcal{P}}^{*}(U) \oplus \mathcal{S} \otimes \Omega_{\mathcal{P}}^{*}(V) \xrightarrow{r_{0}-r_{1}} \mathcal{S} \otimes \Omega_{\mathcal{P}}^{*}(U \cap V) \rightarrow 0 .
$$

Application II: Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(I_{1} \times I_{2}, \omega=d x_{1} \wedge d x_{2} ; \mathcal{P}=\frac{\partial}{\partial x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Computation 2: $\mathcal{Q}\left(I_{1} \times \mathbb{S}_{2}^{1}, \omega=d x_{1} \wedge d \theta_{2} ; \mathcal{P}=\frac{\partial}{\partial \theta_{1}}\right)$.

- $H^{0}\left(I_{1} \times \mathbb{S}_{2}^{1} ; \mathcal{J}\right)=0$ since BS leaves are isolated.
- Consider $I_{1} \times \mathbb{S}_{2}^{1}=U \cup V=\left(I_{1} \times(0.4,1.1)\right) \cup\left(I_{1} \times(-0.1,0.6)\right)$.

Application II: Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(I_{1} \times I_{2}, \omega=d x_{1} \wedge d x_{2} ; \mathcal{P}=\frac{\partial}{\partial x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Computation 2: $\mathcal{Q}\left(I_{1} \times \mathbb{S}_{2}^{1}, \omega=d x_{1} \wedge d \theta_{2} ; \mathcal{P}=\frac{\partial}{\partial \theta_{1}}\right)$.

- $H^{0}\left(I_{1} \times \mathbb{S}_{2}^{1} ; \mathcal{J}\right)=0$ since BS leaves are isolated.
- Consider $I_{1} \times \mathbb{S}_{2}^{1}=U \cup V=\left(I_{1} \times(0.4,1.1)\right) \cup\left(I_{1} \times(-0.1,0.6)\right)$.

Application II: Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(I_{1} \times I_{2}, \omega=d x_{1} \wedge d x_{2} ; \mathcal{P}=\frac{\partial}{\partial x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.
- $H^{0}\left(I_{1} \times \mathbb{S}_{2}^{1} ; \mathcal{J}\right)=0$ since BS leaves are isolated.
- Consider $I_{1} \times \mathbb{S}_{2}^{1}=U \cup V=\left(I_{1} \times(0.4,1.1)\right) \cup\left(I_{1} \times(-0.1,0.6)\right)$

Application II: Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(I_{1} \times I_{2}, \omega=d x_{1} \wedge d x_{2} ; \mathcal{P}=\frac{\partial}{\partial x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Computation 2: $\mathcal{Q}\left(I_{1} \times \mathbb{S}_{2}^{1}, \omega=d x_{1} \wedge d \theta_{2} ; \mathcal{P}=\frac{\partial}{\partial \theta_{1}}\right)$.

- $H^{0}\left(I_{1} \times \mathbb{S}_{2}^{1} ; \mathcal{J}\right)=0$ since BS leaves are isolated.
- Consider $I_{1} \times \mathbb{S}_{2}^{1}=U \cup V=\left(I_{1} \times(0.4,1.1)\right) \cup\left(I_{1} \times(-0.1,0.6)\right)$.

Application II: Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(I_{1} \times I_{2}, \omega=d x_{1} \wedge d x_{2} ; \mathcal{P}=\frac{\partial}{\partial x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Computation 2: $\mathcal{Q}\left(I_{1} \times \mathbb{S}_{2}^{1}, \omega=d x_{1} \wedge d \theta_{2} ; \mathcal{P}=\frac{\partial}{\partial \theta_{1}}\right)$.

- $H^{0}\left(I_{1} \times \mathbb{S}_{2}^{1} ; \mathcal{J}\right)=0$ since BS leaves are isolated.

Application II: Regular integrable system

$I_{j}=(-\varepsilon, \varepsilon), j=1,2$.
Computation 1: $\mathcal{Q}\left(I_{1} \times I_{2}, \omega=d x_{1} \wedge d x_{2} ; \mathcal{P}=\frac{\partial}{\partial x_{2}}\right)$.

- $H^{0}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=C^{\infty}\left(I_{1}, \mathbb{C}\right)$,
- $H^{1}\left(I_{1} \times I_{2} ; \mathcal{J}\right)=0$.

Computation 2: $\mathcal{Q}\left(I_{1} \times \mathbb{S}_{2}^{1}, \omega=d x_{1} \wedge d \theta_{2} ; \mathcal{P}=\frac{\partial}{\partial \theta_{1}}\right)$.

