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Classical vs. Quantum: A love story.

1 Classical systems
2 Observables C∞(M)
3 Bracket {f, g}

1 Quantum System
2 Operators in H (Hilbert)
3 Commutator [A,B]h = 2πi

h (AB −BA)
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Geometric Quantization in a nutshell

(M2n, ω) symplectic manifold with integral [ω].
(L,∇) a complex (and hermitian) line bundle with a connection ∇
such that curv(∇) = −iω (prequantum line bundle).
A real polarization P is a Lagrangian foliation. Integrable systems
provide natural examples of real polarizations.
Flat sections equation: ∇Xs = 0, ∀X tangent to P.
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Basics of Quantization

A connection on a vector bundle V is a map ∇ : Γ(V )→ Ω1(M)⊗ Γ(V )
satisfying:

1 ∇(σ1 + σ2) = ∇σ1 +∇σ2
2 ∇(fσ1) = (df)⊗ σ1 + f∇σ1

for all sections σ1 and σ2 and functions f .
We write ∇Xσ for ∇σ applied to the vector field X (the covariant
derivative of σ in the direction X.)
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Basics of Quantization

Let L be a complex line bundle and s the unit section in some local
trivialization. Fix a connection ∇ on L. Define the potential one-form
Θ of ∇, by
∇Xs = −iΘ(X) s.
Changing s by another section s′ = fs
∇Xs′ = df(X)s− fiΘ(X)s.
and Θ′ = Θ− i 1

ψ dψ.

Locally as ψ = eif for some real-valued function f , and dψ = eif idf.
thus i 1

ψ dψ = −df is real-valued.
So as curv∇ = iω we can take locally a given Θ connection one-form
with dΘ = ω.
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Space for proofs



Bohr-Sommerfeld leaves

Definition
A Bohr-Sommerfeld leaf is a leaf of a polarization admitting global flat
sections.

Example: Take M = S1 × R with ω = dt ∧ dθ, P =< ∂
∂θ >, L the trivial

bundle with connection 1-form Θ = tdθ  ∇Xσ = X(σ)− i < Θ, X > σ
 Flat sections: σ(t, θ) = a(t).eitθ  Bohr-Sommerfeld leaves are given
by the condition t = 2πk, k ∈ Z.

Liouville-Mineur-Arnold ! this example is the canonical one.
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Bohr-Sommerfeld leaves: continued...

Theorem (Guillemin-Sternberg)
If the polarization is a regular fibration with compact leaves over a simply
connected base B, then the Bohr-Sommerfeld is given by,

BS = {p ∈M, (f1(p), . . . , fn(p)) ∈ Zn}

where f1, . . . , fn are global action coordinates on B.

In a semilocal cotangent model for the connection given by
Liouville-Mineur-Arnold, Bohr-Sommerfeld leaves coincide with
integral points.
For toric manifolds the base B may be identified with the image of
the moment map.
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Space for proofs



Bohr-Sommerfeld leaves and Delzant polytopes

Theorem (Delzant)
Toric manifolds are classified by Delzant’s polytopes and the bijective
correspondence is given by the image of the moment map:
{toric manifolds} −→ {Delzant polytopes}
(M2n, ω,Tn, F ) −→ F (M)

µ = h

R

CP2 µ

(t1, t2) · [z0 : z1 : z2] = [z0 : eit1z1 : eit2z2]
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The case of fibrations

“Quantize” these systems counting Bohr-Sommerfeld leaves.
For real polarization given by integrable systems Bohr-Sommerfeld
leaves are just “integral” Liouville tori.

Theorem (Sniatycki)
If the leaf space Bn is Hausdorff and the natural projection π : M2n → Bn

is a fibration with compact fibers, then quantization is given by the count
of Bohr-Sommerfeld leaves.

But how exactly?
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Quantization: The cohomological approach

Following the idea of Kostant when there are no global sections we
define the quantization of (M2n, ω,L,∇, P ) as

Q(M) =
⊕
k≥0

Hk(M,J ).

