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Abstract

We study forking, Lascar strong types, Keisler measures and defin-
able groups, under an assumption of NIP (not the independence prop-
erty), continuing aspects of the paper [13]. Among key results are (i) if
p = tp(b/A) does not fork over A then the Lascar strong type of b over
A coincides with the compact strong type of b over A and any global
nonforking extension of p is Borel definable over bdd(A), (ii) analogous
statements for Keisler measures and definable groups, including the
fact that G000 = G00 for G definably amenable, (iii) definitions, char-
acterizations and properties of “generically stable” types and groups,
(iv) uniqueness of invariant (under the group action) Keisler measures
on groups with finitely satisfiable generics, (v) a proof of the compact
domination conjecture for (definably compact) commutative groups in
o-minimal expansions of real closed fields.

1 Introduction and preliminaries

The general theme of this paper is to find and study stable-like behaviour
in theories and definable groups without the independence property. This
was a theme in the model-theoretic analysis of algebraically closed valued
fields [8], [9], [11]. It was also an aspect of the paper [13], although there the
main motivation was to resolve some conjectures about definably compact
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groups in o-minimal structures. In fact a bonus in the current paper is a
proof of the compact domination conjecture (formulated in [13]), at least for
commutative groups, and various elaborations, which is fairly direct but also
uses some of the general machinery we develop.

Both authors have been a bit slow to realize the relevance of Shelah’s
notion of forking to theories with NIP . We rectify this in the current paper
where we will be quite explicit about the role of forking.

Note that a theory T is stable if and only if it is simple and has NIP .
In stable theories we have on the one hand the “algebraic” behaviour of
nonforking independence, namely symmetry, transitivity, existence of non-
forking extensions, as well as local character (any type does not fork over
some small set). On the other hand we have (again in stable theories) what
can be called broadly “multiplicity theory”, the structure and behaviour of
nonforking extensions of a type. Included in “multiplicity theory” are al-
ternative characterizations of nonforking, for example a global type p does
not fork over a model M iff p is definable over M iff p is finitely satisfiable
in M iff p is Aut(M̄/M)-invariant (does not split over M) Included also is
the finite equivalence relation theorem: a type over an algebraically closed
set is stationary, namely has a unique global nonforking extension. In the
early texts on stability theory (the original papers and book of Shelah, but
also the treatment by Lascar and Poizat), the proofs and development of
the algebraic properties of forking were tied up with multiplicity theory (in
the form of heirs, coheirs for example). In the work on simple theories, the
two strands were distinguished, the algebraic theory being valid in all simple
theories, but not the latter. Multiplicity theory did make an appearance in
simple theories, but in the (weak) form of the “Independence theorem over a
model” and more generally over boundedly closed (rather than algebraically
closed) sets. As the validity of the algebraic theory of forking is characteristic
of simple theories, it will fail for unstable theories with NIP . One of the
points of the current paper is to recover aspects of the multiplicity part of
stability theory for theories with NIP . Invariance (rather than stationar-
ity) turns out to be important and already invariant types played a role in
the analysis of algebraically closed valued fields. We show for example (in
section 2), extending work of Shelah [32] and Adler [1] that assuming NIP
if p is a global type and A a small set then p does not fork over A iff p is
Aut(M̄/bdd(A))-invariant iff p is “Borel definable” over bdd(A). Keisler mea-
sures figured a lot in the earlier paper [13] and we entertained the possibility
that replacing types by Keisler measures would give a smoother theory and
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better chance of recovering stationary-like behaviour (uniqueness of nonfork-
ing extensions). In section 4 the results for types are carried over to Keisler
measures. This includes the “Borel definability” over bdd(A) of a measure
which does not fork over A, the proof of which uses the Vapnik-Chervonenkis
theorem. We reduce measures to types in two ways. (a) If the Keisler mea-
sure is A-invariant then it corresponds to a Borel measure on the space of
bdd(A)-invariant types (see 4.6), (b) An invariant Keisler measure is also the
”frequency average” of some sequence of invariant types (see 4.8). Though
these representations of Keisler measures might seem to make considerations
of measures unnecessary, in fact some of our proofs of facts about types go
through measures. This point appears in section 5, where among other things
we show that definable amenability (the existence of left invariant measures)
of a definable group G is equivalent to the existence of generic types in the
sense of forking.

In section 3 we study what we call generically stable types (and what
Shelah has just called stable types), mainly in an NIP context. These are
types whose behaviour vis-a-vis nonforking extensions is like that in stable
theories, namely a global nonforking extension is both definable and finitely
satisfiable. A special case of a generically stable type is a stably dominated
type, as introduced in [9], and our results place those of [9] in the appropriate
general context. Likewise generically stable groups, studied in section 6,
generalize the stably dominated groups of [11].

In section 5 we recall the groups with fsg (finitely satisfiable generics)
which were introduced in [13], and generalize some results from [13] such as
definable amenability, to definable groups with generic types in the sense of
forking.

Definably compact groups in a variety of settings (o-minimal, P -minimal,
metastable) have either been proved to have or are expected to have fsg. In
section 7 we prove the uniqueness of translation invariant Keisler measures in
fsg groups. We see this as a kind of common generalization of the uniqueness
of global translation invariant types for stable groups, and of the uniqueness of
Haar measure for compact groups, and exemplifies our search for stable-like
behaviour at the level of Keisler measures.

It is natural to try to both extend the notion of generic stability from types
to measures, as well as to find group-free versions of the fsg property. This
is discussed briefly in sections 4 and 7, and the problems will be addressed
in a future paper with P. Simon.

Section 8 is devoted to a proof of compact domination for commutative
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definably compact groups in o-minimal expansions of real closed fields. In fact
we prove a strong version, domination of G by a “semi-o-minimal” compact
Lie group G/G00. Direct o-minimal style arguments as well as some of the
general theory of invariant types, play a role in the proof. Our proof makes
use of a theorem on the existence of definable Skolem functions for “o-minimal
subsets of finite-dimensional groups” which is proved in the appendix.

Much inspiration for our work on measures comes from Keisler’s work [17]
and [18]. But our emphasis differs from Keisler’s. Among the main points of
Keisler is that if φ(x, y) is a stable formula, then any φ-measure is a “con-
vergent weighted sum” of φ-types. (Here a φ-measure over M is a finitely
additive measure on the Boolean algebra generated by formulas of the form
φ(x, a) for a ∈ M .) So all the properties of nonforking in a stable theory
(symmetry, stationarity of types over models,...) pass automatically to mea-
sures. Keisler does consider measures in (possibly unstable) theories with
NIP . The good class of measures he identifies are so-called “smooth” or
“minimally unstable” measures. Loosely (and possibly incorrectly) speak-
ing, a smooth measure over M is a measure over M which has a unique
extension to the “unstable part ” of M̄ . He proves that such measures exist.
So the only freedom in taking extensions of a smooth measure is with respect
to stable formulas, and thus in a sense forking theory for smooth measures
essentially reduces to forking theory for measures in stable theories. On the
other hand our main focus will be global measures which are invariant over
some small set. Only in special cases will these also be smooth.

We will use standard notation. Namely T denotes a complete theory in
a language L and we work in a saturated model M̄ of T . x, y, z.. usually
denote finite tuples of variables, A,B,C small subsets of M̄ and M,N, ..
small elementary submodels of M̄ . There is no harm in working in M̄eq,
but sometimes we will assume our theory is one-sorted. A reader would
benefit from having some familiarity with stability theory and stable group
theory, a reference for which is the first chapter of [29]. However the paper
is reasonably self-contained and can on the whole be read independently of
[13].

When it is convenient we denote the space of complete types over A
in free variable x by Sx(A). By a global (complete) type we mean some
p(x) ∈ S(M̄). Recall that a partial type Σ(x) (over some set of parameters
and closed under finite conjunctions) is said to divide over a set A, if there is
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φ(x, b) ∈ Σ(x) and an A-indiscernible sequence (bi : i < ω) of realizations of
tp(b/A) such that {φ(x, bi) : i < ω} is inconsistent. Σ(x) is said to fork over
A if Σ implies some finite disjunction of formulas, each of which divides over
A. Note that if p(x) is a complete type over some |A|+-saturated model M
and A ⊆ M then p(x) divides over A iff p(x) forks over A. Also if A is any
(small) set of parameters, and p(x) ∈ S(A), then p does not fork over A if
and only if p(x) has a global extension which does not divide (equivalently
does not fork) over A.

A rather more basic notion is splitting: Let p(x) ∈ S(B) and A ⊆ B. We
say that p does not split over A if for any L-formula φ(x, y) and b, c ∈ B,
if tp(b/A) = tp(c/A) then φ(x, b) ∈ p iff φ(x, c) ∈ p. This tends to be more
meaningful when B is some |A|+-saturated model.

We will be discussing various kinds of strong types, so let us fix notation.
First by Aut(M̄/A) we mean the group of automorphisms of M̄ which fix A
pointwise. Two tuples (of the same length or elements of the same sort) a
and b are said to have the same strong type over a set A of parameters, if
E(a, b) for each finite A-definable equivalence relation E on the relevant sort
(where finite means having only finitely many classes). It is well-known that
stp(a/A) = stp(b/A) if and only if a and b have the same type over acl(A)
where acl(−) is computed in M̄eq. To be consistent with later notation it
might be better to call strong types, Shelah strong types or profinite strong
types.

We say that a and b have the same compact strong type or KP strong
type over A if E(a, b) for each bounded equivalence relation E on the relevant
sort which is type-definable over A, that is defined by a possible infinite set
of formulas over A. Here bounded means having strictly less than |M̄ |-many
classes which is equivalent to having at most 2|T |+|A|-many classes. An (∅-)
hyperimaginary e is by definition the class of a ∅-type-definable equivalence
relation. We define bdd(A) to be the set of hyperimaginaries which have small
orbit under Aut(M̄/A). It follows from [19] (see 4.18 there) that a and b have
the same KP strong type over A iff they have the same type over bdd(A)
(where types over hyperimaginaries are made sense of in [10] for example).
In particular if a and b have the same KP strong type over A, then for any
A-type definable set X to which a, b belong and bounded A -type-definable
equivalence relation E on X, a and b are in the same E-class. All this
makes sense for type-definable equivalence relations on sets of infinite tuples,
although in [19] we pointed out that a bounded infinitary hyperimaginary is
“equivalent” to a sequence of bounded finitary hyperimaginaries.
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Finally we say that tuples a and b have the same Lascar strong type
over A, if E(a, b) for any bounded equivalence relation E which is invariant
under Aut(M̄/A). The relation “equality of Lascar strong type over A” is
the transitive closure of the relation RA(−,−), where RA(x, y) says: x and
y are elements of some infinite A-indiscernible sequence.. Following Lascar
we let Autf(M̄/A) denote the group of automorphisms of M̄ which fix all
Lascar strong types over A. Tuples a, b from M̄ (which are possibly infinite)
will have the same Lascar strong type over A if and only if they are in the
same orbit under Autf(M̄/A).

Note that Lascar strong type refines KP strong type refines strong type
refines type (all over A). If A = M is a model, Lascar strong type coincides
with type. In a stable theory Lascar strong types over A coincide with strong
types over A. This is conjectured to be true in simple theories too, and was
proved in the supersimple case. In the general simple case we only know
that Lascar strong types coincide with KP strong types. In any case in the
current paper we will consider such questions for theories with NIP .

We will also be refereeing to various kinds of “connected components” of
a definable (or even type-definable group) G. Suppose A includes the pa-
rameters over which G is (type)-defined. Let G0

A be the intersection of all
(relatively) A-definable subgroups of G of finite index. Let G00

A denote the
smallest type-definable over A subgroup of G of “bounded” index (equiva-
lently index at most 2|L|+|A|). Let G000

A denote the smallest subgroup of G
of bounded index which is Aut(M̄/A)-invariant. If for example G0

A does not
depend on A, but only on G we say that G0 exists. Likewise for G00 and
G000.

There is an analogy between definable groups G (and their quotients
such as G/G00 etc.) and automorphism groups (and their corresponding
quotients) which permeates this paper. A basic construction from the first
author’s thesis produces an automorphism group from a definable group (ac-
tion). We recall this now, calling it
Construction C.

We start with a theory T which includes a transitive ∅-definable group
action of G on X. Assume that X is stably embedded and that there is
some finite subset {a1, .., am} of X such that the pointwise stabilizer in G of
{a1, .., am} is trivial Fix a (saturated) model M of T , and add a new sort
X ′ and a bijection h : X → X ′. Call the resulting structure M ′ and its
theory T ′. Let M ′′ be the reduct of M ′ which has all existing relations on M
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as well as all relations on X ′ and X × X ′ which are ∅-definable in M ′ and
G-invariant (under the action of G induced by h and the action of G on X).
Let TX = Th(M ′′). Then we have:
Conclusion. In M ′′ the action of G on X ′ is by automorphisms, namely for
every σ ∈ G, σ|X ′ extends to an automorphism of M ′′. In fact the restriction
of Aut(M ′′) to X ′ equals the semidirect product of G and the restriction of
Aut(M) to X.

Note that after naming a1, .., am, b1, .., bm we recover h, and so M ′ is “inter-
nal” to M ′′: Let hm+1 : Xm+1 → X ′m+1 be the bijection induced by h, and
let H be the union of the G-conjugates of hm+1. So H is ∅-definable in M ′′,
and note that h(x) = y iff (x, a1, .., am, y, b1, .., bm) ∈ H .

In the case where the action of G on X is regular we have the following
equivalent construction. Simply add a new sort X ′ with a regular action
of G on X ′. In this structure Gopp acts on X ′ as automorphisms and the
full automorphism group of the new structure is the semidirect product of
Aut(M) and G.

We will repeatedly use the following characteristic property of theories with
NIP .

Fact 1.1. Suppose T has NIP . Then for any formula φ(x, y), there is N <
ω, such that if (ai : i < ω) is an indiscernible sequence, then there does not
exist b such that ¬(φ(ai, b) ↔ φ(ai+1, b)) for i = 0, .., N − 1.

In particular if (ai : i < ω) is totally indiscernible (or an indiscernible
set), then for any b, either |{i < ω :|= φ(ai, b)}| ≤ N or
|{i < ω :|= ¬φ(ai, b)}| ≤ N .

At some point we will, assuming NIP , refer to Av(I/M) where I is some
infinite indiscernible sequence (with no last element). It is the complete type
over M consisting of formulas with parameters from M which are true on a
cofinal subset of I. This makes sense by Fact 1.1.

The second author would like to thank H. Adler, A. Berarducci, C. Ealy
and K. Krupinski for helpful conversations and communications around the
topics of this paper. He would also like to thank the Humboldt Foundation
for their support of a visit to Berlin in March-April 2007 when some of the
work on this paper was done.

A first version of this paper was written in October 2007. Both authors
would like to thank Itay Kaplan, Margarita Otero, Kobi Peterzil, Henryk
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Petrykowski, and Roman Wencel, for their detailed reading of parts of the
manuscript and for pointing out errors, gaps, and possible improvements. In
the new version several proofs are expanded and clarified, particularly in the
current sections 2, 4, 7 and 8. Substantial changes include removing the old
section 8 on generic compact domination, giving a more complete account of
the Vapnik-Chervonenkis theorem and its applications in section 4, as well
as adding an appendix proving the existence of definable Skolem functions
in suitable o-minimal structures (which is needed for the proof of compact
domination in the current section 8).

2 Forking and Lascar strong types

Forking in NIP theories typically has a different character from forking in
simple theories (although the definition, as in the introduction, is the same).
In simple theories, forking is associated to a “lowering of dimension”. In
NIP theories forking can come from just a lowering of order of magnitude
within a given dimension. Although dimension is no less important in C-
minimal and o-minimal theories than in strongly minimal ones, we do not at
the moment know the right NIP based notion that specializes to lowering
of dimension in these cases. (Thorn forking is of course a very useful notion
but does not apply to the C-minimal case.)

This section builds on work of Poizat [31], Shelah [33] and Adler [1]. Many
of our key notions make an explicit or implicit appearance in Chapter 12 of
the Poizat reference. For completeness we will begin by restating some of the
results by the above mentioned people. The first is a striking characterization
of forking in NIP theories from [1] but with roots in [33].

Proposition 2.1. (Assume NIP ) Let p(x) ∈ S(M̄) be a global type and A
a (small) set. Then
(i) p does not fork over A iff p is Autf(M̄/A)-invariant, in other words if
p(x) is fixed by any automorphism of M̄ which fixes all Lascar strong types
over A.
(ii) In particular if A = M is a model, then p does not fork over M iff p is
invariant under Aut(M̄/M), in other words p does not split over M .

Proof. (i) Right implies left: suppose φ(x, y) ∈ L and (bi : i < ω) is an A-
indiscernible sequence of realizations of tp(b/A) where φ(x, b) ∈ p. We may
assume that b = b0. As Lstp(bi/A) = Lstp(b0/A) for all i, φ(x, bi) ∈ p(x) for
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all i, so trivially {φ(x, bi) : i < ω} is consistent.
Left implies right: Suppose first that b0, b1 are the first two members of an A-
indiscernible sequence (bi : i < ω), and φ(x, y) ∈ L. We claim that φ(x, b0) ∈
p iff φ(x, b1) ∈ p. If not then without loss of generality φ(x, b0)∧¬φ(x, b1) ∈ p.
But note that ((bi, bi+1) : i = 0, 2, 4, ..) is also an A-indiscernible sequence.
So as p does not divide over A, {φ(x, bi) ∧ ¬φ(x, bi+1) : i = 0, 2, 4, ..} is
consistent, but this contradicts NIP (see Fact 1.1.) So our claim is proved.
Now if Lstp(b/A) = Lstp(c/A) then we can find b = b0, b1, .., bn = c, such that
(bi, bi+1) are the first two members of an A-indiscernible sequence, for each
i = 0, .., n − 1. So by our claim, φ(x, b) ∈ p iff φ(x, c) ∈ p. This completes
the proof of (i).

(ii) is immediate because types over models and Lascar strong strong
types over models coincide.

Definition 2.2. Let p(x) ∈ S(M̄) be a global type.
(i) We say that p is invariant over the small subset A of M̄ if p is Aut(M̄/A)
-invariant.
(ii) We say that p is invariant if it is invariant over some small set.

Invariant types were studied by Poizat as “special” types. By Proposition
2.1, if T has NIP then the invariant global types coincide with the global
types which do not fork over some small set. If the global type p is A-invariant
then we have a kind of defining schema for p, namely for each φ(x, y) ∈ L we
have some family Dpφ of complete y-types over A such that for any b ∈ M̄ ,
φ(x, b) ∈ p iff tp(b/A) ∈ Dpφ. So we can apply the schema Dp to not only
supersets B of A living in M̄ but also to sets B ⊇ A living in a proper
elementary extension M̄ ′ of M̄ . In any case for any such set B, by p|B we
mean the complete type over B resulting from applying the schema Dp to B.
We will see subsequently that under the NIP hypothesis the defining schema
Dp will be “Borel”. Given invariant global types p(x) ∈ S(M̄), q(y) ∈ (M̄)
we can form the product p(x) ⊗ q(y) ∈ Sxy(M̄) as follows: Let φ(x, y) be
over M̄ . We may assume φ(x, y) to be over small A where both p, q are A-
invariant. We put φ(x, y) ∈ p(x) ⊗ q(y) if for some (any) b realizing q(y)|A,
φ(x, b) ∈ p(x).

Alternatively, if we are willing to consider elements of some |M̄ |+-saturated
model containing M̄ , define p(x)⊗q(y) to be tp(a, b/M̄) where b realizes q(y)
and a realizes p|(M̄b).

Note that if the global types p(x), q(y) are invariant, then so is p(x)⊗q(y).
We see easily that ⊗ is associative. However it need not be commutative.
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Namely considering both p(x)⊗ q(y) and q(y)⊗ p(x) as elements of Sxy(M̄),
they may not be equal.