- $H^{0}\left(I_{1} \times \mathbb{S}_{2}^{1} ; \mathcal{J}\right)=0$ since BS leaves are isolated.
- Consider $I_{1} \times \mathbb{S}_{2}^{1}=U \cup V=\left(I_{1} \times(0.4,1.1)\right) \cup\left(I_{1} \times(-0.1,0.6)\right)$.

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right)
$$

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
\begin{aligned}
& H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right) . \\
& H^{0}(V)=H^{0}(U)=H^{0}\left(W_{1}\right)=C^{\infty}\left(I_{1} \times\{0\} ; \mathbb{C}\right) \text { and } \\
& H^{0}\left(W_{2}\right)=C^{\infty}\left(I_{1} \times\{0.5\} ; \mathbb{C}\right) \text {.Take } f_{0} \in H^{0}(V) \text { and }
\end{aligned}
$$

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
\begin{aligned}
& H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right) . \\
& H^{0}(V)=H^{0}(U)=H^{0}\left(W_{1}\right)=C^{\infty}\left(I_{1} \times\{0\} ; \mathbb{C}\right) \text { and } \\
& H^{0}\left(W_{2}\right)=C^{\infty}\left(I_{1} \times\{0.5\} ; \mathbb{C}\right) \text {.Take } f_{0} \in H^{0}(V) \text { and } \\
& f_{1} \in H^{0}(U)=C^{\infty}\left(I_{1} \times\{0\} ; \mathbb{C}\right) . \text { The first map of the sequence is }
\end{aligned}
$$

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right)
$$

$H^{0}(V)=H^{0}(U)=H^{0}\left(W_{1}\right)=C^{\infty}\left(I_{1} \times\{0\} ; \mathbb{C}\right)$ and
$H^{0}\left(W_{2}\right)=C^{\infty}\left(I_{1} \times\{0.5\} ; \mathbb{C}\right)$. Take $f_{0} \in H^{0}(V)$ and
$f_{1} \in H^{0}(U)=C^{\infty}\left(I_{1} \times\{0\} ; \mathbb{C}\right)$. The first map of the sequence is given by

$$
\binom{f_{2}}{f_{3}}=\left(\begin{array}{cc}
1 & -1 \\
e^{i \theta x} & e^{-i \theta x}
\end{array}\right)\binom{f_{0}}{f_{1}}
$$

Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

$$
H^{0}(V) \oplus H^{0}(U) \hookrightarrow H^{0}\left(W_{1}\right) \oplus H^{0}\left(W_{2}\right) \rightarrow H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right)
$$

$H^{0}(V)=H^{0}(U)=H^{0}\left(W_{1}\right)=C^{\infty}\left(I_{1} \times\{0\} ; \mathbb{C}\right)$ and
$H^{0}\left(W_{2}\right)=C^{\infty}\left(I_{1} \times\{0.5\} ; \mathbb{C}\right)$. Take $f_{0} \in H^{0}(V)$ and
$f_{1} \in H^{0}(U)=C^{\infty}\left(I_{1} \times\{0\} ; \mathbb{C}\right)$. The first map of the sequence is given by

$$
\binom{f_{2}}{f_{3}}=\left(\begin{array}{cc}
1 & -1 \\
e^{i \theta x} & e^{-i \theta x}
\end{array}\right)\binom{f_{0}}{f_{1}}
$$

Thus

$$
H^{1}\left(I_{1} \times \mathbb{S}_{2}^{1}\right)= \begin{cases}0 & \text { if non } \mathrm{BS} \\ \mathbb{C} & \text { if there is one } \mathrm{BS}\end{cases}
$$

Regular integrable system

Computation 3: $\mathcal{Q}\left(I^{k} \times \mathbb{T}^{k} ; \mathbb{T}^{k}\right)$.
By Künneth $H^{j}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)=0$, if $j \neq k$, and

$$
H^{k}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)= \begin{cases}0 & \text { if non BS } \\ \mathbb{C} & \text { if there is one BS }\end{cases}
$$

Computation 4

Regular integrable system

Computation 3: $\mathcal{Q}\left(I^{k} \times \mathbb{T}^{k} ; \mathbb{T}^{k}\right)$.
By Künneth $H^{j}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)=0$, if $j \neq k$, and

$$
H^{k}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)= \begin{cases}0 & \text { if non BS } \\ \mathbb{C} & \text { if there is one BS }\end{cases}
$$

Regular integrable system

Computation 3: $\mathcal{Q}\left(I^{k} \times \mathbb{T}^{k} ; \mathbb{T}^{k}\right)$.
By Künneth $H^{j}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)=0$, if $j \neq k$, and

$$
H^{k}\left(I^{k} \times \mathbb{T}^{k} ; \mathcal{J}\right)= \begin{cases}0 & \text { if non } \mathrm{BS} \\ \mathbb{C} & \text { if there is one } \mathrm{BS}\end{cases}
$$

Computation 4:

$$
\mathcal{Q}\left(M_{\text {Tor }, \text { Reg }}^{2 n} ; \mathcal{P}(\text { Torus })\right)=\bigoplus_{j=1}^{n} H^{j}(M ; \mathcal{J})=\mathbb{C}^{b}, b=\# \mathrm{BS}
$$

Toric Manifolds

What happens if we go to the edges and vertexes of Delzant's polytope?