J is the sheaf of flat sections.

Then quantization is given by:

Theorem (Sniatycki)
Q(M2n) = Hn(M2n,J ), with dimension the number of Bohr-Sommerfeld
leaves.
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What is this cohomology?

1 Define the sheaf: ΩiP(U) = Γ(U,∧iP)..
2 Define C as the sheaf of complex-valued functions that are locally constant

along P. Consider the natural (fine) resolution

0→ C i→ Ω0
P
dP→ Ω1

P
dP→ Ω1

P
dP→ Ω2

P
dP→ · · ·

The differential operator dP is the one of foliated cohomology.
3 Use this resolution to obtain a fine resolution of J by twisting the previous

resolution with the sheaf J .

0→ J i→ S ∇P→ S ⊗ Ω1
P

∇P→ S ⊗ Ω2
P → · · ·

with S the sheaf of sections of the line bundle L(⊗N1/2).

4 Computation kit: Mayer-Vietoris, Künneth formula, Remarkable
fact: S1-actions help prove semilocal Poincaré lemma (toric, almost toric,
semitoric case).
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Applications to the general case of Lagrangian foliations
This fine resolution approach can be useful for polarizations given by
general Lagrangian foliations.
Classification of foliations on the torus (Kneser-Denjoy-Schwartz theorem).
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The case of the torus: irrational slope.

Consider Xη = η ∂
∂x + ∂

∂y , with η ∈ R \Q. This vector field descends to
the quotient torus denote by Pη the associated foliation in T2. Let (T2, ω)
be the 2-torus with a symplectic structure ω of integer class, then,

Theorem (Presas-Miranda)
Q(T 2,J ) is always infinite dimensional.
For the limit case of foliated cohomology ω = 0 Q(T2,J ) = C

⊕
C if

the irrationality measure of η is finite and Q(T2,J ) is infinite
dimensional if the irrationality measure of η is infinite.

This generalizes a result El Kacimi for foliated cohomology.
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”Quantization Computation kit” for regular foliations

Most computations rely on proving Künneth and Mayer-Vietoris (joint
with Presas)

1 Künneth formula: Let (M1,P1) and (M2,P2) be symplectic
manifolds endowed with Lagrangian foliations and let J12 be the
induced sheaf of basic sections, then:
Hn(M1 ×M2,J12) =

⊕
p+q=nH

p(M1,J1)⊗Hq(M2,J2).
2 Mayer-Vietoris: Consider M ← U t V ←← U ∩ V , then the following

sequence is exact,
0→ S⊗Ω∗P(M) r→ S⊗Ω∗P(U)⊕S⊗Ω∗P(V ) r0−r1−→ S⊗Ω∗P(U∩V )→ 0.
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Application II: Regular integrable system
Ij = (−ε, ε), j = 1, 2.
Computation 1: Q(I1 × I2, ω = dx1 ∧ dx2;P = ∂

∂x2
).

H0(I1 × I2;J ) = C∞(I1,C),
H1(I1 × I2;J ) = 0.

Computation 2: Q(I1 × S1
2, ω = dx1 ∧ dθ2;P = ∂

∂θ1
).

H0(I1 × S1
2;J ) = 0 since BS leaves are isolated.

Consider I1 × S1
2 = U ∪ V = (I1 × (0.4, 1.1)) ∪ (I1 × (−0.1, 0.6)).
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Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

H0(V )⊕H0(U) ↪→ H0(W1)⊕H0(W2)� H1(I1 × S1
2).

H0(V ) = H0(U) = H0(W1) = C∞(I1 × {0};C) and
H0(W2) = C∞(I1 × {0.5};C).Take f0 ∈ H0(V ) and
f1 ∈ H0(U) = C∞(I1×{0};C). The first map of the sequence is given by(

f2
f3

)
=
(

1 −1
eiθx e−iθx

)(
f0
f1

)

Thus

H1(I1 × S1
2) =

{
0 if non BS,
C if there is one BS.
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Regular integrable system

Computation 3: Q(Ik × Tk;Tk).
By Künneth Hj(Ik × Tk;J ) = 0, if j 6= k, and

Hk(Ik × Tk;J ) =
{

0 if non BS,
C if there is one BS.

