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Introduction

Model Theory of Fields is a rich and exciting area of mathematical re-
search, manifesting a fruitful interplay between Model Theory and other
branches of mathematics such as Number Theory, Algebra and Algebraic
Geometry.

Pseudo-finite fields, perfect pseudo-algebraically closed fields with abso-

lute Galois group Ẑ, occur already in the investigation of Ax and Kochen
[3], [4] and [5] of diophantine problems over local fields in form of non-

principal ultraproducts of finite prime fields. Their systematic study was
begun by Ax in [1] and [2] in the late 1960’s. Among other results, Ax
proves that a field is pseudo-finite if and only if it is elementarily equivalent
to a non-principal ultraproduct of finite fields. Together with the failure
of Zil’ber’s conjecture, Ax’s work motivated the investigation of the model
theory of difference fields, i.e. fields with a distinguished automorphism. It
turned out that the existentially closed difference fields, also called generic
difference fields, form an elementary class, a set of axioms being the the-
ory ACFA. Hrushovski [28] succeeded in generalising the result of Ax,
showing that a difference field is existentially closed if and only if it is el-
ementarily equivalent to a non-principal ultraproduct of difference fields

(Falg
p , φnp ), where φp denotes the Frobenius automorphism in characteristic

p. It is worthwhile noticing that Hrushovski [27] used the model theory of
difference fields to give a new proof of the Manin-Mumford conjecture.

The fixed field of a generic difference field is a pure pseudo-finite field.
Although one does not need to rely on the aforementioned deep results on
ultraproducts, it follows therefrom that any pseudo-finite field is elementar-
ily equivalent to the fixed field of a model of ACFA. So given a pseudo-finite
field it is natural to ask: is there a model of ACFA having that particular
field as fixed field? It is this question which motivates the largest part of
the present thesis.

We succeed to give an affirmative answer in theorem (4.24) showing

Theorem A. Any difference field whose fixed field k is pseudo-finite embeds
into a model of ACFA whose fixed field is k.

More interesting theories of fields have proven to admit a generic auto-
morphism. For example the theory of differentially closed fields of charac-
teristic zero, as shown by Hrushovski (in unpublished work), or that of
separably closed fields with a finite named p-basis, proved by Chatzidakis
in [12]. Actually the same method we use in our proof of Theorem A can
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vi INTRODUCTION

be applied, suitably modified, to show the analogues of Theorem A in the
differential field case and the separably closed field case. Though interesting
in their own, we do not carry out the proofs in the respective setting, but
pass to the following far more general context.

What do the above theories have in common? First, all theories, the
(completions of the) theory of algebraically closed fields, the theory of dif-
ferentially closed fields of characteristic zero, and the theory separably closed
fields with finite named p-basis, are stable. All are model complete. All elim-
inate imaginaries. All of them admit generic automorphisms, by which we
mean that the class of existentially closed difference fields, respectively of
existentially closed difference-differential fields, respectively of existentially
closed difference fields with finite fixed p-basis, forms an elementary class.
We call TA the common theory of the respective class and say that TA
exists for short. In all the above cases, TA eliminates imaginaries. Also, in
all the cases considered above, the fixed field of the generic automorphism
(pure, differential or with finite fixed p-basis) is “conservatively embedded
over elementary substructures”. The notion of conservative embedding was
isolated by us in the course of our investigation. Roughly speaking, the fixed
field is conservatively embedded over some of its subsets if the automorphism
does not induce more structure on the fixed field than there is without the
automorphism, if we allow both to use parameters from the specified set.

We succeed in generalising Theorem A to this context and show

Theorem B. Let T be a countable stable theory with quantifier elimina-
tion and elimination of imaginaries. Assume that TA exists and eliminates
imaginaries. Let (M,σ) be a model of TA and K 4L Fix(M,σ) be an L-
elementary substructure. If Fix(M,σ) is conservatively embedded over K in
(M,σ), then there is some model (N, σ) ≡ (M,σ) with Fix(N, σ) = K.

On the way we prove some results on generic automorphisms that were
known so far only in special cases. As an application we obtain the following
extension of Theorem A. It forms our motivation behind Theorem B and
answers the above extended question positively.

Theorem A’.

(1) Any difference field whose fixed field k is pseudo-finite embeds into
a model of ACFA whose fixed field is k.

(2) Any difference-differential field of characteristic zero whose fixed
differential field (k, d) is one-free pseudo-differentially closed em-
beds into some model of DCFA having (k, d) as fixed differential
field.