For an invariant global type p(x), and disjoint copies x1, .., xn of the vari-
able x we define p(n)(x1, .., xn) inductively by: p1(x1) = p(x1) and pn(x1, .., xn) =
p(xn)⊗pn−1(x1, .., xn−1). We let p(ω)(x1, x2, ....) be the union of the pn(x1, .., xn)
which will be a complete infinitary type over M̄ .

Assuming that p(x) ∈ S(M̄) is A-invariant, then by a Morley sequence in
p over A, we mean a realization (a1, a2, a3, ...) in M̄ of p(ω)|A.

Lemma 2.3. Let p(x) ∈ S(M̄) be invariant. Then
(i) Any realization (b1, b2, ....) of p(ω) (in an elementary extension of M̄) is
an indiscernible sequence over M̄ .
(ii) Suppose A ⊂ M̄ is small and p is A-invariant. If a1, a2, ... from M̄ are
such that an+1 realizes p|(Aa1, .., an), then (a1, a2, ....) is a Morley sequence
in p over A. In particular tp(a1, a2, .../A) depends only on p and A.

Proof. Straightforward and left to the reader.

Remark 2.4. (Assume NIP ) More generally we can define a Morley se-
quence of p ∈ S(M̄) over A, assuming just that p does not fork over A, to
be a realization in M̄ of Lstp(b1, b2, ..../A) where (b1, b2, ..) realizes p(ω) (in a
model containing M̄). This is consistent with the previous definition.

Lemma 2.5. (Assume NIP ) (i) Suppose p(x), q(x) are A-invariant global
types. Then p = q iff p(ω)|A = q(ω)|A iff for all n and realization e of p(n)|A,
p|Ae = q|Ae.
(ii) Suppose Q(x0, x1, ...) is the type over A of some A-indiscernible sequence.
Then Q = p(ω)|A for some A-invariant global type p(x) if and only if whenever
Ij for j ∈ J are realizations of Q then there is an element c such that (Ij, c)
is A-indiscernible for all j ∈ J .

Proof. (i) It suffices to prove that if p|Ae = q|Ae for any realization e of any
p(n)|A, then p = q. Supposing for a contradiction that p 6= q there is φ(x, b) ∈
p, ¬φ(x, b) ∈ q. Let a1, a2, ... in M̄ be such that ai realizes p|(Aa1..ai−1b) for i
odd, and ai realizes q|(Aa1..ai−1b) for i even. Our assumption, together with
Lemma 2.3(ii), implies that (a1, a2, ..) is a Morley sequence in p over A, hence
by 2.3(i) indiscernible over A. But φ(ai, b) holds iff i is odd, contradicting
Fact 1.1.
(ii) Left implies right is clear and does not require NIP . (Let c realize
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p|(A ∪ ∪jIj).) For the other direction, assume Q has the given property.
Define the global type p by: φ(x, b) ∈ p iff any realization I of Q extends to
an indiscernible sequence I ′ such that φ(x, b) is eventually true on I ′. Then
NIP and our assumptions on Q yield that p is consistent, complete and
A-invariant and that Q is the type over A of its Morley sequence.

We continue with some newer material. We first give a rather better and
more general result on “Borel definability” than that in [13]. Given a (small)
subset A of M̄ , by a closed set over A we mean the set of realizations in M̄ of
a partial type over A. An open set over A is the complement (in the relevant
ambient sort) of a closed set over A. From these we build in the usual way
the Borel sets over A. Alternatively these correspond to the Borel subsets of
the relevant Stone space of complete types over A. A global type p(x) will
be called “Borel definable over A” if for any L-formula φ(x, y), the set of b in
M̄ such that φ(x, b) ∈ p(x) is a Borel set over A. So if p(x) is definable over
A in the usual sense then p will be Borel definable over A and if p is Borel
definable over A then p is A-invariant. In fact, we will be proving strong
Borel definability over A, in the sense that for any φ(x, y) ∈ L, the set of b
such that φ(x, b) ∈ p is a finite Boolean combination of closed sets over A.

Proposition 2.6. (Assume NIP ) Suppose that p(x) ∈ S(M̄) is a global type
which is A-invariant. Then p is strongly Borel definable over A.

Proof. Let φ(x, y) ∈ L. Let N < ω be as given for φ(x, y) by Fact 1.1.
Claim. For any b, φ(x, b) ∈ p if and only if for some n ≤ N [there is (a1, .., an)
realising p(n)|A such that
|= φ(ai, b) ↔ ¬φ(ai+1, b) for i = 1, .., n− 1, (∗)n
and |= φ(an, b),
but there is no (a1, .., an+1) such that (∗)n+1 holds].
Proof of claim. Suppose φ(x, b) ∈ p. By Fact 1.1 choose any realization
(ci : i < ω) of p(ω)|A with a maximal finite alternation (at most Nφ) of truth
values of φ(ci, b) for i < ω. Hence, eventually φ(ci, b) holds: for if not, let cω
realize p|(A ∪ {ci : i < ω} ∪ {b}), and we contradict maximality.

The converse holds by the above proof applied to ¬φ(x, b). So the claim
is proved and clearly yields a strongly Borel definition of the set of b such
that φ(x, b) ∈ p.

Remark 2.7. (i) Define an A-invariant global type p(x) to have NIP if its
Morley sequence over A, (bi : i < ω) (which has a unique type over A), has
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the property that for every φ(x, y) ∈ L there is nφ < ω such that for any c,
there at most nφ alternations of truth values of φ(bi, c). Then Proposition
2.6 goes through for p.
(ii) Proposition 2.6 also holds when A is a set of hyperimaginaries, such as
bdd(B) for some set B of imaginaries.

We now consider (assuming NIP still) global types which do not fork
over A, and Lascar strong types over A.

Remark 2.8. (Assume NIP ) Let p, q be global types which do not fork over
A. Then p⊗ q does not fork over A. In particular p(n) and p(ω) do not fork
over A.

Proof. This follows from the well-known fact (valid for any theory T )
that if tp(a/B) does not fork over A and tp(b/Ba) does not fork over Aa
then tp(a, b/B) does not fork over A. We will give a quick proof of this fact
for completeness:
First, using the hypotheses, find a saturated model M containing B such
that tp(a/M) does not fork over A, and tp(b/Ma) does not fork over Aa. It
is enough to prove:
Claim. tp(ab/M) does not divide over A.
Proof of Claim. Let c0 ∈ M , and q(x, y, c0) = tp(ab/Ac0). Let (ci : i < ω)
be an A-indiscernible sequence. We must show that ∪{q(x, y, ci) : i < ω}
is consistent. Let p(x, c0) = tp(a/Ac0). As tp(a/M) does not fork over
A, ∪{p(x, ci) : i < ω} is consistent, and we may assume (after applying
an automorphism which fixes pointwise Aac0) that (ci : i < ω) is Aa-
indiscernible. But now, as tp(b/Ma) does not fork over Aa, we may find b′

realizing ∪{q(a, y, ci) : i < ω}. So then (a, b′) realizes ∪{q(x, y, ci) : i < ω},
and we are finished.

Lemma 2.9. (Assume NIP ) Suppose that p(x) is a global type which does
not fork over A. Let c, d realize p|A. Then Lstp(c/A) = Lstp(d/A) iff there
is an (infinite) sequence a such that both (c, a) and (d, a) realize p(ω)|A.

Proof. Right implies left is immediate (for, as remarked earlier, elements of
an infinite A-indiscernible sequence have the same Lascar strong type over
A).
Left to right: Note first that for some σ ∈ Aut(M̄/A), σ(p)(x) implies
Lstp(c/A). As σ(p)(ω)|A = p(ω)|A, we may assume that already p(x) implies
Lstp(c/A). Let (a0, a1, a2, ....) realize p(ω) (in a bigger saturated model). So
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(a1, a2, ....) also realizes p(ω) and does not fork over A. Hence by 2.1 whether
or not φ(x̄, c) is in p(ω) depends on Lstp(c/A). Hence tp(c, a1, a2, .../A) =
tp(a0, a1, ..../A) = tp(d, a1, a2, .../A) = p(ω)|A, as required.

Lemma 2.9 says that on realizations of p|A, having the same Lascar strong
type over A is a type-definable (over A) equivalence relation, hence by our
discussion of Lascar strong types in the introduction we see:

Corollary 2.10. (Assume NIP ). (i) Suppose p(x) ∈ S(A) does not fork
over A. Then on realisations of p, Lascar strong type over A coincides with
compact (KP) strong type over A.
(ii) Suppose that T is 1-sorted (namely T eq is the eq of a 1-sorted theory).
Suppose that any complete 1-type over any set A does not fork over A. Then
over any set A, Lascar strong types coincide with compact strong types, hence
T is “G-compact” over any set of parameters.

Proof. (ii) The assumption, together with the discussion in the proof of 2.8,
implies that any complete type over any set A does not fork over A. So we
can apply (i).

We can now strengthen Proposition 2.1.

Proposition 2.11. (Assume NIP ) Suppose that p(x) is a global type. Then
p does not fork over A if and only if p is bdd(A)-invariant.

Proof. Right to left is clear and does not use the NIP assumption. For left
to right, assume p does not fork over A. Let σ be an automorphism of M̄
fixing bdd(A) pointwise, and we have to show that σ(p) = p. By Remark 2.8
and Corollary 2.10(i) we have
Claim I. For any realization ā of p(ω)|A, Lstp(ā/A) = Lstp(σ(ā)/A).

By Claim I and Proposition 2.1(i) it follows that
Claim II. For any realization ā of p(ω)|A, p|Aā = σ(p)|Aā.

Now let M be a small model containing A, and let ā realize p(ω)|M .
Claim III. For any c realizing either p|Aā or σ(p)|Aā, āc is an A-indiscernible
sequence.
Proof. By Claim II, it is enough to prove that āc is A-indiscernible for c
realizing p|Aā. Note that p does not fork over M hence by 2.1(i) is M-
invariant. So by Lemma 2.3, if c realizes p|Mā then āc is M-indiscernible,
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hence also A-indiscernible. But c realizes p|Aā and the latter is a complete
type over Aā. So for any c realizing p|Aā, āc is an A-indiscernible sequence.

Claim IV. Let ā′ be an indiscernible sequence (of realizations of p|A) extend-
ing ā. Then for c realizing either p|Aā′ or σ(p)|Aā′, ā′c is A-indiscernible.
Proof. This can be seen in various ways. For example it can be deduced from
Claim III, using the fact that each of p, σ(p) is invariant under Autf(M̄/A),
and the fact that any two increasing n-tuples from ā′ have the same Lascar
strong type over A.

Now suppose for a contradiction that p 6= σ(p). So for some ψ(x, y) ∈ L
and e ∈ M̄ , ψ(x, e) ∈ p and ¬ψ(x, e) ∈ σ(p). Let ci realize p|Aāc0...ci−1e
for i even and realize σ(p)|Aāc0...ci−1e for i odd. By Claim IV, (ā, ci)i is A
indiscernible. But |= ψ(ci, e) iff i is even, contradicting NIP . This concludes
the proof of Proposition 2.11.

Finally we will give an analogue of 2.10 (ii) for strong types (which is closely
related to material in [16] and [15]). First a preparatory lemma.

Lemma 2.12. (Assume NIP ). Suppose A is algebraically closed, tp(a/A)
has a global A-invariant extension, and e ∈ acl(Aa). Then tp(ae/A) has a
global A-invariant extension.

Proof. Let p(x) = tp(a/A) and fix some global A-invariant (so nonforking)
extension p′(x) of p(x). Let q(x, y) = tp(ae/A), and let q′(x, y) be any global
extension of q(x, y) whose restriction to x is p′(x). We will show that q′(x, y)
is A-invariant. Let δ(x, y) be a formula over A such that δ(a, y) isolates
tp(e/Aa).
Claim I. q′ does not fork over A.
Proof. Let φ(x, y, b) ∈ q′(x, y) and let (bi : i < ω) be A-indiscernible with
b0 = b. We may assume that |= φ(x, y, b) → δ(x, y). As p′ does not fork
over A, there is a′ realizing {∃yφ(x, y, bi) : i < ω}. For each i, let ei realize
φ(a′, y, bi). As there are finitely many possible choices for the ei, there is an
infinite subset I of ω such that ei = ej for i, j ∈ I. So {φ(x, y, bi) : i ∈ I} is
consistent, which is enough.

As p′ is A-invariant so is p′(n) for any n, hence:
Claim II. For all n, p′(n)|A implies a “complete” Lascar strong type over A.

Claim III. For any n, q′(n)|A implies a “complete” Lascar strong type over
A.
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Proof. As q′(n) does not fork over A, by Lemma 2.9 the relation of hav-
ing the same Lascar strong type over A, on realizations of q′(n)|A is type-
definable over A. But by Claim II clearly there are only finitely many
Lascar strong types over A extending q′(n)|A: If ((a1, e1), .., (an, en)), and
((a′1, e

′
1), .., (a

′
n, e

′
n)) are realizations of q′(n)|A with distinct Lascar strong

types, we may by Claim II assume that ai = a′i for i = 1, .., n, so there
are only finitely many possibilities for the sequence (ei)i. Hence equality of
Lascar strong type on realizations of q′(n)|A is the restriction to q′(n)|A of a
finite A-definable equivalence relation. As A is algebraically closed, there is
just one Lascar strong type over A extending q′(n), proving Claim III.

The A-invariance of q′ follows from Claim III, as in the proof of 2.11.

Proposition 2.13. (Assume NIP ) Let T be 1-sorted and work in T eq. The
following are equivalent:
(i) For any algebraically closed set A and complete 1-type p over A in the
home sort, p has a global A-invariant extension.
(iii) For any complete type p over any algebraically closed set A, p has a
global A-invariant extension.
(iii) For any A (a) any p(x) ∈ S(A) does not fork over A, and (b) Lascar
strong types over A coincide with strong types over A.

Proof. (i) implies (ii). It is enough to prove that for any n any complete
n-type (in the home sort) over any algebraically closed set A has a global
A-invariant extension. We prove it by induction on n. Suppose true for
n. Let p(x1, .., xn, xn+1) = tp(a1, .., an, an+1/A) with the ai’s elements of
the home sort, and A algebraically closed. Let (the infinite tuple) e be
an enumeration of acl(Aa1, .., an). By the induction hypothesis and 2.12,
tp(e/A) has a global A-invariant extension, realized by e′ say (in a bigger
saturarated model M̄ ′). Let a′1, .., a

′
n denote the copies of the ai in e′. By the

hypothesis over the algebraically closed base e′, there is a′n+1 (in the bigger
model) with tp(e′, a′n+1/A) = tp(e, an+1/A) such that tp(a′n+1/M̄e′) does not
split over e′. It follows easily that tp(e′, a′n+1/M̄) is A-invariant, hence also
tp(a′1, .., a

′
n, a

′
n+1/M̄) is the A-invariant extension of p we are looking for.

(ii) implies (iii), and (iii) implies (i) are clear.

Corollary 2.14. If T is o-minimal or C-minimal then (i) to (iii) of Propo-
sition 2.13 hold.

Proof. Condition (i) holds in C-minimal theories through the existence of
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“generic” 1-types (see [9]). In the o-minimal case (i) holds without even the
condition that A is algebraically closed.

3 Generically stable types

Here we make a systematic study of what Shelah has called “stable types”
in [32]. We discuss our choice of language a bit later. We begin with some
preliminary remarks.

Lemma 3.1. (Assume NIP ) Let p(x) be a global type which does not fork
over a small set A.
(i) Suppose p is definable. Then p is definable over acl(A). In particular p
is acl(A)-invariant.
(ii) Suppose that p is finitely satisfiable in some small model. Then p is
finitely satisfiable in any model which contains A.

Proof. (i) By 2.11 p is bdd(A)-invariant. So if p is definable, then for any
φ(x, y) ∈ L the φ-definition of p is over bdd(A) hence over acl(A).
(ii) Let M1 be a small model in which p is finitely satisfiable. Let M be
an arbitrary (small) model containing A. Let φ(x, c) ∈ p. Let M ′

1 realize a
coheir of tp(M1/M) over Mc. As p is M-invariant, p is finitely satisfiable in
M ′

1 so there is a′ ∈ M ′
1 such that |= φ(a, c). So there is a′ ∈ M such that

|= φ(a, c).

Among our main results is:

Proposition 3.2. (Assume NIP ) Let p(x) ∈ S(M̄), and let A such that p
is A-invariant.
Consider the conditions (i), (ii), (iii), (iv) and (v) below.
(i) p(x) is definable (hence A-definable), and also finitely satisfiable in some/any
small model containing A.
(ii) p(ω)|A is totally indiscernible. That is, if (ai : i < ω) is a Morley sequence
in p over A, then (ai : i < ω) is an indiscernible set (not just sequence) over
A.
(iii) For any formula φ(x, y) there is N such that for any Morley sequence
(ai : i < ω) of p over A, and c, φ(x, c) ∈ p if and only if
|= ∨w⊂2N,|w|=N ∧i∈w φ(ai, c).
(iv) For all small B ⊇ A, p is the unique global nonforking extension of p|B,
(v) For all n, p(n) is the unique global nonforking extension of p(n)|A.
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Then (i), (ii), (iii) and (iv) are equivalent, and imply (v). Moreover if A has
the additional property that every complete type over A does not fork over A,
then (v) implies each of (i),(ii),(iii),(iv).

Proof. (i) implies (ii): Fix a small model M ⊇ A such that p is finitely
satisfiable in M (and of course definable over M), and there is no harm in
proving (ii) with M in place of A. Let (ai : i < ω) be a Morley sequence in
p over M . We will show
(*) for any n and i ≤ n, ai realizes the restriction of p′ to Ma0..ai−1ai+1...an.
Note that (*) will be enough to show by induction that for any n and per-
mutation π of {0, .., n}, tp(a0, .., an/M) = tp(aπ(0), .., .aπ(n)/M) which, using
indiscernibility of the sequence (ai : i < ω) will prove its total indiscernibility.
So let us prove (*). Note that tp(ai+1, .., an/Ma0, .., ai) is finitely satis-
fiable in M . As tp(ai/a0, .., ai−1,M) is definable over M , it follows that
tp(a0..ai−1ai+1..an/Mai) is finitely satisfiable inM , whence tp(ai/Ma0..ai−1ai+1..an)
is an heir of p|M , so (as p is definable), realizes p|(Ma0..ai−1ai+1..an). This
proves (*).

(ii) implies (iii): This is by the “in particular” clause of Fact 1.1.

(iii) implies (i). Clearly p is definable. But it also follows from (iii) that p is
finitely satisfiable in any modelM containing A. For suppose φ(x, c) ∈ p. Let
I be a Morley sequence in p over A such that tp(I/Mc) is finitely satisfiable
in M . By (iii) φ(a, c) for some a ∈ I hence φ(a, c) for some a ∈M .

(ii) implies (v). As (ii) for p clearly implies (ii) for p(n), it suffices to prove
(v) for n = 1, namely that p is the unique global nonforking extension of
p|A.

Let us first note that because p is A-invariant p|A implies p|bdd(A), and
thus, by 2.11, any global nonforking extension of p|A is A-invariant.

Now let q be an arbitrary global nonforking extension of p|A. Let I =
(ai : i < ω) be a Morley sequence in p over A. We will prove that I realizes
q(ω)|A which will be enough, by Lemma 2.5, to conclude that p = q. So let b
realize q|(A ∪ I). We prove inductively that
(**) tp(a0, .., an, b/A) = tp(a0, .., an, an+1/A) for all n.
Note that of course tp(a0/A) = tp(b/A) = p|A which is in a sense the pre-
base step.
So assume (**) is true for n−1. Suppose that |= φ(a0, .., an, b). As q does not
fork over A we have, by 2.1 and indiscernibility of I that |= φ(a0, .., an−1, ai, b)
for all i ≥ n. By (iii) (for p) we see that φ(a0, .., an−1, x, b) ∈ p(x). By the
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induction hypothesis and the A-invariance of p, we conclude that
φ(a0, .., an−1, x, an) ∈ p, so |= φ(a0, .., an−1, an+1, an). Finally total indiscerni-
bility of I yields that |= φ(a0, .., an−1, an, an+1) as required.

