Übungen zur Vorlesung Mathematische Logik

SS 2008, Blatt 9

Aufgabe 42. (a) Zeigen Sie für jede Symbolmenge S, daß die Klasse der unendlichen S-Strukturen in der ersten Stufe axiomatisierbar ist, aber nicht endlich axiomatisierbar.

(b) Sei $\mathfrak{G} = (G, E^{\mathfrak{G}})$ ein Graph. \mathfrak{G} heißt zusammenhängend, wenn es für alle $a, b \in G$ einen Weg von a nach b in \mathfrak{G} gibt (siehe Aufgabe 34). Zeigen Sie, daß die Klasse der zusammenhängenden Graphen nicht in der ersten Stufe axiomatisierbar ist.

Aufgabe 43. Sei S endlich oder $S = S_{\infty}$. Zeigen Sie:

- 1. Die Menge $\{\Gamma \varphi \mid \Gamma \varphi \text{ Sequenz und } \vdash \Gamma \varphi\}$ ist aufzählbar.
- 2. Falls Φ aufzählbar ist, so auch die Menge $\{\psi \mid \Phi \vdash \psi\}$.

Aufgabe 44. Sei A eine endliche S-Struktur. Zeigen Sie:

- 1. Ist $\mathfrak A$ eine Struktur mit genau n Elementen, so ist $\mathfrak A$ isomorph zu einer Struktur mit Träger $\{1,\ldots,n\}$.
- 2. Ist S endlich, so gibt es einen Satz $\varphi_{\mathfrak{A}}$, der \mathfrak{A} charakterisiert, d.h.

$$\operatorname{Mod}(\varphi_{\mathfrak{A}}) = \{\mathfrak{B} \mid \mathfrak{B} \cong \mathfrak{A}\}\ .$$

3. Ist S beliebig, so gibt es eine Satzmenge $\Phi_{\mathfrak{A}}$, die \mathfrak{A} charakterisiert, d.h.

$$\operatorname{Mod}(\Phi_{\mathfrak{A}}) = \{ \mathfrak{B} \, | \, \mathfrak{B} \cong \mathfrak{A} \} .$$

Aufgabe 45. Eine Satzmenge Φ ist unabhängig gdw.

für kein
$$\varphi \in \Phi$$
 gilt $\Phi \setminus \{\varphi\} \models \varphi$.

In Aufgabe 23 wurde gezeigt, daß die Theorie der Äquivalenzrelationen Φ_{Aq} unabhängig ist. Zeigen Sie:

- 1. Zu jedem endlichen Φ gibt es ein unabhängiges $\Phi_0 \subseteq \Phi$ mit $\operatorname{Mod}(\Phi_0) = \operatorname{Mod}(\Phi)$.
- 2. Gilt Teil 1 auch für unendliches Φ ?

Aufgabe 46. Sei $\mathfrak{G} = (G, E^{\mathfrak{G}})$ ein Graph. \mathfrak{G} heißt *azyklisch*, wenn er keine Zykel hat; *Zykel* in \mathfrak{G} sind Wege (a_0, \ldots, a_m) in \mathfrak{G} (siehe Aufgabe 34) mit $m \geq 2$, für die gilt: $a_i \neq a_{i+2}$

für $i=0,\ldots,m-2$ und $(a_0,a_m)\in E^{\mathfrak{G}}$. Zeigen Sie, daß die Klasse der azyklischen Graphen in der ersten Stufe axiomatisierbar, aber nicht endlich axiomatisierbar ist.

Abgabe: Mittwoch, 2. Juli 2008, vor der Vorlesung.