Computation 4:

Q(M2n
Tor,Reg;P(Torus)) =

n⊕
j=1

Hj(M ;J ) = Cb, b = #BS.
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Toric Manifolds

What happens if we go to the edges and vertexes of Delzant’s polytope?

There are two leaves of the polarization which are singular and correspond
to fixed points of the action.
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Quantization of toric manifolds

Theorem (Hamilton)
For a 2n-dimensional compact toric manifold

Q(M) = Hn(M ;J ) ∼=
⊕
l∈BSr

C

with a BSr the set of regular Bohr-Sommerfeld leaves.

In the example of the sphere Bohr-Sommerfeld leaves are given by integer values
of height (or, equivalently) leaves which divide out the manifold in integer areas.
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Key computation in a neighbourhood of an elliptic point

The coordinates we use on C are (s, φ), where (r, φ) are standard
polar coordinates and s = 1

2r
2.

Then ω = ds ∧ dφ = d(s dφ). and the polarization is P = span{ ∂∂φ},
The sections which are flat along the leaves are of the form a(s)eisφ,
for arbitrary smooth functions a.
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Action-angle coordinates with singularities

The theorem of Marle-Guillemin-Sternberg for fixed points of toric actions
can be generalized to non-degenerate singularities of integrable systems.

Theorem (Eliasson, M-Zung)
There exists symplectic Morse normal forms for integrable systems with
non-degenerate singularities.

Liouville torus ke comp. elliptic kh hyperbolic kf focus-focus

Miranda (UPC) Geometric Quantization 2021 23 / 28



Description of singularities

The local model is given in a covering by N = Dk × Tk ×D2(n−k) and
ω =

∑k
i=1 dpi ∧ dθi +

∑n−k
i=1 dxi ∧ dyi. and the components of the

moment map are:
1 Regular fi = pi for i = 1, ..., k;
2 Elliptic fi = x2

i + y2
i for i = k + 1, ..., ke;

3 Hyperbolic fi = xiyi for i = ke + 1, ..., ke + kh;
4 focus-focus fi = xiyi+1 − xi+1yi, fi+1 = xiyi + xi+1yi+1 for
i = ke + kh + 2j − 1, j = 1, ..., kf .

We say the system is semitoric if there are no hyperbolic components.
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Hyperbolic singularities

We consider the following covering
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Key point in the computation

We may choose a trivializing section of such that the potential one-form of
the prequantum connection is Θ0 = (xdy − ydx).

Theorem
Leafwise flat sections in a neighborhood of the singular point in the first
quadrant are given by

a(xy)e
i
2xy ln

∣∣x
y

∣∣
where a is a smooth complex function of one variable which is flat at the
origin.
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The case of surfaces

We can use Čech cohomology computation and a Mayer-Vietoris argument
to prove:

Theorem (Hamilton-M.)
The quantization of a compact surface endowed with an integrable system
with non-degenerate singularities is given by,

Q(M) = H1(M ;J ) ∼=
⊕
p∈H

(CN ⊕ CN)⊕
⊕
l∈BSr

C ,

where H is the set of hyperbolic singularities.
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The rigid body

Using this recipe and the quantization of this system is

Q(M) = H1(M ;J ) ∼=
⊕
p∈H

(CN
p )2 ⊕

⊕
b∈BS

Cb.

Comparing this system with the one of rotations on the sphere  This
quantization depends strongly on the polarization.

Miranda (UPC) Geometric Quantization 2021 28 / 28


	Geometric quantization
	Quantization via sheaf cohomology 
	Quantization of toric manifolds and hyperbolic singularities