As condition (i) is preserved after replacing A by any B ⊇ A, it follows from
what we have proved up to now that each of (i),(ii), (iii) implies (iv).

(iv) implies (iii). Let I = (ai : i < ω) be any Morley sequence in p over
A. Note that Av(I/M̄) is an A ∪ I-invariant extension of p|AI hence equals
p. It follows easily that for each φ(x, y) there is N such that for any c either
|{i < ω :|= φ(ai, c)}| < N or |{i < ω :|= ¬φ(ai, c)}| < N . So we obtain (iii).

Now assume the additional hypothesis on A, and we prove
(v) implies (ii). With some abuse of notation, let p(ω∗)(x0, x1, ..) denote
tp(a0, a1, a2...)/M̄) where for each n, (an−1, an−2, .., a0) realizes p(n). Let
Q(xi)i∈ω be the restriction of p(ω∗) to A. So (iv) implies that
(***) p(ω∗) is the unique global nonforking extension of Q.
Note that if a realizes p|A and (ai)i realizes the restriction of p(ω∗) to Aa
then (a0, a1, ...an, ....., a) is A-indiscernible. We claim that Q satisfies the
right hand side condition of 2.5 (ii), namely whenever I1, I2 are realizations
of Q then there is c such that (Ij, c) is indiscernible, for j = 1, 2. For, by our
hypothesis onA, let I ′1, I

′
2 realize a global nonforking extension of tp(I1, I2/A).

By (***), each of I ′1, I
′
2 realizes p(ω∗). So choosing c ∈ M̄ realizing p|A, real-

izing in M̄ the restriction of tp(I ′1, I
′
2/M̄) to Ac, and using an automorphism,

gives the claim. By 2.5 (ii), Q = q(ω)|A for some A-invariant global type q,
which note must extend p|A. Hence, by (iv), q = p. So if I = (a0, a1, ....)
realizes Q and a realizes q|AI then a also realizes p|AI. Hence both (a, I)
and (I, a) are indiscernible sequences over A, which easily implies that I is
an indiscernible set over A, giving (ii). The proof is complete.

Remark 3.3. (i) Assuming NIP , we will call a global type p(x) generi-
cally stable if it is both definable and finitely satisfiable in some small model,
namely p satisfies 3.2(i) for some A. We may also want to talk about gener-
ically stable types without a NIP assumption, in which case we will mean a
global p such that for some A (i), (ii), (iii) and (iv) of 3.2 are satisfied. We
leave the reader to study the implications between (i)-(iv) in the absence of
NIP .
(ii) (Assume NIP .) Suppose the global type p is generically stable, and p
does not fork over B. Then by 3.1, p satisfies 3.2(i) with A = acl(B). Hence
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by Proposition 3.2, we recover the finite equivalence relation theorem: any
two global nonforking extensions of p|B are distinguished by some finite B-
definable equivalence relation.
(iii) Proposition 3.2 goes through assuming only that p has NIP (as in Re-
mark 2.7).
(iv) In ACV F , for any set A, any complete type over A has a global non-
forking extension. (See [9] or Proposition 2.13.) Hence (i)-(v) of 3.2 are
equivalent in ACV F , for any A.
(v) In 3.2(iv) it is not enough to require just that p|A has a unique global
nonforking extension.

Explanation of (v). So we give an example of a NIP theory and a type
p(x) ∈ S(A) with a unique global A-invariant extension which is not defin-
able. We consider the basic C-minimal theory consisting of a dense linear
ordering (I, <) with greatest element ∞, and another sort on which there are
equivalence relations Ei indexed (uniformly) by i ∈ I and with Ej infinitely
refining Ei if i < j (plus some other axioms, see [12]). By a definable ball we
mean an Ei-class for some Ei. By a type-definable ball we mean a possibly
infinite intersection of definable balls. We can produce a model M and a
type-definable over M ball B such that B contains no proper M-definable
ball. Let the global type pB(x) ∈ S(M̄) be the “generic type” of B, namely
p says that x ∈ B and x is not in any proper definable sub-ball of B. Then
p is the unique M-invariant extension of p|M but is not definable.

In the NIP context, our generically stable types coincide with what Shelah
[32] calls stable types. However there is already another meaning for a com-
plete or even partial type Σ(x) to be stable. It is that any extension of Σ(x)
to a complete global type is definable (over some set, not necessarily the do-
main of Σ). This notion is also sometimes called “stable, stably embedded”
(although mainly in the case where the partial type is a single formula). One
family of examples of generically stable types come through stable domina-
tion in the sense of [9]. Recall that q(x) ∈ S(A) (A algebraically closed) is
said to be stably dominated if there is stable partial type Σ(x) over A (stable
in the strong sense mentioned above), and an A-definable function f from
the set of realizations of p to the realizations of Σ such that, if q ∈ S(A)
is f(p), and a realizes p, then whenever f(a) is independent from B over
A then tp(a/A, f(a)) has a unique extension over Bf(a). A stably dom-
inated type is generically stable, as is easily verifiable. Generically stable
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but unstable types occur in algebraically closed valued fields through stable
domination, namely via the stable part of the structure which is essentially
the residue field. In “pure” unstable NIP theories such as o-minimal and
weakly o-minimal theories, or p-adically closed fields there are no (nonalge-
braic) generically stable types. On the other hand in simple theories any
stationary type (type with a unique nonforking extension) is easily seen to
be generically stable.

We finish this section with some remarks on invariant types and symmetry.

Lemma 3.4. Suppose p(x), q(y) are global types such that p is finitely satisfi-
able in some small model, and q is definable. (So both p and q are invariant.)
Then px ⊗ qy = qy ⊗ px.

Proof. LetM be a small model such that q is definable over M and p is finitely
satisfiable in M . Let (a, b) realize (p(x) ⊗ q(y))|M , namely b realizes q|M
and a realizes p|Mb. We want to show that (a, b) realizes (q(y) ⊗ p(x))|M .
Suppose not. Then there is a formula φ(a, y) ∈ q such that |= ¬φ(a, b). Let
ψ(x) (a formula over M) be the φ(x, y)-definition for q(y). So |= ¬ψ(a). As
tp(a/Mb) is finitely satisfiable in M , there is a′ ∈ M such that |= ψ(a′) ∧
¬φ(a′, b), which is a contradiction as tp(b/M) = q|M . (The reader should
note that this is just a restatement of uniqueness of heirs for definable types.)

Finally we return to generically stable types:

Proposition 3.5. Suppose T has NIP , and that p(x), q(y) are global in-
variant types such that p(x) is generically stable. Then px ⊗ qy = qy ⊗ px

Proof. Suppose φ(x, y) ∈ LM̄ and φ(x, y) ∈ p(x)⊗q(y). Let M be a small
model such that each of p and q do not fork over M and φ is over M . By
assumption, p is definable over M . Moreover
(*) if ψ(y) is the φ(x, y)-definition of p, then for any realisation c of ψ, and
any Morley sequence (ai : i < ω) of p over M , |= ψ(ai, c) for all but finitely
many i < ω.

From our assumption that φ(x, y) ∈ p(x) ⊗ q(y), it follows that ψ(y) ∈ q.
Now suppose for a contradiction that ¬φ(x, y) ∈ q(y)⊗p(x). Let (ai : i < ω)
be a Morley sequence in p over M . So then ¬φ(ai, y) ∈ q for all i, so there is
b realizing q|(M ∪ {ai : i < ω}) such that |= ¬φ(ai, b) for all i. As b realizes
ψ(y) this contradicts (*), and completes the proof.
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4 Measures and forking

In this section we generalize some of the results on types in the previous
sections to Keisler measures.

Recall that a Keisler measure µ on a sort S over a set of parameters A,
is a finitely additive probability measure on A-definable subsets of S (or on
formulas over A with free variable in sort S), namely µ(X) ∈ [0, 1] for all
A-definable X, µ(S) = 1 and the measure of the union of two disjoint A-
definable sets X and Y is the sum of the measures of X and of Y . A complete
type over A (in sort S) is a special case of a measure. We sometimes write
µ(x) or µx to mean that the measure is on the sort ranged over by the variable
x. A Keisler measure over M̄ is called a global (Keisler) measure.

Let us emphasize that a Keisler measure µx over A is the same thing as a
regular Borel probability measure on the compact space Sx(A). Regularity
means that for any Borel subset B of S(A), and ǫ > 0, there are closed C
and open U such that C ⊆ B ⊆ U and µ(U \C) < ǫ. Note that µx defines a
finitely additive probability measure (still called µ) on the algebra of clopens
of S(A). Theorem 1.2 of [17] extends µ to a Borel probability measure β
on Sx(A) using the Loeb measure construction in a mild way. And Lemma
1.3(i) of [17] says that this β is regular. On the other hand a Borel probability
measure β on Sx(A) gives, by restriction to the clopens, a Keisler measure
µx over A. Moreover if β is regular then for any closed set C, µ(C) will
be the infimum of the µ(C ′) where C ′ is a clopen containing C. Hence β is
determined by µ.

An important, and even characteristic, fact about NIP theories is that for
any global Keisler measure µx there are only boundedly many definable sets
up to µx-equivalence. (See Corollary 3.4 of [13].)

As in [13] notions relating to types generalize naturally to measures. There
we discussed the notions of a measure being definable, and of being finitely
satisfiable: For example if µ is a global Keisler measure then µ is definable
over A, if for each closed subset of [0, 1] and L-formula φ(x, y), {b ∈ M̄ :
µ(φ(x, b)) ∈ C} is type-definable over A. We say µ is finitely satisfiable in
M if every formula with positive measure is realized by a tuple from M . But
we also have the notion of forking:

Definition 4.1. Let µ be a Keisler measure over B, and A ⊆ B. We say
that µ does not divide over A if whenever φ(x, b) is over B and µ(φ(x, b)) > 0
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then φ(x, b) does not divide over A. Similarly we say µ does not fork over A
if every formula of positive µ-measure does not fork over A.

Remark 4.2. Suppose µ is a global Keisler measure.
(i) µ does not fork over A iff µ does not divide over A.
(ii) If µ is either definable over M or finitely satisfiable in M , then µ does
not fork over M .

Proof. (i) If µ(φ(x)) > 0 and φ forks over A then φ implies a finite disjunction
of formulas each of which divides over A. One of those formulas must have
positive measure by finite additivity.
(ii) If µ is either definable over or finitely satisfiable in M , then for any
φ(x, y) ∈ L and b, µ(φ(x, b)) depends on tp(b/M). (In the case that µ is
definable over M this is immediate. If µ is finitely satisfiable in M , then
tp(b1/M) = tp(b2/M) implies that the measure of the symmetric difference
of φ(x, b1) and φ(x, b2) is 0, so again φ(x, b1) and φ(x, b2) have the same
measure.) So if (bi : i < ω) is an M-indiscernible sequence and µ(φ(x, b0)) =
r > 0, then for all i, µ(φ(x, bi)) = r. By Lemma 2.8 of [13], {φ(x, bi) : i < ω}
is consistent.

Proposition 2.1 readily generalizes to measures.

Proposition 4.3. (Assume NIP ) Suppose µ is a global Keisler measure,
and A a small set. Then the following are equivalent:
(i) µ does not fork over A,
(ii) µ is invariant under Autf(M̄/A),
(iii) whenever Lstp(b1/A) = Lstp(b2/A), then µ(φ(x, b1)∆φ(x, b2)) = 0.

Proof. (i) implies (iii). Suppose that µ does not fork over A. Let b0, b1 begin
an indiscernible sequence (bi : i < ω). We claim that µ(φ(x, b0)∆φ(x, b1)) =
0. If not then without loss µ(φ(x, b0) ∧ ¬φ(x, b1)) > 0. As ((bi, bi+1) : i =
0, 2, 4, ..) is A-indiscernible and µ does not fork over A, {φ(x, bi)∧¬φ(x, bi+1) :
i = 0, 2, ...} is consistent, contradicting NIP . So we clearly obtain (iii).
(iii) implies (ii) is immediate.
(ii) implies (i). Assume (ii) and suppose that µ(φ(x, b)) = ǫ > 0 and that
(b = b0, b1, .......) is A-indiscernible. So the b′i have the same Lascar strong
type over A, hence µ(φ(x, bi)) = ǫ for all i. By Lemma 2.8 of [13] again,
{φ(x,bi) : i < ω} is consistent.
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So we see that the global Keisler measures which do not fork over some small
set coincide with those which are invariant over some small model, and we
can just call them invariant global measures (as we did for types). There is
an obvious notion of Borel definability for a measure. Namely we say that
(global) µ is Borel definable over A if for any φ(x, y) and closed subset C
of [0, 1] the set of b ∈ M̄ such that µ(φ(x, b)) ∈ C is Borel over A. We will
prove at the end of this section that (assuming NIP ) any global invariant
Keisler measure is Borel definable.

We can therefore define a product on invariant measures (global Keisler
measures invariant over some small set of model) by integration: Suppose µx
is a Borel definable (over M) global Keisler measure and λy is another global
Keisler measure. Fix φ(x, y) ∈ LM̄ . For any b ∈ M̄ let f(b) = µ(φ(x, b))
Then f is a Borel function over M on the sort to which the b’s belong, so we
can form the integral

∫
f(y)dλy, and we call this (µ⊗λ)(φ(x, y)). When µ, λ

are global complete types, this agrees with the product as defined in section
2.

Remark 4.4. It is natural to attempt to generalize the material from sec-
tion 3 to measures. So (assuming NIP ) we call a global Keisler measure µ
generically stable if µ is finitely satisfiable in some small model, and also de-
finable. The analogues of Proposition 3.2 and Proposition 3.5 will be treated
in a future work joint with P. Simon. Likewise for the measure analogue of
the symmetry Lemma 3.4.

For now, we continue the generalization of the results from section 2 to mea-
sures. We also begin to relate invariant measures (those measures which do
not fork over a small set) to invariant types. We first generalize Proposition
2.11.

Proposition 4.5. (Assume NIP ) Let µx be a global Keisler measure which
does not fork over A. Then µ is bdd(A)-invariant.

Proof. Let B be the Boolean algebra of formulas φ(x, b) over M̄ quotiented
by the equivalence relation φ(x, b) ∼ ψ(x, c) if µ(φ(x, b)∆ψ(x, c)) = 0. Let
[φ(x, b)] denote the class of φ(x, b), i.e. the image of φ(x, b) in B. Note that
B is small, because by Proposition 4.3,
(*) if Lstp(b/A) = Lstp(c/A) then [φ(x, b)] = [φ(x, c)].
For any ultrafilter U on B, we obtain a complete global type pU(x) by
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putting φ(x, b) ∈ pU iff [φ(x, b)] ∈ U . Note that by (*) pU is invariant
under Autf(M̄/A), so does not fork over A, so is in fact bdd(A)-invariant.

We claim that in fact if b and c have the same compact strong type over
A (namely the same type over bdd(A)) then µ(φ(x, b)∆φ(x, c)) = 0, which
will show that µ is bdd(A)-invariant. If not we have, without loss, µ(φ(x, b)∧
¬φ(x, c)) > 0, so there is an ultrafilter U containing [φ(x, b) ∧ ¬φ(x, c)], and
we obtain the global type pU which as pointed out above is bdd(A)-invariant.
As φ(x, b) ∈ pU , also φ(x, c) ∈ pU , a contradiction.

Note that given small A the collection of global x-types which do not fork over
A is closed in Sx(M̄) and coincides with the space of global types invariant

over bdd(A). As in section 8 we call this space S
bdd(A)
x (M̄). In the same vein

as Proposition 4.5 we have.

Proposition 4.6. Fix small A. Then there is a natural bijection between
global Keisler measures which do not fork over A and regular Borel probability
measures on S

bdd(A)
x (M̄).

Proof. We have already observed the bijection between global Keisler mea-
sures and regular Borel probability measures on the space of global types.
Let µx be a global Keisler measure which does not fork over A, and let β
be the regular Borel measure on Sx(M̄) corresponding to it. It is enough to

show that the restriction of β to S
bdd(A)
x (M̄) determines µ. But this is clear.

For if φ(x), ψ(x) are formulas over M̄ and µ(φ∆ψ) > 0, then there is some

p ∈ S
bdd(A)
x (M̄) containing (without loss) φ ∧ ¬ψ.

Proposition 4.7. (Assume NIP ) Let p(x) be a complete type over A. Then
the following are equivalent:
(i) p does not fork over A (that is p has a global nonforking extension),
(ii) there is a global Keisler measure µ which extends p and is A-invariant.

Proof. (ii) implies (i): Let µ be a global A-invariant Keisler measure
which extends p. Suppose, for a contradiction, that p(x) forks over A. So
there are φ(x) ∈ p(x), and formulas ψ1(x), .., ψn(x) (with parameters), each
dividing over A such that |= φ(x) → ∨iψi(x). As µ(φ(x)) = 1, µ(ψi(x)) > 0
for some i = 1, .., n. But as µ is A-invariant, µ does not divide over A,
contradiction.
(i) implies (ii). Let p′(x) be a global nonforking extension of p. By 2.11 p′

is bdd(A)-invariant. By Proposition 2.6, p′ is Borel definable over bdd(A).
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Let G be the compact Lascar group over A, namely Aut(bdd(A)/A). G is
a compact group which thus has a (unique left and right invariant) Haar
measure h. Let S be the space of all complete types over bdd(A). So S is a
compact space acted on continuously by G.

We now define the A-invariant global measure µ extending p(x). Let
φ(x, b) be a formula over M̄ . Let q(y) = tp(b/A), and let Q ⊂ S be the space
of complete types over bdd(A) extending q (a closed subset of S). The Borel
definability of p′ over bdd(A) says that the set X of tp(b′/bdd(A)) such that
φ(x, b′) ∈ p′ is a Borel subset of S. Hence X ∩Q is also a Borel subset of Q.
The compact space Q is acted on continously and transitively by G, hence
has the form G/H for some closed subgroup of G. Let π be the canonical
projection fromG ontoQ. AsX∩Q is Borel inQ, π−1(X∩Q) is a Borel subset
of G, hence h(π−1(X∩Q)) is defined and we define this to be µ(φ(x, b)). Note
that if tp(b′/A) = tp(b/A)(= q) then by construction µ(φ(x, b′)) = µ(φ(x, b)),
so µ is A-invariant. Also if φ(x, b) ∈ p(x) (namely b ∈ A), then Q is a
singleton ({tp(b/A)}) and X ∩Q = Q, whereby µ(φ(x, b)) = 1. So µ extends
p. We leave it to the reader to check finite additivity of µ.

In the stable case it is not so hard to see, via the finite equivalence relation
theorem for example, that the A-invariant measure µ extending p in (ii) above
is unique. Likewise if p has a generically stable global nonforking extension.
It would be interesting to find examples of uniqueness of µ, when p does not
have a generically stable nonforking extension. We will come back to the
issue of when µ is unique later in the paper.

We now return to the question of the Borel definability of invariant measures.
We will make use of the Vapnik-Chervonenkis theorem [36] which we now
describe.

Let (X,Ω, µ) be a probability space, that is a set X equipped with a
σ-algebra Ω of subsets (events) of X and a countably additive probability
measure µ with values in [0, 1]. Namely µ(∅) = 0, µ(X) = 1, µ(E) is defined
for any E ∈ Ω and if Ei ∈ Ω for i < ω are pairwise disjoint and E = ∪iEi
then µ(E) =

∑
i µ(Ei). For k > 0, let µk be the product measure on Xk.

Also, for k > 0, A ∈ Ω and p̄ = (p1, .., pk) ∈ Xk, let frk(A, p̄) be the
proportion of pi’s which are in A, namely |{i : pi ∈ A}|/n. For any A ∈ Ω,
let gA,k : Xk → [0, 1] be defined by gA,k(p̄) = |frk(A, p̄) − µ(A)|. Also
let hA,k : X2k → [0, 1] be defined by hA,k(p̄, q̄) = |frk(A, p̄) − frk(A, q̄)|.
Note that gA,k is µk-measurable and hA,k is µ2k-measurable. We will say
(somewhat nonstandardly) that a family C of events has NIP if there is a
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natural number d such that for no subset F of X of cardinality d do we have
that {F ∩A : A ∈ C} is the full power set of F . For C with NIP the smallest
such d will be called the V C-dimension of C.