Rotations of S^{2} and moment map

There are two leaves of the polarization which are singular and correspond to fixed points of the action.

Quantization of toric manifolds

Theorem (Hamilton)

For a $2 n$-dimensional compact toric manifold

$$
\mathcal{Q}(M)=H^{n}(M ; \mathcal{J}) \cong \bigoplus_{l \in B S_{r}} \mathbb{C}
$$

with a $B S_{r}$ the set of regular Bohr-Sommerfeld leaves.

In the example of the sphere Bohr-Sommerfeld leaves are given by integer values of height (or, equivalently) leaves which divide out the manifold in integer areas.

Key computation in a neighbourhood of an elliptic point

- The coordinates we use on \mathbb{C} are (s, ϕ), where (r, ϕ) are standard polar coordinates and $s=\frac{1}{2} r^{2}$.
- Then $\omega=d s \wedge d \phi=d(s d \phi)$ and the polarization is $P=\operatorname{span}\left\{\frac{\partial}{\partial \phi}\right\}$,
- The sections which are flat along the leaves are of the form $a(s) e^{i s \phi}$, for arbitrary smooth functions a.

Action-angle coordinates with singularities

The theorem of Marle-Guillemin-Sternberg for fixed points of toric actions can be generalized to non-degenerate singularities of integrable systems.

Theorem (Eliasson, M-Zung)

There exists symplectic Morse normal forms for integrable systems with non-degenerate singularities.

Liouville torus

$$
k_{e} \text { comp. elliptic }
$$

Description of singularities

The local model is given in a covering by $N=D^{k} \times \mathbb{T}^{k} \times D^{2(n-k)}$ and $\omega=\sum_{i=1}^{k} d p_{i} \wedge d \theta_{i}+\sum_{i=1}^{n-k} d x_{i} \wedge d y_{i}$. and the components of the moment map are:
(1) Regular $f_{i}=p_{i}$ for $i=1, \ldots, k$;
(2) Elliptic $f_{i}=x_{i}^{2}+y_{i}^{2}$ for $i=k+1, \ldots, k_{e}$;
(3) Hyperbolic $f_{i}=x_{i} y_{i}$ for $i=k_{e}+1, \ldots, k_{e}+k_{h}$;
(9) focus-focus $f_{i}=x_{i} y_{i+1}-x_{i+1} y_{i}, f_{i+1}=x_{i} y_{i}+x_{i+1} y_{i+1}$ for $i=k_{e}+k_{h}+2 j-1, j=1, \ldots, k_{f}$.
We say the system is semitoric if there are no hyperbolic components.

Hyperbolic singularities

We consider the following covering

Key point in the computation

We may choose a trivializing section of such that the potential one-form of the prequantum connection is $\Theta_{0}=(x d y-y d x)$.

Theorem

Leafwise flat sections in a neighborhood of the singular point in the first quadrant are given by

$$
a(x y) e^{\frac{i}{2} x y \ln \left|\frac{x}{y}\right|}
$$

where a is a smooth complex function of one variable which is flat at the origin.

The case of surfaces

We can use Čech cohomology computation and a Mayer-Vietoris argument to prove:

Theorem (Hamilton-M.)

The quantization of a compact surface endowed with an integrable system with non-degenerate singularities is given by,

$$
\mathcal{Q}(M)=H^{1}(M ; \mathcal{J}) \cong \bigoplus_{p \in \mathcal{H}}\left(\mathbb{C}^{\mathbb{N}} \oplus \mathbb{C}^{\mathbb{N}}\right) \oplus \bigoplus_{l \in B S_{r}} \mathbb{C}
$$

where \mathcal{H} is the set of hyperbolic singularities.

The rigid body

Using this recipe and the quantization of this system is

$$
\mathcal{Q}(M)=H^{1}(M ; \mathcal{J}) \cong \bigoplus_{p \in \mathcal{H}}\left(\mathbb{C}_{p}^{\mathbb{N}}\right)^{2} \oplus \bigoplus_{b \in B S} \mathbb{C}_{b}
$$

Comparing this system with the one of rotations on the sphere \rightsquigarrow This quantization depends strongly on the polarization.