(3) Any difference field whose fixed field k is one-free PAC of Ershov
invariant e embeds into some model of SCFA having fixed field k.

From the model theoretic view point, pseudo-finite fields and generic dif-
ference fields form the archetypes of supersimple unstable fields, pure and
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with extra structure. The notions of simplicity and supersimplicity were in-
troduced by Shelah and generalise stability and superstability. Algebraically
closed fields are superstable. By the famous theorem of Macintyre, Cherlin
and Shelah, the converse is also true: an (infinite) superstable field is alge-
braically closed. At present one seeks for an algebraic characterisation of
supersimple fields. Hrushovski [26] shows that a field is supersimple if it
is a perfect pseudo-algebraically closed field with bounded absolute Galois
group. Pillay and Poizat in turn show that a supersimple field is perfect
and has bounded absolute Galois group in [54]. In 1995, Pillay conjectured
that supersimple fields are pseudo-algebraically closed. Needless to say that
a proof of this conjecture would establish the desired algebraic characteri-
sation of supersimple fields.

The theorem of Prestel-Frey states that a pseudo-algebraically closed
field is never henselian unless it is separably closed. We prove this theorem
for fields without the strict order property and obtain the following result
on simple fields (corollary 2.3).

Theorem C. Let K be a simple field. If K is henselian, then K is separably
closed.

Hence the Prestel-Frey Theorem is another property that supersimple
fields have in common with perfect bounded pseudo-algebraically closed
fields. Theorem C can be seen supporting Pillay’s Supersimple-implies-PAC
conjecture.

Methods from Galois Cohomology Theory have been used to show that
certain varieties over a supersimple field K have K-rational points ( [55],
[44], [41]). One aspect of the non-commutative theory is the following. To
a variety V over a field k one assigns the set of k-isomorphism classes of
kalg-isomorphic images of V . This set is called the Weil-Chatelet-set of V
over k. It is in bijection to the first Galois Cohomology set of the absolute
Galois group of k with values in the group of kalg-automorphisms of V . We
generalise this fact to types in an arbitrary first-order theory which have
a unique extension to the algebraic closure of their domain. The ambient
theory is required only to eliminate imaginaries. After introducing the Weil-
Chatelet set of a type p with domain A and the extension property just
mentioned, we prove

Theorem D. For each type p over the parameter set A which has a unique
extension to acl(A) there is a bijection

WC
(
p/A

) Φ−−−→ H1
(
GA,Aut(p/acl(A))

)
.

Galois Cohomology has already been introduced in Model Theory by
Pillay [51]. He developed the theory for definable sets in atomic homoge-
neous models. Our approach is different in that we consider types instead
of formulas, and we have only the assumption of elimination of imaginaries.
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This thesis is organised as follows. A more detailed description of the
chapters is included at the beginning of each chapter.

Chapter one provides preliminaries from Model Theory, Algebra, Al-
gebraic Geometry and Galois Cohomology and in course introduces notation
and terminology.

We prove Theorem C in chapter two. The right framework to do so,
that of V -topological fields, is briefly recalled from the literature. Using
a definability result of Koenigsmann on t-henselian fields, we show that a
field without the strict order property is not henselian unless it is separably
closed. This implies Theorem C.

Chapter three deals with Galois Cohomology of types. We introduce
the necessary concepts, such as the Weil-Chatelet set of types, and prove
Theorem D.

The greater part of the present thesis begins with chapter four, which
deals with generic difference fields. We give a brief overview of the basic
theory of pseudo-finite fields and generic difference fields in sections 4.1
and 4.2. A proof of Hrushovski’s theorem on ultraproducts of Frobenii
is included, modulo his analogue of the Lang-Weil estimates for difference
fields. The proofs of Theorem A and some variants is carried out in sections
4.3 and 4.4.

Chapter five deals with stable theories with a generic automorphism,
and forms the very heart of this thesis. We first discuss the basic model
theory of a stable theory with a generic automorphism in section 5.1. We
deal with the fixed structure in section 5.2, where we also give a new def-
inition of the PAC property that does not require the surrounding theory
be stable. We analyse the relation of our definition to those existing in the
literature. Section 5.3 provides the aforementioned field theories and is de-
signed to illustrate the general theory with examples. We prove an analogue
for one-free PAC structures of a stable theory of the Elementary Equiva-
lence Theorem for PAC fields in section 5.4. In section 5.5 we introduce
the notion of conservative embedding. It will play a key role in our proof of
Theorem B. We show that the fixed structure is conservatively embedded
over an elementary substructure under a certain condition on the algebraic
and definable closures of the involved structures. This condition is always
satisfied in the cases of fields and, as will turn out, any substructure of the
fixed structure that is itself the fixed structure of some generic automor-
phism satisfies this condition. Proving conservative embedding of the fixed
structure requires us to generalise some results on generic automorphism
that have so far not been available in that generality. Using conservative
embedding we prove Theorem B and some variants in section 5.6. We obtain
a complete characterisation of those structures that occur as fixed structures
of a generic automorphism. Theorem A’ is then deduced in section 5.7.
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CHAPTER 1