With this notation, Theorem 2 of [36] gives:

VC Theorem. Suppose that the family C of events has NIP . Suppose also
that for every k > 0, supA∈CgA,k is µk-measurable and supA∈ChA,k is µ2k-
measurable. Then there is a function f(−,−) such that for any ǫ > 0, and
k < ω µk({p̄ : supA∈CgA,k(p̄) > ǫ}) ≤ f(k, ǫ), and for any given ǫ, f(k, ǫ) → 0
as k → ∞.
Moreover the function f depends only on the V C-dimension of C.

It is convenient to state a version or consequence of the VC Theorem in which
the two measurability assumptions are dropped.

First let us note that any family F of measurable functions fromX to [0, 1]
say, has an essential supremum, which is by definition measurable, and can
be chosen as the outright supremum of some countable subfamily of F . By
an essential supremum of F we mean a measurable function g : X → [0, 1]
such that for each f ∈ F , g ≥ f on a set of µ-measure 1, and whenever
g′ : X → [0, 1] has the same property, then g ≤ g′ on a set of measure
1. Such a g can be found as follows. We construct measurable gα for α a
countable ordinal in the following way: let g0 be some member of F . At limit
stages, take suprema. Given gα, if it is already an essential supremum of F ,
stop. Otherwise there is some f ∈ F such that f > gα on a set of positive
measure. Put gα+1 = sup{gα, f}. Note that

∫
gα is strictly increasing with

α, hence the construction has to stop at some countable ordinal β. Then gβ
is measurable, is an essential supremum of F , and is, by construction, the
supremum of some countable subfamily of F .

Note that any two essential suprema g, g′ of F are equivalent in the sense
that they are equal almost everwhere. We will just write esssupF for a rep-
resentative of the equivalence class which we will assume to be a supremum
of a countable subfamily of F .

VC Theorem*. Suppose that the family C of events has NIP . Then for any
ǫ > 0, µk({p̄ : esssupA∈CgA,k(p̄) > ǫ}) → 0 as k → ∞.

This *-version is immediately deduced from the first version: Let us fix ǫ.
We can find a countable subfamily C0 of C with the same V C-dimension, and
such that for each k, esssupA∈CgA,k = supA∈C0

gA,k. Note that supA∈C0
hA,k is

measurable. Hence we can apply the V C Theorem with C0 in place of C and
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we obtain the *-version.

We will apply the above theorems to the following situation. Let M be a
model of a NIP theory, φ(x, y) an L-formula, and µx a Keisler measure
over M . Take X to be the Stone space Sx(M), Ω the σ-algebra of its Borel
subsets, and identify µx with the measure induced on X as described at the
beginning of this section. Let C be the family of clopen subsets of X given
by the formulas φ(x, c) as c varies over M . It is easy to see that as T has
NIP the family C has NIP .

Lemma 4.8. (Assume NIP .)
Let M be a model and µx a Keisler measure over M .
(i) Let φ(x, y) ∈ L, and let ǫ > 0. Then there is k, and a Borel subset B
of Sx(M)k of positive µk measure such that for all (p1, .., pk) ∈ B and any
c ∈ M , µ(φ(x, c)) is within ǫ of the proportion of the pi which contain φ(x, c).
(ii) If moreover M is saturated (for example equals M̄) and A ⊆M is small
such that µ does not fork over A, then in (i) we can choose B such that for
any (p1, .., pk) ∈ B, each pi does not fork over A.

Proof. (i) We will identify φ(x, c) with the clopen subset of X it de-
fines, and as above write frk(φ(x, c), p̄) for the proportion of pi containing
φ(x, c). We fix our ǫ > 0. By VC Theorem*, choose k and δ > 0 such
that µk({p̄ : esssupA∈CgA,k(p̄) < ǫ}) > δ. It follows that for each finite set
C = {c1, .., cm} of parameters from M , the Borel set BC = {(p1, .., pk) ∈
S(M)k : frk(φ(x, cj), p̄) − µ(φ(x, cj)) < ǫ, for j = 1, .., m} has µk-measure
> δ. Note that BC′ ⊆ BC when C ⊆ C ′. As Borel sets are approximated
in measure by closed sets, we can use compactness to find a Borel (in fact
closed) subset B of Sx(M)k of µk-measure ≥ δ such that all (p1, .., pk) ∈ B
satisfy the conclusion of (i).

(ii) This is proved exactly as (i) but working in the closed set S
bdd(A)
x (M) of

Sx(M) consisting of, types over M which do not fork over A, and bearing in
mind 4.6.

Corollary 4.9. (Assume NIP .) Suppose that µ is a global Keisler measure
which does not fork over A. Then µ is Borel definable over bdd(A).

Proof. Fix φ(x, y) ∈ L, and ǫ > 0. Let p1, .., pn be given by Lemma 4.8
(ii) (for M = M̄). By Proposition 2.6, each pi is strongly Borel definable
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over bdd(A). Namely for each i there is some finite Boolean combination Yi
of type-definable over bdd(A)-sets such that for all c, φ(x, c) ∈ pi iff c ∈ Yi.
It follows that if c, c′ lie in exactly the same Yi for i = 1, .., n, then µ(φ(x, c))
and µ(φ(x, c′)) differ by < 2ǫ. This suffices to prove Borel definability of µ.

A thorough account of the model-theoretic results related to VC-type theo-
rems will appear in a forthcoming paper.

5 Generics and forking in definable groups

In [13] the fsg (finitely satisfiable generics) property for definable groups was
introduced. Strengthenings of the fsg will be discussed in section 6. In this
section we discuss weakenings of the fsg, relate the fsg to forking, and in
general try to obtain equivariant versions of results from section 2.

Let G be a ∅-definable group in M̄ . SG(A) denotes the set of complete
types over A extending “x ∈ G”. Recall from [13] and [35] that if T has
NIP then G00 (the smallest type-definable bounded index subgroup of G)
exists. Our notion of “generic” will be from [13]. However in [11] “generic”
is used differently (there it is a translation invariant definable type). Also we
distinguish it (as in [20]) from “f -generic”:

Definition 5.1. (i) A definable subset X of G is said to be left generic if
finitely many left translates of X by elements of G cover G.
(ii) p(x) ∈ SG(A) is left generic if every formula in p is left generic.
(iii) A definable subset X of G is said to be left f -generic if for each g ∈ G,
gX does not fork over ∅.
(iv) p(x) ∈ SG(A) is left f -generic if every formula in p is left f -generic.
(v) G has the fsg if there is a global type p(x) ∈ SG(M̄) such that every left
translate gp of p is almost finitely satisfiable over ∅, namely for every model
M0, every left translate of p is finitely satisfiable in M0.

Note that if G is the additive group in RCF (or just the underlying group
in DOAG) then there are no complete generic types, but there are two f -
generic types, at +∞ and −∞. (Both these types are definable over ∅ and
invariant under the group operation).

In [13] we pointed out:

Fact 5.2. G has the fsg if and only if
(a) The class of left generic definable subsets of G coincides with the class of
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right generic sets (we call them simply generic), and
(b) The class of non generic definable subsets of G is a (proper) ideal, and
(c) If X is a generic definable subset of G, then X meets every model M0.

The fsg is a rather strong property for a definable group. It is a kind
of abstract “definable compactness”. The following was observed in [13].
(Theorem 8.1 and Remark 3 of Section 8.)

Remark 5.3. In o-minimal expansions of real closed fields, the definable
groups with fsg are precisely the definably compact groups.

Definable groups in algebraically closed valued fields have been studied by
the first author ([11]). From the analysis there, one can with additional work,
obtain a characterization of the definable groups G with fsg, at least when
G is abelian: they are precisely the (abelian) groups G such that there is a
definable homomorphism h : G → A where A is internal to the value group
and is definably compact, and Ker(h) is stably dominated. The p-adically
closed field case is considered in [21], where among other things it is pointed
out that definably compact groups defined over the standard model have fsg.

Corollary 5.4. If G has the fsg, then there exists a (simultaneously left and
right) global generic type p ∈ SG(M̄) and moreover any such global generic
type is also (left and right) f -generic.

Problem 5.5. Suppose G has the fsg and assume NIP if one wants. Is it
the case that every left f -generic type is generic?

In the case of definably compact groups in o-minimal expansions of real
closed fields, Problem 5.5 has a positive answer. This follows from the results
in [5] and [23] which give that: if X is definable, closed and bounded then
X does not fork over M0 if and only if X meets M0. So assume X to be
left f -generic and we want to prove that X is generic. We may assume X is
closed. Let M0 be any small model. So for any g ∈ G, gX meets M0. By
compactness X is right generic in G (so generic in G).

We now work without the fsg assumption, improving a result from [13].

Proposition 5.6. (Assume NIP ) Suppose that G has a global left f -generic
type p. Then
(i) Stabl(p) = G00 = G000, and
(ii) G is definably amenable, that is G has a left invariant global Keisler
measure.
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Proof. Recall that Stabl(p), the left stabilizer of p, is by definition the set of
g ∈ G such that gp = p. It is a subgroup of G but on the face of it has no
definability properties.
(i) Let us fix a small model M0 for convenience.
Claim I. If tp(g1/M0) = tp(g2/M0) then g−1

1 g2 ∈ Stabl(p).
Proof of Claim I. By f -genericity of p and the NIP assumption, both p and
g1p are AutM0

(M̄)-invariant. Let f ∈ AutM0
(M̄) such that f(g1) = g2. So

g1p = f(g1p) = f(g1)f(p) = g2p. Hence g−1
1 g2 ∈ Stabl(p).

Claim II. Suppose h ∈ Stabl(p). Then h = g−1
1 g2 for some g1, g2 with the

same type over M0.
Proof of Claim II. By definition ha = b for some realizations of p (in a model
containing M̄). So we can find realizations a, b of p|M0 in M̄ such that
ha = b. So h = ba−1. Put g1 = b−1 and g2 = a−1 and note they have the
same type over M0.

From Claims I and II we deduce that Stabl(p) is type-definable (over M0) as
the set of g−1

1 g2 for g1, g2 ∈ Ḡ having the same type over M0. On the other
hand by Claim I, the index of Stabl(p) in G is bounded by the number of
types over M0. It follows that Stabl(p) has to be G00, because p determines
a coset of G00. The same reasoning yields that Stabl(p) = G000.

(ii) This follows by the same proof as that of Proposition 6.2 of [13], using
part (i) together with Corollary 2.6: We can reduce to the case where T is
countable. Given X a definable subset of G, let M0 be a countable model
over which X is defined. Note that p does not fork over M0. The proof of
Corollary 2.3 yields that not only is p Borel definable over M0, but (using
countability of the language and of M0) that any “φ(x, y)-definition of p” is a
countable union of closed sets over M0. In particular Y = {g ∈ G : X ∈ gp}
is a countable union of closed sets over M0. By part (i) whether or not g ∈ Y
depends only on the coset g/G00. Let π : G → G/G00 be the canonical
surjection. Then π(Y ) is a Borel subset of G/G00 and we define µ(X) to
be h(π(Y )) where h is the unique normalized Haar measure on the compact
group G/G00. µ is clearly additive and is also left-invariant: Given h ∈ G,
µ(hX) = h({g/G00 : hX ∈ gp}). But hX ∈ gp iff g = hg′ for some g′ such
that X ∈ g′p. Hence {g/G00 : hX ∈ gp} = h/G00 · {g′/G00 : X ∈ gp}. So by
left-invariance of h, µ(hX) = h({g′/G00 : X ∈ gp}) = µ(X).

Remark 5.7. Proposition 5.6 also holds when G is type-definable (with ap-
propriate definitions). But for G definable (over ∅) , we could also deduce 5.6
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from 4.7 and 2.10(i), together with Construction C from the introduction, in
the easy form where the group action is regular. (Assume NIP ). Let T ′ the
theory T together with an additional sort S and a ∅-definable regular action
of G on S. Let x be a variable of sort S. Then the following are equivalent:
(i) In T there is a global left f -generic type, (ii) in T ′, x = x does not fork
over ∅.

We now aim towards a kind of converse of 5.6. First:

Lemma 5.8. (Assume NIP ) Let G be a definable (or even type-definable)
group, and let µ be a global left invariant Keisler measure on G. Let M0 be
any small model over which G is defined. Then there is a global left invariant
Keisler measure µ′ on G such that µ′|M0 = µ|M0 and µ′ is definable (hence
Aut(M̄/M)-invariant for some small M).

Proof. The proof follows Keisler’s construction in [17] of “smooth measures”
assuming NIP .
Step I. We construct M extending M0 and extension µ1 of µ to a left G(M)-
invariant measure over M such that µ1 has a unique extension to a global
left-invariant measure µ′.
Suppose that already µ andM0 do not work. So µ has two distinct extensions
λ, β to left invariant global measures. So there is a definable subset X of G
and some positive real number r such that |λ(X)−β(X)| > r. Let µ′ be the
average of λ and β. Note that µ′ has the property
(*) for any M0-definable subset Y of G, µ′(X∆Y ) > r/4.

Let M1 be a small model containing M0 such that X is over M1, and let
µ1 be the restriction of µ′ to M1. Continue with µ1 in place of µ. We claim
that at some point we arrive at µα over a model Mα which is left G(Mα)-
invariant and has a unique global left invariant extension. Otherwise by (*)
we find a formula φ(x, y), a positive real number ǫ and (ci : i < ω), and a
global measure µ′′ such that µ′′(φ(x, ci)∆φ(x, cj)) > ǫ for all i 6= j. This
(together with NIP ) is a contradiction. (See 3.14 of [17] or 3.2 of [13].) So
Step I is accomplished.
Step II. µ′ from Step I is definable (over M).
This is proved (via Beth’s theorem) exactly as in the proof of Lemma 2.6
(definability of minimal measures) in [13].

The following consequence of Lemma 5.8 was also noticed by Krzysztof
Krupinski.
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Proposition 5.9. (Assume NIP ) Suppose that the definable group G is
definably amenable (has a global left invariant Keisler measure). Then, after
possibly adding constants for some small model over which G is defined, there
is a global left f -generic type of G.

Proof. By Lemma 5.8, there is a left invariant global Keisler measure µ on G
which is moreover definable, over some small model M , hence does not fork
over M . Let p be a global type of G such that µ(X) > 0 for every X ∈ p.
Then for every X ∈ p and g ∈ G, µ(gX) = µ(X) > 0, hence gX does not
fork over M . So p is a left f -generic of G after adding names for the model
M .

So we obtain the following:

Corollary 5.10. (Assume NIP ) G is definably amenable if and only if G
has a global left f -generic type after possibly adding constants. Moreover
under these circumstances G000 exists and coincides with G00.

The corollary goes through for type-definable G too. Shelah [35] has
recently proved that assuming NIP , then for any abelian type-definable
group G, G000 exists. As abelian groups are amenable, the corollary above
improves Shelah’s theorem. On the other hand Gismatullin [7] has recently
been able to drop the abelian hypothesis from Shelah’s theorem.

The following clarifies the question of the existence of left f -generic types
and addition of constants. In particular the proof of (ii) gives another exam-
ple where forking does not equal dividing.

Proposition 5.11. (Assume NIP ) (i) Suppose G is a definable group and
has a global left f -generic type after naming elements of some model. Then
G has a global left f -generic type after naming elements of any model.
(ii) There is a ∅-definable group G in a theory T with NIP , such that G is
definably amenable, but there is no global f -generic type of G.

Proof. (i) We assume G to be ∅-definable in T . We will use Remark 5.7.
That is we work in the theory T ′ which is T together with a new sort S and
a regular right action of G on S. M̄ is our monster model of T and then M̄ ′

denotes the corresponding (monster) model of T ′, that is M̄ together with
the new sort S. Let x be a variable of sort S. By 5.7 it is enough to prove:
Claim. Suppose x = x forks over the small elementary substructure M0 of
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M̄ . Then x = x forks over any small elementary substructure of M̄ contain-
ing M0.
Proof of claim. Assume for simplicity that x = x implies φ(x, a) ∨ ψ(x, b)
where each of φ(x, a), ψ(x, b) divides over M0 (in M̄ ′). Let (ai : i < ω) and
(bi : i < ω) be infinite M0-indiscernible sequences in tp(a/M0) and tp(b/M0)
respectively, such that {φ(x, ai) : i < ω} and {ψ(x, bi) : i < ω} are each
inconsistent. Let M1 be a small elementary substructure of M̄ containing
M0. By an automorphism argument we may assume that tp(M1/M0 ∪ {ai :
i < ω} ∪ {bi : i < ω}) is finitely satisfiable in M0. But then clearly each of
the sequences (ai : i < ω) and (bi : i < ω) is also M1-indiscernible. So x = x
forks over M1.
(ii) Let K be a (saturated) real closed field. Let G be K × K, equipped
with its addition, and with all relations which are ∅-definable in (K,+, ·)
and invariant under the action of SL(2, K). Of course the theory of G
with this structure has NIP , and G is definably amenable as it is abelian.
Suppose for a contradiction that G had a global f -generic type p(x). In
particular p(x) does not fork over ∅, so is invariant under automorphisms
fixing bdd(∅) by section 2. As SL(2, K) acts on G by automorphisms and
SL(2, K)00 = SL(2, K), it follows that p is SL(2, K)-invariant. But then
p induces a PSL(2, K) -invariant global type of the projective line over K,
which contradicts Remark 5.2 (iv) of [13] and its proof.

One might think that any global left generic type of any definable group is au-
tomatically left f -generic (NIP or no NIP ). But we need some assumptions
to prove it.

Proposition 5.12. (Assume NIP ). Let G be a definable group which is
definably amenable. Then any global left generic type of G is also left f -
generic.

Proof. It is clearly sufficient to prove that any left generic definable set
X does not divide over ∅. And for this it is enough to find a small model M0

such that any left generic definable set X does not divide over M0. (Given
left generic Xa defined over a, and an indiscernible sequence (ai : i < ω) in
tp(a/∅) we can find a sequence (a′i : i < ω), indiscernible over M0 and with
the same type over ∅ as (ai : i < ω).)

The assumption that there is a global left generic type implies easily that
the class I of non left generic definable sets is a proper ideal of the Boolean
algebra of all definable subsets of G. By Proposition 6.3(i) of [13], there is a
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small model M0 such that for every left generic definable set X there is some
M0-definable subset Y of G such that the symmetric difference X∆Y of X
and Y is in I, namely is non left generic.

Now suppose that Xa is a left generic definable subset of G (defined over
a). We want to show thatXa does not divide overM0. Let Y be definable over
M0 such that the symmetric difference of Xa and Y is nongeneric. Replacing
Xa by Xa ∩ Y we may assume that Xa ⊆ Y . Let (ai : i < ω) be an
M0-indiscernible sequence with a0 = a. Suppose by way of contradiction
∩i=1,..nXai

is inconsistent for some n. Then (as Y is defined over M0), the
union of the Y \Xai

for i = 1, .., n covers Y . But Y is left-generic, and each
Y \ Xai

is non left generic, contradicting I being an ideal. This proves the
proposition.

6 Generically stable groups

In this section we introduce various strengthenings of the fsg leading to the
notion of a generically stable group (analogous to a generically stable type).
Assuming NIP these strengthenings will be equivalent.

We first give a natural definition of the fsg for type-definable groups.

Definition 6.1. Let G be a type-definable group. We say that G has fsg if
there is some small model M0 and global type p(x) of G such that p is finitely
satisfiable in G(M0), namely for every formula φ(x) ∈ p, φ is realized by
some g ∈ G(M0).

The basic results on definable groups with fsg go through easily for type-
definable groups G. Namely we define a relatively definable subset X of G
to be left generic if finitely many left translates of X by elements of G cover
G.

Lemma 6.2. Suppose G is type-definable with fsg. Then
(i) the class of relatively definable left generic subsets of G coincides with
the class of relatively definable right generic subsets of G and forms a proper
ideal of the class of relatively definable subsets of G.
(ii) There is a global generic type of G, namely a global type p extending
x ∈ G such that any relatively definable subset of G which is in p is generic.
(iii) There is a small model M0 such that any global generic type of G is
finitely satisfiable in G(M0), and such that moreover if X is a relatively
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definable generic subset of G then finitely many (left or right) translates of
X by elements of G(M0) cover G.
(iv) G00 exists and is both the left and right stabilizer of any global generic
type of G.

Definition 6.3. Let G be a definable group.
(i) We say that G has fsg+ if G has fsg and some global generic type is
definable.
(ii) We say that G has fsg++ if G00 exists and has fsg as a type-definable
group in its own right.
(iii) We say that G is generically stable if G has fsg and some global generic
type is generically stable.

Note that (ii) seems to be a rather minor variation on G having fsg but in
fact it is a substantial strengthening. Note in particular that if G = G00 and
G has the fsg then it has fsg++. Definably compact groups in o-minimal
structures satisfy none of the above properties, although they have fsg. We
will see soon that (iii) implies (ii) implies (i) and that there are all equivalent
assuming NIP .

Lemma 6.4. Suppose G has fsg++ (namely G00 exists and has fsg). Then
(i) G has fsg,
(ii) Any global generic type of G00 is a global generic type of G.
(iii) There is a unique global generic type of G which implies “x ∈ G00, say
p0.
(iv) p0 is definable and is also the unique global generic type of G00.

Proof. (i) Let M0 be a small model witnessing that G00 has fsg. We may
assume that M0 contains representatives of each coset of G00 in G (as there
are boundedly many). Let p be a global generic type of G00. Let g realize
p. Then g−1

1 g ∈ G00 for some g1 ∈ G(M0). By assumption g−1
1 gp is finitely

satisfiable in G(M0) (in fact in G00(M0). Hence so is gp. This shows that G
has fsg.
(ii) We have shown in (i) that if p is a global generic of G00 then also gp is
finitely satisfiable in G(M0) for any g ∈ G which implies that p is a global
generic type of G. (Alternatively if X is a definable subset of G and X ∩G00

is generic in G00 then finitely many translates ofX cover G00 whereby finitely
many translates of this set of finitely many translates covers G.)
(iii) Suppose for a contradiction that p and q are distinct global generic types
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of G each of which implies that “x ∈ G00. Let X be a definable set in p such
that Y = G \X is in q. Let X0 = X ∩G00 and Y0 = Y ∩G00. So X0 and Y0

are relatively definable subsets of G00 which partition G00. By Lemma 6.2
we may assume that X0 is generic in G00. So finitely many translates of X0

by elements of G00 cover G00. In particular (as q(x) implies x ∈ G00), there
is g ∈ G00 such that gX ∈ q. But by Corollary 4.3 of [13] the symmetric
difference of X and gX is nongeneric (in G), so as q is a generic type of G,
we see that X is also in q, a contradiction.
(iv) Let p0 be the unique type from (iii). By part (ii), p0 is also the unique
global generic type of G00. Let G00 be the intersection of the directed family
(Yi)i∈I of definable subsets of G. For a given L-formula φ(x, y) and c ∈ M̄ ,
φ(x, c) ∈ p0 iff for some i ∈ I finitely many translates of (the set defined by)
φ(x, c) by elements of G00(M0) cover Yi. The same is true for ¬φ(x, y). By
compactness the set of c such that φ(x, c) ∈ p0 is definable. So p0 is definable.

Proposition 6.5. Let G be a definable group. Then
(i) If G has fsg++ then G has fsg+.
(ii) If G is generically stable then G has fsg++.
(iii) Assume NIP . If G has fsg+ then G is generically stable. (Hence
assuming NIP the three properties fsg+, fsg++ and generic stability are
equivalent).

Proof. (i) follows from the previous lemma.
(ii) By translating we obtain a generically stable global generic type p(x) of
G such that p(x) |= “x ∈ G00”. Fix a small model M0 such that p is definable
over and finitely satisfiable in M0 (and of course G and G00 are defined over
M0). Let M be a small |M0|

+-saturated extension of M0. Let (ai : i < ω)
be a Morley sequence in p over M0. Then ai ∈ G00(M) for all i. Suppose
φ(x, c) ∈ p. The generic stability of p implies that φ(x, c) is satisfied by some
ai, so φ(x, c) is satisfied in G00(M). If g ∈ G00 then gp = p hence any left
translate of p by an element of G00 is finitely satisfiable in G00(M), so G00

has fsg and G has fsg++.
(iii) is immediate because assuming NIP any global type which is both de-
finable over and finitely satisfiable in some small model, is generically stable.

We now develop some consequences of the “weakest” of the new properties,
fsg+.

Proposition 6.6. Suppose that the definable group G has fsg+. Then
(i) G00 = G0.
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(ii) There is a unique global generic type p0 of G extending “x ∈ G00” (and
p0 is definable).
(iii) Every global generic type of G is definable and the set of global generics
is in one-one correspondence with G/G00.
(iv) For any L-formula φ(x, y) there is N < ω such for any c, φ(x, c) is
generic in G if and only if at most N left (right) translates of φ(x, c) cover
G.

Proof. (i) Fix a definable global generic type p. By 4.3 from [13] we know
that Stab(p) = G00. For a fixed formula φ(x, y) let (just for now) p|φ be the
set of formulas of the form φ(g−1x, c) which are in p for g ∈ G and c ∈ M̄ .
Then Stabφ(p) denotes {g ∈ G : g(p)|φ = p|φ} and is a definable subgroup
of G. As Stab(p) = Stabφ(p) for φ ∈ L it follows that each Stabφ(p) has
finite index and so G00 is the intersection of a family of definable subgroups
of finite index, so equals G0.
(ii) By translating the given definable generic p we can find a definable global
generic type which extends “x ∈ G00” and we call it p0. Note that if q(x) is a
global generic extending “x ∈ G00” then so is q−1. Hence it suffices to prove:
Claim. If q is any global generic type extending “x ∈ G00” then q−1 = p0.
Proof of claim. Let M0 be any model. So q is finitely satisfiable in M0 and p0

is definable over M0. Let a realize p|M0 and b realize q|(M0, a). As a ∈ G00

and G00 = Stab(q) it follows that c = ab also realizes q|(M0, a). By Lemma
3.4, a realizes p|(M0, c). Again as c−1 ∈ G00 we see that c−1a = b−1 also
realises p|(M0, c). In particular tp(b−1/M0) = p0|M0. As M0 was arbitrary it
follows that q−1 = p0. The claim is proved as well as part (ii).
(iii) Now any global generic type of G is a translate of a global generic which
implies “x ∈ G00”. By (ii) every global generic type of G is a translate of the
definable type p0, hence is also definable.
(iv) If φ(x, y) ∈ L and c ∈ M̄ , then φ(x, c) is generic in G if for some g ∈ G,
φ(g−1, c) ∈ p0. So by definability of p0 the set of c such that φ(x, c) is generic
is definable, which is enough.

Let us remark that there are groups with G00 = G0, with the fsg but with-
out fsg+ (even in a NIP environment). The easiest example is simply the
additive group R+ of the valuation ring R in a saturated p-adically closed
field. Here (R+)00 is the intersection of the finite index definable subgroups
v(x) ≥ n for n ∈ Z+, but there are many generic types extending (R+)00.

Remark 6.7. Suppose the definable group G is generically stable. Let X be
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a definable subset of G. Then X is generic if and only if every left (right)
translate of X does not divide (or even fork) over ∅.

Proof. We know left to right by just the fsg. Now suppose that X is
nongeneric, and defined over some model M0. Let p be some generically
stable global generic type of G, and let (ai : i < ω) be a Morley sequence of
p over M0. Then for any g ∈ G, as gX /∈ p, we see that ai /∈ gX for some
i < ω. It follows that {a−1

i X : i < ω} is inconsistent. As (a−1
i : i < ω) is

indiscernible over M0 we see that X divides over M0 so over ∅.

Section 7 of this paper is devoted to establishing the uniqueness of invariant
(under the group action) measures for definable groups with fsg (assuming
NIP ). In the case of generically stable groups this can be seen quickly and
we do it now.

Lemma 6.8. Suppose the definable group G is generically stable, and µ is a
left invariant global Keisler measure on G. Then µ is generic, in the sense
that for any definable subset X of G, if µ(X) > 0 then X is generic.

Proof. Suppose that X is a nongeneric definable subset of G, defined
over a model M0. The argument in the proof of Remark 6.7 gives an M0-
indiscernible sequence (ai : i < ω) such that {aiX : i < ω} is inconsistent.
But µ(aiX) = µ(X) for all i. By Lemma 2.8 of [13], µ(X) = 0.

Lemma 6.9. Suppose G is a definable group with fsg+. Then any defin-
able subset of G is a Boolean combination of translates (cosets) of definable
subgroups of G of finite index and nongeneric definable sets.

Sketch of proof. Fix a formula φ(x, y) ∈ L. By a φ-formula we mean a
Boolean combination of formulas φ(gx, c) (g ∈ G, c ∈ M̄). By a global φ-type
of G we mean a maximal consistent set of φ-formulas over M̄ (containing in
addition x ∈ G). A global φ-type will be called generic iff it contains only
generic formulas (iff it extends to a global generic type of G). As in the proof
of 6.6, there is a definable subgroup G0

φ of finite index which is the (say left)
stabilizer of every global generic φ-type. It follows that each of the finitely
many cosets of G0

φ contains a unique global generic φ-type. Thus every φ-set
(set defined by a φ -formula) is a Boolean combination of cosets of G0

φ and
nongeneric definable sets.

Corollary 6.10. Suppose the definable group G is generically stable. Then
there is a unique left invariant (under ther group action) Keisler measure on
G which is also the unique right invariant Keisler measure.
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Proof. If µ is a left invariant Keisler measure on G, then µ is determined
on definable subgroups of finite index and their translates, and by Lemma
6.8 is 0 on all nongeneric sets. By Lemma 6.9 there is only one possibility
for µ. Lemma 6.9 is clearly still true replacing definable subgroups of finite
index by normal definable subgroups of finite index. Hence we see that µ is
also the unique right invariant Keisler measure on G.

Note that a special case is: if G is a connected stable group, and p is its
unique global generic type, then not only is p the unique left (right) invariant
global type of G, but it is also the unique left (right) invariant global Keisler
measure on G.

7 Uniqueness of invariant measures for groups

with fsg

Given a definable group G with fsg, and assuming NIP we have from [13]
that there is a left invariant global Keisler measure µ on G (namely G is
definably amenable). In fact we constructed such µ which is generic (the
definable sets of positive measure are precisely the generics). Clearly µ−1

is a right invariant generic global Keisler measure. Our uniqueness theorem
(Theorem 7.7 below) generalizes the uniqueness of invariant types for con-
nected stable groups, as well in a sense generalizing the uniqueness of Haar
measure for compact groups. (If one is willing to pass to continuous model
theory, a compact group is like something finite, hence stable.) The main
point is to prove a Fubini (or symmetry) theorem for suitable measures. A.
Berarducci also raised the uniqueness issue (in the o-minimal context) in [3]
and pointed out the relevance of Fubini. Our methods go through variants
of Grothendieck groups.

We begin with a lemma on homomorphisms from vector spaces to the reals.
First recall some notation: if A is a Q-vector space, then a subset P of A is
said to be a cone if P is closed under addition and under scalar multiplication
by positive elements of Q.

Lemma 7.1. Let A be a Q-vector space, B a Q-subspace of A, P a cone in
A, and µB a nonzero homomorphism from B to R such that µB(B ∩P ) ≥ 0.
Assume that for any a ∈ A there is b ∈ B such that b − a ∈ P . Let c ∈ A
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and let e = inf{µB(y) : y ∈ B, y − c ∈ P}.
Then (i) if e = −∞ then there is no homomorphism µ : A → R extending
µB with µ(P ) ≥ 0.
(ii) If e ∈ R, then there is a homomorphism µ : A → R extending µB such
that µ(P ) ≥ 0 and µ(c) = e.

Proof. First there is no harm in assuming that 0 ∈ P .
(i) It is enough to prove the stronger statement that if µ : A → R is any
homomorphism extending µB, and µ(P ) ≥ 0 then µ(c) ≤ e. But this is
immediate: if e′ > e then there is y ∈ B such that y− c ∈ P and µB(y) ≤ e′,
but then µB(y) − µ(c) ≥ 0 so µ(c) ≤ µB(y) ≤ e′.
(ii) Let us assume e ∈ R, and by the stronger statement we have just proved
all we need to do is to find a homomorphism µ : A → R extending µB such
that µ(P ) ≥ 0 and µ(e) ≥ c.

As µB is nonzero, let b1 ∈ B be such that µ(b1) > 0, and there is no harm
in assuming µB(b1) = 1. Replacing c by mb1 + c for sufficiently large m we
may also assume that e > 0.

Let PB = {b ∈ B : µB(b) ≥ 0}. Note that if µ : A → R is a homomor-
phism such that µ(b1) = 1 and µ is nonnegative on PB then µ extends µB. So
it suffices to find some homomorphism µ from A to R such that µ(b1) = 1, µ
is nonnegative on P + PB = {a+ b : a ∈ P, b ∈ PB}, and µ(c) ≥ e. (Because
then µ is nonnegative on PB, and also on P .)
Let Pc = {αc− βb1 : α, β ∈ Q, α, β ≥ 0, β < eα} ∪ {0}.
Claim. −b1 /∈ P ′ = P + PB + Pc.
Proof of claim. Suppose not.
Case (i). −b1 = a + b + αc − βb1 for a ∈ P , b ∈ PB, and α, β as in the
definition of Pc.
Multiplying by α−1 and letting a′ = α−1a, b′ = α−1b, and γ = α−1β we have
−α−1b1 = a′ + b′ + c− γb1, whence
γb1 − (b′ + α−1b1) − c = a′ ∈ P .
But then e ≤ µB(γb1 − (b′ + α−1b1)) ≤ γ < e a contradiction.
Case (ii). −b1 = a + b for a ∈ P , b ∈ PB.
Then −a = b1 + b, so −a ∈ B and µB(−a) > 0. But then also a ∈ B,
so a ∈ B ∩ P , so by assumption µB(a) ≥ 0 whereby µB(−a) < 0, again a
contradiction.

By the claim we can extend the cone P ′ to a maximal cone P ′′ not containing
−b1, and note that b1 ∈ P ′′, and also each of P + PB, Pc are contained in
P ′′. Note also that P ′′ defines a linear preorder on A, namely for each d ∈ A,
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d ∈ P ′′ or −d ∈ P ′′. (If d /∈ P ′′ then −b1 ∈ P ′′ +Q+d, so −d ∈ P ′′ +Q+b1, so
−d ∈ P ′′.) Our assumptions on A, together with the definition of PB imply
that for any a ∈ A there is n > 0 such that nb1 − a ∈ P + PB so also in P ′′.
Thus Q+b1 is cofinal in A. Now it is clear that the homomorphism from Qb1
to R which sends b1 to 1 extends to an preorder preserving homomorphism
µ from A to R (which sends A0 = {x ∈ A : b1 − nx ∈ P ′′ for all n ∈ Z} to
0). Then µ(P + PB) ≥ 0, as P + PB ⊆ P ′′. But also, as Pc ⊆ P ′′ we have
that c− γb1 ∈ P ′′ for all positive γ < e. Hence µ(c) ≥ e, and we have found
the required µ.

We now consider a certain variant of the Grothendieck (semi)-group intro-
duced in section 5 of [13] We will also work at the more general level of
definable group actions rather than just definable groups. So we will fix a
definable group action (G,X) and a small model M0 over which (G,X) is
definable. Using the notation analogous to that in [13], we will take the rele-
vant semigroup Ksemi(X) to be the collection of nonnegative cycles

∑
i kiXi

in X up to piecewise translation by members of G(M0). K0(X) will be
the corresponding Grothendieck group. (Recall that we define x1 ∼0 x2 for
x1, x2 ∈ Ksemi(X) if there is y ∈ Ksemi(X) such that x1+y = x2+y in Ksemi.
Then K0 is the collection of ∼0-classes together with formal inverses.) When
we apply Lemma 7.1 to this situation, the Q-vector space A will be the tensor
product of Q with K0(X). Define P0 to be the image of Ksemi in K0 (under
the canonical map) and then P will be {αx : α ∈ Q+, x ∈ P0}, a cone in
A. Define B0 to be the image in K0(X) of the “M0-definable” members of
Ksemi(X), and then B will be the tensor product of Q with B0.

We now give a somewhat more concrete representation of the objects
defined in the previous paragraph. It will be convenient both notationally
and conceptually to introduce a certain category D in place of the semi-
group of nonnegative cycles on X (namely before identification via piecewise
translations). First we think of Z as living in our monster model M̄ as the
directed union of the finite sets (or sorts) {−m, ...,m}. We also have the
group structure on Z definable in M̄ , piecewise. Let X̃ be X × Z. A defin-
able subset of X̃ is by definition a definable subset of X × {−m, ..,m} for
some m. Likewise for G̃ = G × Z, which is now a “definable” group. The
natural action of G̃ on X̃ is also “definable”, namely for each m,n we have
the map (G×{−m, ..,m})× (X×{−n, ..,−n}) → (X×{−m−n, ..,m+n})
is definable. The objects of the category are definable subsets of X̃. If Y, Y ′

are in D then a morphism f from Y to Y ′ is an injective map f from Y
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into Y ′ such that there is a partition Y = Y1 ∪ ... ∪ Yn of Y and elements
gi ∈ G̃(M0) = G(M0) × Z such that for each i and y ∈ Yi, f(y) = giy.
Equivalently (by compactness) f is a definable embedding of Y in Y ′ such
that for each y ∈ Y there is g ∈ G̃(M0) such that f(y) = gy. So Y and Y ′

will be isomorphic in D if there is f is above which is a bijection between Y
and Y ′. Then as a set Ksemi(X) is the set of isomorphism classes of mem-
bers of D. The addition on Ksemi(X) is induced by the following (non well
defined) addition on D: if Y, Y ′ are definable subsets of X × {−m, ..,m}
then Y + Y ′ = Y ∪ (2m+ 1)Y ′. (Likewise for nY .) Connecting with earlier
notation, B0 is the image in K0(X) of the set of isomorphism classes of M0-
definable elements of D (and B the tensor product of B0 with Q). For Y a
definable subset of X̃, [Y ] denotes its image in A = K0(X) ⊗ Q.

We will be interested in Keisler measures µ on X which are G(M0)-
invariant. Note that any such µ extends uniquely to (and is determined by)
a G̃0-invariant finitely additive measure on the definable subsets of X̃.

Lemma 7.2. The global G(M0)-invariant Keisler measures on X correspond
to the homomorphisms h : A → R such that h(P ) ≥ 0 and h[X] = 1.
Namely if µ is a global G(M0)-invariant Keisler measure on X, then there
is a unique homomorphism h : A → R such that h([Y ]) = µ(Y ) for any
definable subset Y of X. Moreover this h satisfies h([X]) = 1 and h(P ) ≥ 0.
Conversely if h : A→ R is such that h([X]) = 1 and h(P ) ≥ 0 then defining
µ(Y ) = h([Y ]) for any definable subset Y of X gives a global G(M0)-invariant
Keisler measure µ on X.

Proof. Clear.

Corollary 7.3. Suppose that µ is a global G(M0)-invariant Keisler measure
on X which is moreover the unique global G(M0)-invariant Keisler measure
on X extending µ|M0. Then for any definable subset D of X (or X̃) with
µ(D) = β and ǫ > 0, there are n ∈ N, M0-definable E0, E1 ∈ D and D′ ∈ D
such that
(i) µ(E1) − µ(E0) < n(β + ǫ) and
(ii) there is a morphism f (in D) from E0 + nD +D′ to E1 +D′.