Preliminaries

This chapter collects preliminary results that we will use in the thesis.
It serves also to fix terminology as well as notation.

1.1. Model Theory

Our main reference for Model Theory are the books of Hodges [30],
Poizat [56] and Tent and Ziegler [70]. We will use the following notation
for Model Theory. L denotes a first order language and T a complete L-
theory with infinite models. They might be many-sorted, and we pass to T eq

whenever necessary. We are not going to distinguish between language and
vocabulary, that is to say we choose formulas ϕ from L, or let L be a certain
set of predicate, function and constant symbols, depending on the context.
Also we make no notational distinction between L-structures and their base
sets, so M will stand for a model of T as well as for the underlying universe.
x̄, ȳ and z̄ denote possibly infinite tuples of variables. We write ā, b̄ etc. and
simply AB and Aā for A ∪ B and A ∪ {a1, . . . , an} respectively. aclT and
dclT denote algebraic and definable closure in models of T . We sometimes
write acl and dcl if no confusion can arise. Types are called p, q, . . . and
will be complete, unless we say partial type. The type of the tuple ā over
the parameter set A in the model M is denoted by tpM (ā/A) or tpT (ā/A)
or just tp(ā/A) if reference to the model M is dispensable. If ∆ is a finite
set of L-formulae ϕi(x̄; ȳi), we write tp∆(ā/A) for the ∆-type of ā over A.
The space of types over a parameter set A is denoted by S(A), so that
S(A) =

⋃
n≥1 Sn(A). ā ≡A ā

′ abbreviates that ā and ā′ have the same type
over A. By a definable set we mean a set that is definable with parameters.
If we want to specify that a definable set X is definable using parameters
from A we say that X is A-definable, or definable over A. A type-definable
set (subset of some model) is the set of realizations of some partial type.
If M is a model and A ⊂ B are parameter sets contained in M , we write
AutT (B/A) or simply Aut(B/A) for the group of automorphisms of M that
fix A pointwise. Gal(A) denotes the group of elementary permutations of
the algebraic closure acl(A) of A fixing A pointwise. We sometimes call it
the Galois group of A.

Only for convenience we assume the existence and uniqueness of a “very
big” saturated model of T , the monster model C. Its universe is not a set
but a proper class (so C is not a structure in the usual sense) where all types
over all subsets are realized. We are aware that there are some difficulties
with this assumption, but one never really needs the monster, and to say
it with the words of Angus Macintyre [40]: “I remark that, unlike ..., I

1



2 1. PRELIMINARIES

disregard set-theoretic issues ... in complete confidence that I can, if need
be, employ basic metamathematical hygiene to cope with any irritations.”

The monster model can be characterised by

(1) Every model of T is elementarily embeddable into C.
(2) Every partial elementary isomorphism between two subsets can be

extended to an automorphism of C.

Consequently we assume that all parameter sets are subsets of C and all
models of T , usually denoted by M and N , are elementary substructures of
C (by which we mean that for any L-formula with parameters in M that is
satisfied in C is satisfied in M).

Classically, simplicity of a theory is defined via dividing and forking of
formulas. However we take the equivalent characterisation of Kim and Pillay
from [31] as definition. Needless to say that the latter generalises the notion
of algebraic independence in algebraically closed fields.

Definition 1.1. Let T be a first order theory and C be its monster
model. T is said to be simple if and only if there is some ternary relation
|⌣ on subsets of C which satisfies the following properties.

(1) (Invariance) |⌣ is invariant under automorphisms of C.

(2) (Symmetry) ā |⌣
A
b̄ if and only if b̄ |⌣

A
ā for any (finite) tuples ā and

b̄ and any parameter set A.
(3) (Transitivity) Suppose that A ⊆ B ⊆ C. Then ā |⌣

A

C if and only if

ā |⌣
A
B and ā |⌣

B
C.

(4) (Local Character) For any finite tuple ā and any parameter set A
there is A0 ⊆ A of cardinality at most that of T such that ā |⌣

A0

A.