Proof. With earlier notation let h : A → R be the homomorphism cor-
responding to µ as given by Lemma 7.2. So by Lemma 7.1, h is the unique
homomorphism such that h(P ) ≥ 0, and which extends h|B. Let D be a
definable subset of X (or X̃) and put c = [D], and let µ(D) = h([D]) =
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inf{h(y) : y ∈ B, y − c ∈ P}. Fix ǫ > 0. So for some y ∈ B we have
h(y) < µ(D) + ǫ and y − c ∈ P . Now for large enough positive n we have
n(y − c) = [D′′] for some definable subset D′′ (of X̃), and ny = [E1] − [E0]
with E0, E1 M0-definable subsets of X̃. So we have:
(a) µ(E1) − µ(E0) = h([E1] − [E0]) = nh(y) < n(µ(D) + ǫ), which gives (i).
We also have:
(b) [E1] − [E0] − n[D] = [D′′].

We then obtain (after possibly multiplying everything by some m > 0)
some definable D′ such that in D, E0+D′′+nD+D′ is isomorphic to E1+D′.
Ignoring D′′ this gives a morphism f in D from E0 + nD + D′ to E1 + D′

which is (ii).

Let us give a more explicit statement.

Remark 7.4. The conclusion of Corollary 7.3 can be restated as:
For any definable subset D of X with µ(D) = β and for any ǫ > 0 there are
n,m,m′, m′′ ∈ N, M0-definable sets E0, E1 in D, and some D′ ∈ D, as well
as Di ∈ D and gi ∈ G̃0 for i = 1, , .m, D′

j ∈ D and gj ∈ G̃0 for j = 1, .., m′,

and D′′
k ∈ D and gk′′ ∈ G̃0 for k = 1, .., m′′ such that

(i) µ(E1) − µ(E0) < n(β + ǫ),
(ii) nD = ∪i=1,..,mDi, D

′ = ∪j=1,,.m′D′
j, E0 = ∪k=1,..,m′′D′′

k, the Di, D
′
j, D

′′
k

are pairwise disjoint, and D′ is disjoint from both D and E1,
(iii) the sets giDi, gj′D

′
j and g′′kD

′′
k are pairwise disjoint subsets of E1 ∪D

′.

We can now prove the sought after symmetry (or Fubini) theorem. Recall
that if µx, λy are global Keisler measures on definable sets X, Y respectively,
and µ is definable (or even Borel definable), then we can form the global
Keisler measure µ ⊗ λ on X × Y : for D a definable subset of X × Y , (µ ⊗
λ)(D) =

∫
µ(D(y))dλ, where D(y) = {x : (x, y) ∈ D}. We may also write

(µ⊗ λ)(D) as
∫
D
dµdλ.

Proposition 7.5. Suppose (G,X) is a definable group action, and Y a de-
finable set, all defined over M0. Suppose µ is a global Keisler measure on X
which is definable and satisfies the hypothesis of Corollary 7.3. Suppose λ is
a global definable Keisler measure on Y . Then µx ⊗ λy = λy ⊗ µx.

Before beginning the proof, let us define an action of G on X × Y by
g(x, y) = (gx, y) and we claim that both measures µ ⊗ λ and λ ⊗ µ are
G(M0)-invariant for this action: Let D be a definable subset of X × Y , and
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g ∈ G(M0). So for any y ∈ Y , (gD)(y) = g(D(y)), so µ((gD)(y)) = µ(D(y)),
and thus (µ⊗λ((gD) = (µ⊗λ)(D). On the other hand, let f(x) = λ(D(x)).
Now clearly D(g−1(x)) = g(D(x)), so f(g−1x) = λ(gD(x)). As µ is G(M0)-
invariant,

∫
f(x)dµ =

∫
f(g−1x)dµ, so (λ ⊗ µ)(D) = (λ ⊗ µ((gD). All this

of course extends to the actions of G̃ on X̃ and X̃ × Y and the relevant
measures on DX and DX×Y .

Proof of Proposition 7.5. Let D be a definable subset of X × Y . We have to
show that (µ⊗ λ)(D) = (λ⊗ µ)(D). By considering also the complement of
D, it suffices to prove that for any ǫ > 0, (λ⊗ µ)(D) ≤ (µ⊗ λ)(D) + ǫ.

Fix ǫ > 0. By Corollary 7.3, for each y ∈ Y we find ny, my, m
′
ym,m

′′
y ,

(E0)y, (E1)y, D
′
y etc. such that (i), (ii) and (iii) of Remark 7.4 hold for Dy =

{x : (x, y) ∈ D}. By compactness we may partition Y into definable sets Yν ,
such that the ny, my, m

′
y, m

′′
y , (E0)y, (E1)y, (gi)y, (g

′
j)y, (g

′′
k)y are constant on

each Yν . Focus attention on one Yν . Let Dν = D∩(X×Yν . Let D′
ν ⊆ X×Yν

be such that for y ∈ Yν , D
′
y = {x : (x, y) ∈ D′

nu}. So clearly we have:
Claim I. There is a morphism in DX×Yν

, from (E0 × Yν) + nDν + D′
ν into

(E1 × Yν) +D′
ν .

As µ(E1) − µ(E0) < n(µ(Dy) + ǫ) for all y ∈ Yν , we obtain, on integrating
with respect to λ over Yν that
Claim II. (µ(E1) − µ(E0)λ(Yν) ≤ n(µ⊗ λ)(Dvu) + ǫλ(Yν).

But the left hand side in Claim II coincides with (λ ⊗ µ)(E1 × Yν) − (λ ⊗
µ)(E0 × Yν). So denoting λ⊗ µ by r we rewrite Claim II as
Claim IV. r(E1 × Yν) − r(E0 × Yν) ≤ n(µ⊗ λ)(Dvu) + ǫλ(Yν).

We have already noted that r on X × Y is G(M0)-invariant, so applying r
to Claim I and using the disjointness there, we obtain:
Claim IV. r(E0 × Yν) + nr(Dν) + r(D′

ν) ≤ r(E1 × Yν) + r(D′
ν).

From Claims II and IV we obtain
Claim V. r(Dν) ≤ (µ⊗ λ)(Dν) + ǫλ(Yν).

Summing over ν in Claim V, we obtain
λ ⊗ µ)(D) ≤ (µ ⊗ λ)(D) + ǫ which is what we wanted. The proposition is
proved.

Lemma 7.6. (Assume NIP ) Suppose G is a definable group, defined over
a small model M0, and µ is a Keisler measure on G over M0, which is left
G(M0)-invariant. Then
(i) There is a global left G(M0)-invariant Keisler measure µ′ extending µ,
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and a small model M containing M0 such that µ′ is the unique left G(M0)-
invariant global Keisler measure extending µ′|M . Again any such µ′ is de-
finable.
(ii) Suppose in addition that G has fsg. Then any µ′ as in (i) is left invari-
ant, namely left G(M̄)-invariant.

Proof. (i) is proved in exactly the same way as 5.8.
(ii) By the definability of µ′, H = Stab(µ′) is a type-definable subgroup of G.
We want to show that it is all of G. If not, it is clear that the complement
of H contains a generic definable subset X of G. By the fsg, X ∩G(M0) is
nonempty. But then X contains an element of H (as µ′ is G(M0)-invariant).
Contradiction.

Combined with the material of the previous section we can now obtain our
main result.

Theorem 7.7. (Assume NIP ). Suppose G is a definable group with fsg.
Then G has a unique left invariant global Keisler measure, which is also the
unique right invariant global Keisler measure of G. This measure is both
definable and generic.

Proof. We already know from [13] that G has some left invariant global
Keisler measure. Let µ, λ be left invariant global Keisler measures. We will
first show that µ = λ−1. Let D be any definable subset of G. We want to
prove that µ(D) = λ(D−1). Let M0 be a small model over which both G and
D are defined. Let µ′′ be a global Keisler measure satisfying (i) of 7.6 for
some small M containing M0. Namely µ′′ extends µ|M0 and is the unique left
G(M0)-invariant Keisler measure extending µ′′|M . By (ii) of 7.6, µ′′ is left
G(M̄)-invariant, in particular left G(M)-invariant, so is also the unique left
G(M) -invariant extension of µ′′|M . So renaming M as M0, µ

′′ satisfies the
hypothesis of 7.3. By 7.6 (ii) µ′′ is definable, and as already mentioned µ′′ is
left invariant. So as we are currently just interested in µ(D) we may assume
that µ = µ′′. Likewise we may assume that λ is definable. By Proposition
7.5, µ⊗ λ = λ⊗ µ (on G×G). Let Z = {(x, y) ∈ G×G : x ∈ yD} which is
equal to {(x, y) ∈ G× : y ∈ xD−1}. So (µ ⊗ λ)(Z) =

∫
µ(yD)dλ = µ(D) as

µ is left invariant. Likewise (λ⊗ µ)(Z) =
∫
λ(xD−1)dµ = λ(D−1).

So we have succeeded in proving that λ = µ−1. This applies in particular
when λ = µ yielding that µ = µ−1 (so µ is also right invariant). Hence µ = λ
and is also the unique right invariant global Keisler measure on G.
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Finally we point out the extension of Proposition 7.7 to homogeneous spaces.

Proposition 7.8. (Assume NIP ) Suppose (G,X) is a definable homoge-
neous space, and G has NIP . Then there is a unique G-invariant global
Keisler measure on X.

Proof. Let µ be the unique invariant global; Keisler measure on G given
by the previous proposition. So it is definable and satisfies the hypothesis of
7.3. Note that we obtain from µ a G -invariant global Keisler measure λ on
X: given x ∈ X, the map taking g ∈ G to gx gives a (G)-invariant surjection
πx : G → X. For Y a definable subset of X, define λx(Y ) = µ(π−1

x (Y )).
Then λx is G-invariant and does not depend on the choice of x so we call it
λ. Note that for any x ∈ X, and definable subset Y of X, λ(Y ) = µ({g ∈
G : gx ∈ Y }). Clearly λ is also definable and satisfies the hypothesis of 7.3.

Let λ′ be another G-invariant global Keisler measure on X. We want
to show λ′ = λ. As in the proof of 7.7 we may assume λ′ is definable. By
7.5, µ ⊗ λ′ = λ′ ⊗ µ on G × X. Let Y be a definable subset of X and let
Z = {g, x) : gx ∈ Y }. Then (µ ⊗ λ′)(Z) =

∫
x∈X

(µ{g ∈ G : gx ∈ Y })dλ′ =∫
x∈X

λ(Y )dλ′ = λ(Y ).
And (λ′⊗µ)(Z) =

∫
g∈G

λ′({x ∈ X : gx ∈ Y })dµ =
∫
g∈G

λ′(Y )dµ = λ′(Y ).

So λ = λ′.

There is an obvious formulation of X having fsg where X is a definable
homogeneous space (for a definable group G): there is a global type p of X
such that for every g ∈ G, gp is finitely satisfiable in M0 for every model M0.

If G has fsg then clearly X does too.

Question 7.9. (Assume NIP ) (i) Does Proposition 7.8 holds if only X has
fsg?
(ii) Are there examples of transitive group actions (G,X) such that X has
fsg, G acts faithfully, and G does not have fsg?

Remark 7.10. Let us say that a definable group G has the weak fsg if there
is some small model M0 over which G is defined such that G has no proper
type-definable subgroup containing G(M0). The following results follow from
the proofs above.
(i) (Assume NIP .) If G is definably amenable with weak fsg then G has a
unique left invariant Keisler measure which is also its unique right invariant
Keisler measure, and is definable.
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(ii) (Assume NIP .) Suppose the definable group is definably amenable and
has no proper nontrivial type definable subgroups. Then G has a global left
invariant type, which is definable, and is moreover the unique left invariant
Keisler measure and the unique right invariant Keisler measure on G.

Proof. (i) is given by Proposition 7.5, and the proofs of Lemma 7.6 and
Theorem 7.7.
The assumptions of (ii) imply that G has weak fsg, and so let µ be the
unique (left, right) invariant measure on G given by (i). As µ is definable,
µ does not fork over some small M0. Let p be some random global type for
µ, namely every formula in p has positive µ-measure. Then clearly every left
translate of p does not fork over M0. By Proposition 5.6, Stabl(p) = G00.
But our assumptions imply that G00 = G, hence p is left invariant. By part
(i) µ = p.

Note that statement (ii) in Remark 7.10 above mentions only types, but the
only proof we have of it involves measures. In fact, using 7.5 one can conclude
that, assuming NIP , any group with weak fsg has fsg (and so the groups
in Remark 7.10 (ii) are generically stable groups in the sense of section 6)
but the proof uses the theory of generically stable measures which will be
treated in a future paper.

Finally in this section we speculate on group free analogues of the fsg prop-
erty. Here is a possible definition, in which the definable group G is replaced
by a complete type p(x) ∈ S(A). For simplicity we make a blanket assump-
tion of NIP .

Definition 7.11. We say that p(x) ∈ S(A) has fsg if p has a global extension
p′(x) such that for every (|L| + |A|)+-saturated model M containing A, p′ is
finitely satisfiable in p(M), that is for each formula φ(x, b) ∈ p′ there is
a ∈M which realizes p and satisfies φ(x, b)).

Remark 7.12. (i) In Definition 7.11 the global extension p′ of p is necessarily
a nonforking extension of p.
(ii) Suppose A = bdd(A) and p(x) ∈ S(A) has fsg. Then p has a unique
global nonforking extension p′, and p′ is generically stable.
(iii) Suppose the global type p′ is generically stable and p′ does not fork over
A. Let p = p′|A. Then p has fsg.
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Proof. (i) If (bi : i < ω) is an A-indiscernible sequence (in M̄) then we
can find a (|L|+ |A|)+-saturated model M containing A such that (bi : i < ω)
remains indiscernible over M . If φ(x, b0) ∈ p′ then |= φ(a, b0) for some a ∈M
hence φ(a, bi) for all i < ω. So p′ does not fork over A.
(ii) By part (i) and 2.11 (and the assumption that A = bdd(A)), p′ is A-
invariant. We will show that some Morley sequence in p′ over A is totally
indiscernible (and apply 3.2). Let M be a small (|L|+ |A|)+-saturated model
containing A. Let (ai : i < ω) be a Morley sequence in p′ over M (so also
one over A). It is enough to prove that for any n, tp(a0, .., an−1, an/A) =
tp(an, a0, .., an−1/A). So fix n ≥ 1. Suppose that φ(x0, .., xn−1, x) is over A
and |= φ(a0, .., an−1, an). Then φ(a0, .., an−1, x) ∈ p′, so by hypothesis is real-
ized by some c ∈M which realizes p. But then (c, a0, a1, .., an−1) also begins
a Morley sequence in p′ over A, so tp(c, a0, .., an−1/A) = tp(a0, .., an−1, an/A),
and we see that |= φ(an, a0, .., an−1). This suffices.
(iii) follows from the material in section 3 and is left to the reader.

In the context of Remark 7.12(iii) we say that the fsg type p(x) ∈ S(A) comes
from a generically stable type. So (by 7.12(ii)) group actions, namely the
action of the compact Lascar group Aut(bdd(A)/A) on the set of extensions
of p over bdd(A), will enter the picture whenever an fsg type p(x) ∈ S(A)
does not come from a generically stable type.

Another source of fsg types is through transitive group actions and con-
struction C from the section 1. Namely suppose that (G,X) is a ∅-definable
group action in T (with NIP ), and we form TX with additional sort X ′.
Then in TX there is a unique (so isolated) 1-type p(x) over ∅ in X ′. If X has
fsg in T then it is not hard to see that p has fsg in TX .

In fact, types p ∈ S(A) with fsg can be characterized as types of the
form µ|A where µ is a global A-invariant generically stable measure (in the
sense of Remark 4.4). This was proved by P. Simon and will again appear in
a joint work with the authors.

8 The Compact Domination Conjecture

We will prove

Theorem 8.1. Assume M̄ to be an o-minimal expansion of a real closed
field. Let G be a definably connected definably compact commutative group
definable in M̄ . Then G is compactly dominated. That is, let π : G→ G/G00
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be the canonical surjective homomorphism. Then for any definable subset X
of G, YX = {b ∈ G/G00 : π−1(b) ∩X 6= ∅ and π−1(b) ∩G \X 6= ∅} has Haar
measure 0.

In fact the proof (and subsequent elaborations) will yield a bit more: in
the structure M̄∗ obtained by expanding M̄ by a predicate for G00, G/G00

will be “semi-o-minimal” with dimension that of G, and moreover for any
definable subset X of G the set YX above (which is now definable in M̄∗) has
dimension < dim(G/G00). So in a sense G is o-minimally dominated (by a
definable o-minimal compact Lie group). This of course suggests many prob-
lems and issues for future work. Also, in the paper [14] joint with Peterzil,
the full compact domination conjecture (i.e. for not necessarily commutative
definably compact groups) is deduced from Theorem 8.1 and results in [13],
using a structure theorem for definably compact groups in o-minimal expan-
sions of real closed fields. Of course Theorem 8.1 builds on and uses the
work and contributions of a number of people, including Berarducci, Dolich,
Edmundo, Otero, and Peterzil.

Until we say otherwise M̄ denotes a (saturated) o-minimal expansion of
a real closed field K, G is a definably compact definably connected definable
group in M̄ of o-minimal dimension n, and π is the canonical surjective
homomorphism from G to G/G00. Without loss of generality G is defined
over ∅. M0 will denote a fixed small model. We will make use in a few places
of the fact that G00 can be defined by a countable collection of formulas.
(This is by the DCC result in [4].) The overall proof has several steps and
“new” ingredients, including a beautiful result of Otero and Peterzil ([22]).
Some of the lemmas go through or can be formulated at various greater levels
of generality but we tend to concentrate on the case at hand. By Lemma 10.5
of [13] in order to prove Theorem 9.1 it suffices to show that ifX is a definable
subset of G of dimension < n then the Haar measure of π(X) ⊆ G/G00 is 0.
We will aim towards this.

The first step is to show that G00 is definable in some weakly o-minimal
expansion of M̄ . Recall that weak o-minimality means that every definable
set of elements (rather than tuples) of the universe is a finite union of convex
sets (with respect to the underlying ordering). Let M̄∗ be the expansion of
M̄ obtained by adjoining a predicate for the trace on M̄ of any set definable
with parameters in some elementary extension of M̄ . In other words, for
each L-formula φ(x, y) (x, y tuples) and complete type q(x) over M̄ , adjoin
a predicate for {b : φ(x, b) ∈ q(x)}. By the results of Baisalov and Poizat [2],
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or alternatively of Shelah [33], Th(M̄∗) is weakly o-minimal, with quantifier
elimination. The weak o-minimality of a theory means that every model is
weakly o-minimal, namely that for some (any) model there is a bound on the
number of convex components of definable subsets of 1-space in definable
families.

Lemma 8.2. G00 is definable in M̄∗.

Proof. Let p be a global generic type of G (which exists by 5.2 and 5.3). By
Proposition 5.6 (and 5.12) we have
(i) Stab(p) = G00,
and moreover as mentioned in the proof of 5.6,
(ii) G00 = {g1g

−1
2 : tp(g1/M0) = tp(g2/M0)}.

Given a formula ψ(x) (over some parameters) defining a subset X of G, let
Stabψ(p) = {g ∈ G : for all h ∈ G, hX ∈ p iff ghX ∈ p}. Then clearly
Stabψ(p) is a subgroup of G. Moreover Stab(p) = ∩ψStabψ(p) and
(iii) Stabψ(p) is definable in M̄∗.

We will show that G00 is the intersection of finitely many Stabψ(p), even with
the ψ over M0.

For ψ(x) over M0, let Sψ(p) be the smallest type-definable over M0 (in
M̄) set containing Stabψ(p). (Note that as p is Aut(M̄/M0)-invariant, so
is Stabψ(p).) We don’t necessarily know that Sψ(p) is a subgroup of G, but:
Claim (iv). (ψ over M0.) Sψ(p) · G00 is a (type)-definable subgroup of G
(clearly containing Stabψ(p)).
Proof. Clearly π(Sψ(p)) · G00 is the closure of π(Stabψ(p)) in G/G00, and
hence is a closed subgroup of G/G00. Its preimage in G is thus a subgroup
of G and coincides with Sψ(p) ·G

00.

Claim (v). ∩ψ(Sψ(p) · G
00) = G00 (where the ψ’s in the left hand side are

taken only over M0).
Proof. By (i), the left hand side contains the right hand side. Let us show
the reverse inclusion. Fix g ∈ G \ G00. So for every h ∈ G00, gh−1 /∈ G00.
So by (ii), for every h ∈ G00 and a realizing p|M0, gh

−1a does not realize
p|M0. By compactness there is a formula ψ(x) ∈ p|M0, such that for any
h ∈ G00 and a satisfying ψ(x), gh−1a does not satisfy ψ(x). However, for
any g1 ∈ Stabψ(p) clearly there is a such that both a and g1a satisfy ψ. Thus
for every g1 ∈ Sψ(p) the same is true. So we have shown that (for our given
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choice of g /∈ G00), for all h ∈ G00, gh−1 /∈ Sψ(p). Namely g /∈ Sψ(p) · G00.
This proves Claim (v).

We can now complete the proof of the Lemma. We know that G has the
DCC on type-definable subgroups of bounded index (see [4]). Hence by
Claim (v), G00 is the intersection of finitely many of the Sψ(p) · G

00. Thus
(as G00 ⊆ Stabψ(p) ⊆ Sψ(p) ·G00) G00 is the intersection of finitely many of
the Stabψ(p). By (iii), G00 is definable in M̄∗.

Remark 8.3. (i) The proof above uses only the existence of an f -generic type
(rather than a generic type), and hence, by 5.6 and 5.10, Lemma 8.2 goes
through assuming only that T has NIP , G is a definable definably amenable
group, and G/G00 is a compact Lie group.
(ii) Otero and Peterzil pointed out to us a more direct proof of 8.2, but which
makes more use of the fact that G has fsg: Choose a global generic type p
of G, and by 4.3 of [13] and the fact that G/G00 has DCC, G00 is of the
form StabI(X1)∩ ...∩StabI(Xn), where the Xi are definable sets in p, and I
denotes the ideal of nongeneric definable subsets of G. (Here StabI(X) is the
set of g ∈ G such that the symmetric difference of X and gX is nongeneric,
and so is type-definable in M̄ .) But genericity (so also nongenericity) is
“definable” in M̄∗, because a definable subset X of G is generic iff for some
g ∈ G, gX ∈ p. Hence each StabI(Xi) is definable in M∗ which suffices.

The next step is given to us by Lemma 4.3 of [22].

Lemma 8.4. Let I be the interval [0, 1) in M̄ (or K). Then there are
one-one definable continuous functions γ1, .., γn from I to G such that G =
γ1(I) + ...+ γn(I) (where γj(I) denotes the image of I under γj).

In fact the γi are generators of the o-minimal fundamental group of G and
the proof in [22] has a (co)homological character.

For j = 1, .., n, let Ij = γj(I). As π is a surjective homomorphism we have:

Corollary 8.5. G/G00 = π(I1) + .... + π(In).

We are now in the following interesting situation. G/G00 as well as its subsets
π(Ij) are compact spaces under the logic topology, namely in their capacity
as bounded hyperdefinable sets in the saturated model M̄ , but they are also,
by Lemma 8.2, definable (or rather interpretable) sets in the (non-saturated)
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weakly o-minimal structure M̄∗. We will show in the next step that each
π(Ij) is a “definable o-minimal set” in M̄∗ which piecewise is an interval in
R.

Let us first be precise about what we mean by a definable set in an
ambient structure being o-minimal. Let N be a structure, and X a definable
(or interpretable) set in N . When we say “definable” we mean definable in
N with parameters from N . Suppose that < is a definable linear ordering on
X. We call X o-minimal in N with respect to <, if any definable subset Y
of X is a finite union of intervals (a, b) (where possibly a = −∞, b = +∞)
and singletons. We will call X strongly o-minimal if in addition there is a
finite bound on the number of intervals and points in definable families.

In the next proposition we will mention the existence of definable Skolem
functions on a definable set. So let us again be precise about the meaning.
Again let N be a structure in language L and X a set definable (or inter-
pretable) in N , for now definable without parameters. We say that X has
definable Skolem functions in N (or the formula defining X has definable
Skolem functions in Th(N)), if for any L-formula φ(x, y) where x is a vari-
able ranging over X, and y is an arbitrary tuple of variables, there is a partial
∅-definable function fφ(y) such that
N |= (∀y)((∃x ∈ Xφ(x, y)) → (φ(fφ(y), y) ∧ fφ(y) ∈ X)).

We can also speak of X having Skolem functions in N over some set A of
parameters from N . The reader should note that if X has definable Skolem
functions in N eq (over some parameters), then X has elimination of imag-
inaries (over some parameters), namely whenever Z ⊆ Xn and equivalence
relation E on Z are definable in N then there is a definable bijection of Z/E
with some definable W ⊆ Xm.

We now return to the main narrative, with notation following Lemma 8.4.
The following Proposition is fundamental. The appendix is devoted to the
proof of part (iii).

Proposition 8.6. (Work in M̄∗.) For each j, π(Ij) is a finite disjoint union
of definable sets X1, .., Xr and points c1, .., cs, such that each Xi is equipped
with a definable total ordering <i, such that (for each i = 1, .., r),
(i) (Xi, <i) is (abstractly) isomorphic to R with the usual ordering,
(ii) Xi is strongly o-minimal (with respect to <i),
(iii)Xi has definable Skolem functions after possibly naming some parameters
from M̄∗.
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Proof. Let us fix j. Note that Ij has a canonical linear ordering coming from
the map γ. Let E be the equivalence relation “x−y ∈ G00” on Ij , i.e. coming
from π. As E is definable in M̄∗ (which has weakly o-minimal theory), each
E-class is a union of at most k convex sets for some k. Let Y be the set of
elements of Ij which are in the “first” convex subset of their E -class. Then Y
is definable, so a finite union of convex definable sets, and π(Y ) = π(Ij). Let
EY denote the restriction of E to Y . Write Y minimally as a finite disjoint
union of (definable) convex sets Y1, .., Yt. So each EY -class is convex and
contained in a unique Yi. Let Xi = π(Yi) and note that < induces a linear
ordering <i on Xi (of course definable in M̄∗). Let us restrict our attention
to some Yi such that Xi is infinite.
Claim (I). <i is dense on Xi (i.e. if a, b ∈ Xi and a <i b then there is c ∈ Xi

with a <i c <i b).
Proof. We may work inside an interval I ′ = (a′, b′) of Yi (i.e. with π(a′) ≤i a
and π(b′) ≥i b). So π−1(a)∩I ′ and π−1(b)∩I ′ are convex sets which are type-
definable in M̄ and disjoint. Moreover the first has no greatest element and
the second has no smallest element (as every coset ofG00 is open inG). Hence
by compactness (in M̄) there is c′ ∈ I ′ such that π−1(a)∩I ′ < c′ < π−1(b)∩I ′.
Let c = π(c′).

From Claim (I) we may assume that (Xi, <i) has no first or last element (by
removing them if they exist).

Claim (II). (Xi, <i) is complete, namely every bounded above (below) subset
has a supremum (infimum).
Proof. Again we may work in π(I ′) ⊂ Xi for some interval I ′ = (a′, b′)
in Yi. We consider π(I ′) with the logic topology (equivalently as a closed
subset of G/G00). Let (A,B) be a Dedekind cut in (π(I ′), <i). For a ∈ A,
Aa = {x ∈ π(I ′) : a ≤i x} is closed in π(I ′), as it is clearly the image of a type-
definable (in M̄) subset of I. Likewise for b ∈ B, Bb = {x ∈ π(I ′) : x ≤i b}
is closed. Hence by compactness of the space π(I ′), there is a point in the
intersection of all the Aa’s and Bb’s. This suffices.

Claim (III). (Xi, <i) is separable, namely has a countable dense subset with
respect to the ordering <i.
Proof. We know that X with the logic topology is second countable (has
a countable basis), because E is given by countably many formulas. (See
Remark 1.6 of [4] for example.) We will show that every <i-interval (a, b) in
Xi contains an open subset of X. So as X has a countable basis, (Xi, <i)
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will have a countable dense subset.
We work one i at a time. The reader should convince himself/herself that

there is no harm in assuming that Y = Y1. So X = X1. We relabel <1 as
<X . We fix an <X interval (a, b) in X and we want to find a subinterval
which is open in X (with the logic topology). Let Z be the union of all the
second convex components of E-classes in I. Let EZ be the restriction of
E to Z. So Z is definable in M̄∗ and is a disjoint union of finitely many
definable convex subsets Z1, .., Zm of I such that each EZ class is convex and
contained in a unique Zj. Consider π(Z) ∩ (a, b). If it is finite, then after
passing to a smaller interval, we may assume that π(Z)∩ [a, b] is empty. This
means that for c ∈ [a, b], π−1(c) ⊂ Y . Let a0 ∈ π−1(a), and b0 ∈ π−1(b). So
(a, b) is the set of E-classes which are contained in the interval (a0, b0) in I.
Thus (a, b) is open in X and we are finished.

So we may assume (by o-minimality and passing to a smaller interval)
that (a, b) is contained in π(Z). The ordering < on Z induces a definable
ordering <2 on π(Z) ⊆ X. After ignoring finitely many points, we know
(by the description of linear orderings definable on an o-minimal structure),
that we can break up (a, b) into finitely many <X intervals, on each of which
<2 agrees with <X or >X . It follows that we can find a subinterval (c, d) of
(a, b) and some j = 1, .., m such that π−1([c, d]) ∩ Z is contained in Zj, and
moreover for some c′0, d

′
0 in Zj (preimages of c, d), [c, d] is the image under π

of the closed <-interval between c′0 and d′0, and moreover <2 on [c, d] agrees
with <X or >X .

Now if k = 2 we are finished: Let c0, d0 ∈ Y be preimages of c, d. Then
(c, d) is precisely the set of E-classes contained in (c0, d0) ∪ (c′0, d

′
0) (or in

(c0, d0) ∪ (d′0, c
′
0) if <2 on [c, d] is >X).

If k > 2 we continue, replacing (a, b) by (c, d), and considering now W
the union of the third convex components of E-classes. Our choice of (c, d)
means that passing to smaller subintervals does not disturb the compatibility
with the second convex components of E-classes.

This finishes the proof of Claim (III).

It follows from Claims (I), (II) and (III) that (Xi, <i) is isomorphic as an
ordered set to R with its usual ordering. So we have proved (i).

(ii) follows quickly. For if Z is a definable (in M̄∗) subset of (Xi), then by
weak o-minimality of M̄∗ π−1(Z) ∩ Yi is a finite union of convex sets. By
completeness of (Xi, <i), Z is a finite union of intervals and points. Weak
o-minimality of Th(M̄∗) implies that there is a bound on the number of
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connected components of Z as it varies in a definable family.

(iii). See the appendix.

Let Xj
1 , ..., X

j
rj

be the sets obtained for π(Ij) in Proposition 8.6. By

Proposition 8.6, each Xj
k is strongly o-minimal in M̄∗. The reader should

convince himself or herself and the general machinery of o-minimality (di-
mension, cell decomposition, etc.) applies to Cartesian products of the X i

k

and definable (in M̄∗) subsets W of such Cartesian products. In fact we
will call such a definable set Z, a semi-o-minimal definable set. By (iii) of
Proposition 8.6, and the discussion preceding the statement of 8.6, we have
“elimination of imaginaries” for such definable sets: namely if Z is a subset
of a Cartesian product of the Xj

k and E an equivalence relation on Z, both
definable in M̄∗ then Z/E is in definable bijection with some definable W
which is a subset of a Cartesian product of the Xj

k’s. We will apply this to
G/G00 considered as a group definable (or interpretable) in M̄∗. In fact let
us write J for this group, so as to distinguish it from G/G00 as a bounded
hyperdefinable group in M̄ . By Corollary 8.5 J is in the definable closure
(uniformly) of the Xj

k’s. Thus there is a definable subset Z of some Cartesian
product of the Xj

k, and a definable equivalence relation E on Z such that
J is definably isomorphic to Z/E. Hence J is definably isomorphic to some
definable W which is a subset of a Cartesian product of the Xj

k’s. But J
also has a definable group structure, hence is a semi-o-minimal group. Note
that J is definably connected (in the sense of having no proper definable sub-
group of finite index) as it is divisible. The general theory ([28]) of equipping
definable groups in o-minimal structures with a definable group manifold
structure applies to J . We conclude using (i) of Proposition 8.6 that J with
its definable manifold topology is locally Euclidean, and thus (by the special
case of Hilbert’s 5th problem due to Pontryagin) is a connected commuta-
tive Lie group, whose Lie group dimension coincides with its semi-o-minimal
dimension. By Corollary 8.5 the semi-o-minimal dimension of J is at most
n. On the other hand a connected commutative Lie group is a finite product
of copies of (R,+) and S1. As J has the same torsion as n-copies of S1 it
follows that, as a Lie group, J has dimension ≥ n. It follows that

Corollary 8.7. J is a semi-o-minimal connected compact Lie group definable
in M̄∗ with both semi-o-minimal and Lie group dimension n.
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We will point out later that, as expected, the topology on J coincides
with the logic topology on G/G00. But we will be able to complete the proof
of Theorem 8.1 without using this. The next step is:

Lemma 8.8. Let Y be a definable (in M̄) subset of G of dimension < n.
Then the semi-o-minimal dimension of π(Y ) ⊆ J is < n.

Proof. The proof uses the ideas from the proof of Lemma 10.3 of [13]. We
give some details anyway. We first note that, given Y as in the hypothesis
there is a definable subset Z of I1 × ... × In such that the map sending
(x1, .., xn) → x1 + .. + xn induces a (definable) bijection between Z and Y .
So dim(Z) < n. Let E be the equivalence relation on G “x − y ∈ G00”. By
the proof of 8.6 we can and will assume that on each of I1, .., In all E-classes
are convex (with respect to canonical total orderings of I1, .., Ij) and that for
each i = 1, .., n π(Ii) is strongly o-minimal (in M̄∗). Let us denote by πn the
natural map from I1 × ..× In to π(I1) × ..× π(In).
Claim. πn(Z) has dimension < n in the semi-o-minimal structure π(I1) ×
..× π(In) (in M̄∗).
Proof. In fact we will prove, by induction on n that if W is any definable (in
M̄) subset of I1×..×In of dimension < n, then πn(W ) ⊂ π(I1)×..×π(In) has
dimension < n. And this is an imitation of the proof of 10.3 in [13]: We may
assume W is the graph of a continuous definable function f : C → In, where
C is an open definable subset of I1 × .. × In−1. Assume for a contradiction
that πn(W ) has dimension n, in π(I1) × .. × π(In). It follows that πn(W )
contains the closure of a subset of the form U × (a, b), where U is an open
rectangular box in π(I1) × ..× π(In−1) and (a, b) is an interval in π(In). We
may assume that π−1

n−1(U) ⊆ C. Let c ∈ In be such that a < b < c, and
let c′ ∈ π−1(c) ⊆ In. For any x ∈ U , there are x1, x2 ∈ πn−1(x) such that
π(f(x1)) = a and π(f(x2)) = b. Then f(x1) < c′ < f(x2), so by “definable
connectness” of π−1

n−1(x) (and continuity of f) there is x3 ∈ π−1
n−1(x) such that

f(x3) = c′. We have shown that πn({z ∈ C : f(z) = c′}) contains U , so by
induction hypothesis {z ∈ C : f(z) = c′} has dimension n − 1. But this is
true for infinitely many c′ ∈ In, a contradiction. The claim is proved.

We now return to our definable subset Y of G such that Y = {x1 + ..+ xn :
(x1, .., xn) ∈ Z}. As π is a homomorphism, π(Y ) ⊂ G/G00 = {π(x1) + ... +
π(xn) : (x1, .., xn) ∈ Z} = {y1 + ... + yn : (y1, .., yn) ∈ πn(Z)}. By the Claim
πn(Z) has dimension < n, hence π(Y ) does too. This completes the proof of
Lemma 8.8.
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Note that the proof of the above lemma (in fact of the Claim) actually yields
that dim(π(Y )) ≤ dim(Y ) for Y a definable subset of G.

The final point is (the easy):

Lemma 8.9. Let Z ⊂ J be definable in M̄∗ of (semi-o-minimal) dimension
< n, and Haar measurable in G/G00. Then Z has Haar measure 0.

Proof. The proof will be by induction on dim(Z) = k. For k = 0, Z is finite
so it is clear. Now let Z of dimension k > 0.
Claim. For any r there are a1, .., ar ∈ J such that dim(aiZ ∩ ajZ) < k for
all i 6= j ≤ r.
Proof of claim. Work in a saturated elementary extension of N of M̄∗.
Let a1, .., ar ∈ J(N) be generic independent (in the o-minimal sense) over
the base model, namely dim(a1, .., ar/M̄

∗) = nr. Then one sees easily that
dim(aiZ(N) ∩ ajZ(N)) < k for i 6= j. By definability of dimension we can
find such a1, .., ar in J . This proves the claim.

Note that as Z is measurable in G/G00, so is any intersection of translates of
Z. Hence by the induction hypothesis and the claim, each aiZ ∩ ajZ (i 6= j)
has Haar measure 0. But then the measure of the union of the aiZ is r times
the measure of Z. So (by choosing r large) this forces Z to have measure 0.
The proof is complete.

Proof of Theorem 8.1. If Y ⊂ G is definable in M̄ with dimension < n,
then π(Y ) is closed so measurable in G/G00, but by Lemma 8.8, π(Y ) has
dimension < n as a definable subset of J , hence has Haar measure 0 in G/G00

by Lemma 8.9. By 10.5 in [13] we obtain compact domination of G by G/G00

(equipped with its Haar measure).

We conclude the paper by proving that the topologies on J and G/G00 coin-
cide. Our proof will make use of a little more “theory” some of which is of
interest in its own right.

We begin with an arbitrary complete theory T with NIP . For φ(x, y) ∈ L
by a (complete) global φ-type we mean a maximal consistent collection of
the formulas of the form φ(x, c), ¬φ(x, c) for c ∈ M̄ .

Lemma 8.10. Let M0 be a small model, φ(x, y) ∈ L and p0(x) a complete
global φ-type which is Aut(M̄/M0) invariant. Then p0 extends to a complete
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global type p(x) which is Aut(M̄/M1)-invariant for some small model M1

(i.e. in earlier terminology p is invariant).

Proof. As in the proof of Step I of Lemma 5.8, we can find a small model
M1 containing M0 and a Keisler measure µx over M1 which has a unique
extension to a Keisler measure over any larger M2 which is consistent with
p0. (To say that µx is consistent with p0 means that µx ∪ p0 extends to a
global Keisler measure. Assuming that M1 is |M0|

+-saturated, which we can
and will do, this is equivalent to requiring that µx extends p0|M1.) So µx has
a unique extension to a global Keisler measure µ′ which extends p0. Clearly
µ′ is Aut(M̄/M1)-invariant (as p0 is). By Proposition 4.6 (see also the proof
of 4.5) we obtain some global type p′(x) which is M1-invariant and extends
p0.

Corollary 8.11. (Strong Borel definability for invariant φ-types.) Let p0 be a
complete global φ-type which is M0-invariant. Then X = {b : φ(x, b) ∈ p0(x)}
is a finite Boolean combination of type-definable over M0 sets.

Proof. By Lemma 8.10 and Proposition 2.6,X is a finite Boolean combination
of type-definable over M1 sets Yi for some small model M1 containing M0.
Let Y ′

i be {b : ∃c ∈ Y, tp(c/M0) = tp(b/M0)}. Then Y ′
i is type-definable

and M0-invariant hence type-definable over M0. And X is the same finite
Boolean combination of the Y ′

i .

Here is the application which will be relevant to our concerns:

Lemma 8.12. Let M̄ be a saturated model, and M0 a small submodel. Let
M̄∗ be the Shelah expansion discussed earlier. Suppose that X is definable in
M̄∗ and is Aut(M̄/M0)-invariant. Then X is a finite Boolean combination
of type-definable (over M0 in the structure M̄) sets.

Proof. . As Th(M̄∗) has quantifier elimination, there is some complete type
p(x) over M̄ and L-formula φ(x, y) such that b ∈ X iff φ(x, b) ∈ p (for all
b ∈ M̄). Let p0 = p|φ. So p0 is a complete global M0-invariant φ -type and
we can apply Corollary 8.11

We now return to the setting and notation of Theorem 8.1 and its proof.
In particular J is the set G/G00 viewed as a definable (compact Lie) group
in M̄∗ and we just say G/G00 for G/G00 with the logic topology, another
compact Lie group.
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Lemma 8.13. (i) Suppose Z is a definable (in M̄∗) subset of J . Then Z is
measurable in G/G00.
(ii) If moreover H is a definable (in M̄∗) subgroup of J then H is closed in
G/G00.

Proof. (i) Clearly π−1(Z) is a definable set in M̄∗ and whether or not x ∈
π−1(Z) depends on tp(x/M0) in M̄ . Hence it satisfies the assumptions of
Lemma 8.12. Hence by Lemma 8.12, π−1(Z) is a finite Boolean combination
of type-definable sets. We may assume (by multiplying by G00) that each
of these type-definable sets is a union of translates of G00. It follows that
Z = π(π−1(Z)) is a finite Boolean combination of closed subsets of G/G00,
so Borel and measurable.
(ii) As G/G00 is separable, any finite Boolean combination of closed sets is
a countable intersection of opens, namely a Gδ-set. So applying (i) to H we
see that H is a Gδ set in G/G00. Now the closure H̄ of H is a subgroup of
G/G00. Moreover H and thus each of its translates in H̄ is dense in H̄. But
any two dense Gδ’s must intersect. Hence H = H̄ .

Remark 8.14. Again the above lemma holds at various levels of generality:
(i) holds assuming just T has NIP and (ii) holds if in addition G/G00 is
separable. Note that (ii) is saying that any subgroup of G which contains
G00 and is definable in M̄∗ is type-definable in M̄ . In particular the groups
Stabψ(p) from the proof of Lemma 8.2 are type-definable, so using the DCC
we obtain another proof that G00 is a finite intersection of the Stabψ(p)’s.

Proposition 8.15. The topologies on J and G/G00 coincide.

Proof. As the group structures on J and G/G00 coincide, and both J and
G/G00 are compact (Hausdorff) groups, it suffices to show that any open
neighbourhood U of the identity e, in the sense of J , contains a neighbour-
hood of e in the sense of G/G00. Let h denote the Haar measure on G/G00.
Let W be a definable neighbourhood of e in J , such that W−1 ·W ·W−1 ·W
is contained in U . W is clearly generic in J (finitely many translates of W
cover J) by compactness of J for example. By Lemma 8.13, W is measurable
in G/G00, so h(W ) > 0. As pointed out in the proof of the CLAIM in section
6 of [13] it follows that W−1 ·W has interior in G/G00. (A direct proof: As
a measurable set is the union of a closed set and a measure 0 set, we may
assume that W is closed, hence so is Z = W−1 ·W . If by way of contradiction
Z has no interior then the same holds of any finite union of translates of Z.
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So we find a1, a2, ... in G/G00 such that the aiW are disjoint, contradicting
h(W ) > 0.) So W−1 ·W ·W−1 ·W contains a neighbourhood of e (in G/G00)
as required.

It would be interesting to give a more explicit proof of Proposition 8.15.
For example if dim(G) = 1 then the analysis in the proof of Proposition
3.5 of [30], yields directly (in hindsight) that the logic topology equals the
o-minimal topology on G/G00 and coincides with S1.

Note that once we know Proposition 8.15, then for any definable in M̄∗ subset
Z of G/G00, Z has Haar measure 0 iff it has dimension < dim(G/G00). In
any case the proof of Theorem 8.1 together with Proposition 8.15 says that
G is o-minimally compactly dominated, i.e.
(*) Let M̄ ′ be the expansion of M̄ obtained by adding a predicate for G00.
Then G/G00 is a semi-o-minimal compact Lie group in M̄ ′ with topology
coinciding with its topology as a bounded hyperdefinable group in M̄ , AND
for any definable, in M̄ subset X of G, the set of b ∈ G/G00 such that π−1(b)
meets both X and its complement (which is of course definable in M̄ ′) has
dimension < dim(G/G00), EQUIVALENTLY, has Haar measure 0.

Let us first remark that (*) also holds for X definable in M̄∗. This is because
X = Y ∩ G(M̄) for some subset Y of G(N) definable (with parameters) in
a saturated elementary extension N of M̄ . As (G/G00)(N) = (G/G00)(M̄)
and (*) is valid working in N , we deduce that the set of b ∈ G/G00 such that
π−1(b) meets both X and its complement (in G(M)), which again note is a
subset of G/G00 definable in M̄∗, has Haar measure 0. We conclude:

Corollary 8.16. Let G be definably compact and definable in the saturated
o-minimal expansion M̄ of a real closed field. Let M̄∗ be the Shelah expansion
of M̄ . Let J = G/G00 as a definable group in M̄∗. Then G is dominated by J
in the weakly o-minimal theory Th(M̄∗): namely, working even in a saturated
elementary extension of M̄∗, if X is a definable subset of G then the set of
b ∈ J such that π−1(b) meets both X and its complement, has (o-minimal)
dimension < dim(J).

One can ask what the formal content and implications of the compact dom-
ination statement (*) are (either in general, or restricted to the o-minimal
context). For example, from [13] we know that if a definable group is com-
pactly dominated then it has the fsg property and a unique invariant Keisler
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measure. Of course the proof of Theorem 8.1 (or statement (*)) depends on
G having the fsg property as well as the knowledge of torsion points from
[6](for definably compact G). It would be interesting to try to recover the
torsion points statement directly from compact domination. Namely
Question. (o-minimal context.) Suppose the commutative definably con-
nected definable group G is o-minimally compactly dominated, i.e. state-
ment (*) holds. Can one prove directly that dim(G) = dim(G/G00) (and so
conclude using the torsion-freeness and divisibility of G00 that for each p the
p-torsion of G is (Z/pZ)dim(G))?

A final question is whether given a definable group G in a NIP theory T ,
there are some reasonable assumptions which imply that G/G00 is semi-o-
minimal (in the Shelah expansion) or at least o-minimally analysable. A
possible assumption would be that G has the DCC on type-definable sub-
groups of bounded index (equivalently, G/G00 with its logic topology is a
compact Lie group).

A Appendix: On Skolem functions for o-minimal

definable sets

We prove a general result, Proposition A.2 below, and show that it applies
to the situation in section 8 to yield Proposition 8.6(iii).

Let us fix a saturated structure N , and a ∅-definable set X in N such
that for some ∅-definable dense linear ordering without endpoints < on X,
X is o-minimal in N with respect to <. We will freely adapt o-minimality
results for the absolute case (where X is the universe of N) to this relative
case.

By Xeq we mean N eq ∩ dcl(X). It is known that the o-minimal dimen-
sion theory on X extends smoothly to Xeq (see for example section 3.1 of
[25]). Namely for any set A of parameters from N , and c ∈ Xeq we have
a natural number dim(c/A), such that dim is subadditive (dim((c, d)/A) =
dim(c/dA)+dim(d/A)), dim(c/A) = 0 iff c ∈ acl(A), for c an element (rather
than tuple) of X, dim(c/A) = 1 if c /∈ acl(A).

Definition A.1. We say that X is untrivial if whenever (ai : i < ω) is a
sequence of elements of X such that ai /∈ acl(a0, .., ai−1) for all i then there
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is some n and b ∈ Xeq such that b ∈ acl(a0, .., an) \ acl(a0, .., an−1) and
an /∈ acl(b).

The main result here is:

Proposition A.2. Suppose X is untrivial. Then for any elementary sub-
structure N0 of N , X has definable Skolem functions in N over N0.

Before entering the proof of Proposition A.2 we give a lemma which makes
use of the fundamental work of Peterzil and Starchenko [26]

Lemma A.3. Suppose X is untrivial. Then for any a ∈ X with a /∈ acl(∅)
there is some interval (c, d) containg a such that the definable set (c, d) has
definable Skolem functions in N after naming some parameters from X.

Proof of Lemma. Let ai for i < ω be realizations of tp(a) such that ai+1 /∈
acl(a0, .., ai) for all i. Let n and b be given by untriviality of X. Then a
dimension (or independence) calculation shows that an ∈ acl(a0, .., an−1, b).
We also have an /∈ acl(a0, ..., an−1) and an /∈ acl(b). Let b̄ be a finite tuple
of elements of X such that b ∈ dcl(b̄) and b̄ is independent from an over b
(i.e. dim(b̄/ban) = dim(b̄/b)). So we have that an ∈ acl(a0, .., an−1, b̄) but
an /∈ acl(a0, .., an−1) and an /∈ acl(b̄). We may assume a = an. By Claim
1.25 of [24], a is “PS-nontrivial”, namely for some infinite open interval I
containing an and a definable continuous function F : I × I → X, strictly
monotone in each argument. By Theorem 1.1 of [26] there is a convex type
definable ordered divisible abelian group H ⊂ X, containing a (where the
ordering is the restriction of < to H . Let c, d ∈ H such that c < a < d, and
let A be some set of parameters from X containing a, c, d and over which
the group operation on H is type-definable. Then it is clear that (c, d) has
definable Skolem functions in N over A.

Proof of Proposition A.2. We begin with some reductions. Let N0 be a
(small) definably closed substructure of N (or even N eq). We will say that
N0 satisfies Tarski-Vaught with respect to X if any formula over N0 which
is satisfied in N by some tuple from X is satisfied by a tuple from N0 ∩X.
It is clearly enough to restrict ourselves to formulas φ(x) over N0 where
x is a single variable ranging over X. In any case clearly any elementary
substructure of N satisfies Tarski-Vaught with respect to X. So by using
compactness, in order to prove A.2 it is enough to prove:
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(*) whenever N0 satisfies Tarski-Vaught with respect to X, then for any tuple
c̄ from N , dcl(N0, c̄) satisfies Tarski-Vaught with respect to X.

If in the context of (*) φ(x) is a formula over N0c̄ with x ranging over elements
of X, then φ(x) defines a finite union X0 of intervals and points from X. The
boundary points of X0 are in dcl(M0, c̄), and X0 is defined over the set of
these boundary points. So in order to prove (*) it suffices to prove:

(**) whenever N0 satisfies Tarski-Vaught with respect to X, and c̄ is a finite
tuple of elements of X, then dcl(N0, c̄) satisfies Tarski-Vaught with respect
to X.

We can of course prove (**) by adding one element from c̄ at a time. Hence
it suffices to prove:
(***) whenever N0 satisfies Tarski-Vaught in N with respect to X, and a is
an element of X, then dcl(N0, a) satisfies Tarski-Vaught in N with respect
to X.

The rest of the proof is devoted towards proving (***).
We will suppose that (***) fails and aim for a contradiction. Using o-

minimality of X, the failure of (*) is equivalent to the existence of an element
a ∈ X, and b ∈ dcl(N0, a) (where b might be +∞ or −∞) such that the
formula a < x < b (if b > a) or b < x < a (if b < a) isolates a complete type
over N0a. There is no harm in assuming that b > a. We can write b = g(a)
for some N0-definable (possibly constant) function g on P . There are two
cases depending whether or not g(a) ∈ dcl(N0).
Case (i). g(a) /∈ dcl(N0).
Let p = tp(a/N0) and P the set of realizations of p in N . Note that g(a)
realizes p too, and that g is an N0-definable strictly monotone increasing
function from P onto itself.
Claim I. There is no ē from X and N0ē-definable function fē such that for
all a′ ∈ P , a′ < fē(a

′) < g(a′).
Proof. Otherwise by compactness there is θ(x) ∈ p, such that
N |= ∀x(θ(x) → (x < fē(x) < g(x))). As N0 satisfies Tarski-Vaught in N
with respect to X, there is ē′ from N0, such that
N |= ∀x(θ(x) → x < fē′(x) < g(x)).
But then a < fē′(a) < g(a), contradicting the fact that a < x < g(a) isolated
a complete type over N0. Claim I is proved.

Claim II. The interval (a, g(a)) has definable Skolem functions in N over
some set of parameters from X.
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Proof. As p is a complete nonalgebraic 1-type of X over N0, it follows from
Lemma A.3 that for some c with a < c < g(a), (a, c) has definable Skolem
functions in N after naming some parameters from X. It follows that for any
a′ realizing p and c′ ∈ (a′, g(a′)), (a′, c′) has definable Skolem functions in N
over parameters from X. Now (with c ∈ (a, g(a))), a < c < g(a) < g(c).
So both (a, c) and (c, g(a)) have definable Skolem functions (after naming
parameters). Hence so does (a, g(a)).

Claim III. There are realizations ai of p for i < ω such that, writing Ik
for the interval (ak, g(ak)), we have that for all k, dclN0

(I0 ∪ ... ∪ Ik−1 ∪
{a0, a1, .., ak−1, ak}) ∩ Ik = ∅. (Where dclN0

(A) denotes definable closure in
N of A ∪N0.)
Proof. Suppose we have already constructed a0, .., ak−1, and suppose for a
contradiction that
(♯): for all a ∈ P , dclN0

(I0 ∪ .. ∪ Ik−1 ∪ {a0, .., ak−1, a}) ∩ (a, g(a)) 6= ∅.
By Claim II, let ē be a tuple from X such that each of I0, .., Ik−1 (and so
their union) has definable Skolem functions in N over ē, and we may as-
sume that a0, .., ak−1 are in ē. Note that ∪j=0,..,k−1Ij has definable Skolem
functions over N0ē. Now fix a ∈ P . By (♯) there is an N0-definable func-
tion f(w, z0, .., zk−1, x) such that there are tuples c0, .., ck−1 from I0,..,Ik−1

respectively such that f(ē, c0, .., ck−1, a) ∈ (a, g(a)). Hence there are such
c0, .., ck−1 which are in addition contained in dclN0

(ē, a). So we have shown
that for every a ∈ P , dclN0

(ē, a) ∩ (a, g(a)) 6= ∅. By compactness there is a
N0ē-definable function fē(−) such that for all a ∈ P , fē(a) ∈ (a, g(a)). This
contradicts Claim I. Claim III is proved.

It is rather easy to see that in Claim III, ak /∈ aclN0
(a0, .., ak−1). (Alterna-

tively the construction in Claim III goes through with this additional con-
straint). So we can apply the untriviality ofX to find n and b ∈ Xeq such that
b ∈ aclN0

(a0, ..., an)\aclN0
(a0, .., an−1) (whence an ∈ aclN0

(a0, .., an−1, b)), and
an /∈ aclN0

(b). This leads quickly to a contradiction as we now show. At this
point we will for notational simplicity work over N0.

First choose ci, di for i < n such that g−1(ai) < ci < ai < di <
g(ai), and (c0, d0, ...., cn−1, dn−1) is independent from (an, b) (in the o-minimal
sense). Then as an /∈ acl(b), also an /∈ acl(c0, d0, ..., cn−1, dn−1, b). On
the other hand, as an ∈ dcl(a0, .., an−1, b) there is a ∅-definable function
f such that |= ∃x0, .., xn−1((∧i<nci < xi < di) ∧ f(b, x0, .., xn−1) = an). As
tp(an/c0, d0, .., cn−1, dn−1, b) is not algebraic its set of realizations contains an
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open interval around an. Hence we can find some bn ∈ In, and b0, .., bn−1 ∈ X
such that for each i < n, ci < bi < di and f(b0, .., bn−1, b) = bn. Now put
b′i = bi if bi ≥ ai, and b′i = g(bi) if bi < ai. So b′i ∈ Ii ∪ {ai} for each
i. As b ∈ dcl(a0, .., an) we conclude that bn ∈ dcl(b′0, .., b

′
n−1, a0, .., an−1, an).

As bn ∈ In this contradicts the construction of the ai. This contradiction
completes the proof under Case (i).

Case (ii). g(a) ∈ dcl(N0).
So g(a) is either a point of X in N0 or +∞. Let d = g(a) ∈ N0 ∪ {∞}).
So clearly p(x) = tp(a/N0) is the complete type over N0 saying that x ∈ X,
x < d and x > c for all c ∈ X(N0) such that c < d.
Claim IV. P (the set of realizations of p) is indiscernible over N0. Namely
for each n, p(x1) ∪ p(x2) ∪ .. ∪ p(xn) ∪ {x1 < x2 < .... < xn} extends to a
unique complete type over N0.
Proof. By induction. The case n = 2 is given to us, as a < x < d isolates a
complete 1-type over N0a. Now assume true for n ≥ 2, and prove for n+ 1.
Let a1 < a2 < .. < an realize p. It suffices to show that an < x < d isolates
a complete 1-type over N0 ∪ {a1, .., an}, and for that it is enough to prove
that dcl(N0, a1, .., an) ∩ (an, d) = ∅. If not an < f(a1, .., an) < d for some
N0-definable function f . But by induction hypothesis, tp(an/N0a1..an−1) is
isolated by an−1 < x < d. Hence N |= (∀x)((an−1 < x < d) → (x <
f(a1, .., an−1, x) < d)). Now we use the hypothesis that N0 satisfies Tarski-
Vaught in N with respect to X to find a′1 < ... < a′n−1 in X(N0), all less
than d such that x < f(a′1, .., a

′
n−1, x) < d for any x with a′n−1 < x < d. But

our realization a of p is such an x, and we get a contradiction to our Case(ii)
hypothesis. This finishes the proof of Claim IV.

However Claim IV is clearly incompatible with the untriviality of X. So the
proof in Case (ii) is also complete, as is the proof of Theorem A.2.

We can now give:
PROOF OF PROPOSITION 8.6(iii). We return to the context and notation
of 8.6. We already know that Xi with its ordering <i is strongly o-minimal
in M̄∗, and is also a definable subset of G/G00. As in section 8, we use J
to denote G/G00 as a definable (or intepretable) group in M̄∗. We will show
that Xi is untrivial (as a definable strongly o-minimal set).

Let N0 denote the structure M̄∗, and let N be a saturated elementary
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extension. Then Xi(N) is o-minimal in N and a definable subset of the
definable group J(N). In fact we will work over the parameter set N0 over
which all the data are anyway defined.

Let (ai : i < ω) be elements of Xi(N) which are algebraically independent
over N0. For each i, let bi = a0 · .. ·ai where the product is in the sense of the
group J(N). So bi ∈ J(N). On the other hand bi ∈ dcl(a0, .., ai) so can be
viewed as (is interdefinable with) an element ofXi(N)eq. So we can talk about
dim(bi). Let n be as in 8.6, namely the dimension of the original o-minimal
group G. By Corollary 8.5 and Proposition 8.6, each element of J(N) is in
the definable closure of n elements of G, each of which is a member of some
o-minimal definable set (defined over N0). It follows easily that dim(bi) is
bounded by n. It is easy to see that dim(bi) is nondecreasing (as the ai are
independent) and ≤ i + 1. Hence for some m ≤ n, we have dim(bm−1) =
dim(bm) = m. Then bm ∈ acl(a0, .., am), and bm /∈ acl(a0, .., am−1) (for
otherwise we conclude that am ∈ acl(a0, .., am−1)). Finally am /∈ acl(bm). For
otherwise, also bm−1 is in acl(bm) whereby bm is interalgebraic with (bm−1, am)
hence has dimension m+ 1, which it doesn’t. We have proved that Xi(N) is
untrivial. So we can apply Proposition 8.2 to obtain 8.6(iii).

Remark A.4. (i) The argument above yields: Suppose X is a definable
strongly o-minimal set in a structure N and X definably embeds in a defin-
able group G in N where G has finite thorn rank. Then X is untrivial, so
has definable Skolem functions in N after naming parameters.,
(ii) A recent preprint by Hasson and Onshuus proves that a strongly o-
minimal definable set X in a structure N is “stably embedded” in N . So
in Proposition A.2 one may assume X to be the universe of N , and the
set-up of the proof, although not its content, can be a little simplified.
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