(5) (Finite Character) ā |⌣
A
B if and only if ā |⌣

A
b̄ for any finite tuple b̄

from B.
(6) (Extension) For any ā, A and B ⊇ A there is some ā′ ≡A ā such

that ā′ |⌣
A
B.

(7) (The Independence Theorem over Models) Let M be a model of T
and A and B parameter sets containing M with A |⌣

M
B. Assume

that ā1 ≡M ā2 and that ā1 |⌣
M
A and ā2 |⌣

M
B. Then there is ā3

realizing tp(ā1/A) ∪ tp(ā2/B) such that ā3 |⌣
M
AB.

If A |⌣
B
C we say that A is independent from C over B, and call |⌣ the non-

forking independence relation of T . A simple theory is said to be supersimple
if in property (4) A0 is finite. A structure is called simple (supersimple) if
its theory is simple (supersimple).

Our standard reference for simple theories is Wagner’s book [71]. Arche-
typical examples of simple (unstable) structures are pseudo-finite fields and
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generic difference fields, where independence is coming from algebraic inde-
pendence in algebraically closed fields (see chapter 4), as well as the random
graph. Simple theories do not have the strict order property:

Definition 1.2. A formula ϕ(x, y) is said to have the strict order prop-
erty (in some model) if it defines a partial order with arbitrarily long chains
(in that model). A theory T is said to have the strict order property if some
formula has it in some model of T .

Stable theories are examples of simple theories, though historically pre-
ceded them. A simple theory is stable if any type over an algebraically
closed set (in T eq) is stationary. This stationarity property strengthens the
Independence Theorem over Models. We are not going to recall stability
theory but use freely the results about stable theories. Our main reference
for stability theory are Ziegler’s lecture notes [74], the classical reference
being of course Shelah’s book [67]. Only the two following points desire
special mention.

First let T be a complete theory. T is said to be quantifier-free stable if
for all cardinals λ with λ|T | = λ and any parameter set A of size λ there are
at most λ quantifier-free types over A. Equivalently, every quantifier-free
formula has finite ∆-rank for all finite sets ∆ of quantifier-free formulas. If T
is countable, then for any quantifier-free formula ϕ there is some quantifier-
free type π in ϕ that is locally isolated. All this is proved by standard
arguments.

Second we would like to mention the following theorem due to Lachlan.
We have come to know it after the proof of our main theorem (theorem
(5.65)) was completed. Let T be an L-theory. If P (x) is a (unary) predi-
cate of L and A is a set of parameters, the pair (P,A) is said to have the
Tarski-Vaught-property if for any consistent L(A)-formula ϕ(x) implying
P (x) there is a ∈ A satisfying ϕ.

Theorem 1.3 (Lachlan). Let T be a countable stable theory. Let P be
a predicate and A be a set such that (P,A) has the Tarski-Vaught-property.
Then there is some model M of T such that P (M) = P (A).

Proof. Lachlan proved this in [33] (compare [48]). For the convenience of
the reader we give a possible proof here.

As T is countable, we may choose some model M of T that is locally
atomic over A. We claim that P (M) = P (A). To see this, choose m ∈ P (M)
and consider the type p = tp(m/A). As p is locally isolated there is some
formula δ ∈ p that isolates p|∆, where ∆ = {P (x), x = y}. Then δ |= P (x),
so by the Tarski-Vaught-property there is a ∈ A realizing δ. Thus x = a ∈ p
and finally m = a ∈ A. 2

Galois Theory. We recall Poizat’s Galois Theory for imaginaries from
his book [56] and his original article [57], with particular emphasis on
procyclic profinite Galois groups. These results are well-known, we state
them mainly for future reference.
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Recall that a profinite group is a compact, Hausdorff and totally discon-
nected topological group. Any projective limit of finite groups is a profinite
group, and conversely any profinite group can be written as a projective limit

of finite groups. We denote by Ẑ the profinite completion of Z, which is the
projective limit of the groups Z/nZ, n ≥ 1, with respect to the canonical
projection Z/nZ−→Z/mZ for m|n. A profinite group G is called procyclic
if it is the projective limit of finite cyclic groups, or equivalently, if there is

some epimorphism (of profinite groups) Ẑ−→G.

We note that the term procyclic group is used only for profinite groups
in the present thesis.

The following well-known facts on procyclic groups, which we state for
future reference, can be found in [61] and [62].

Lemma 1.4. Let G be a profinite group.

(1) G is procyclic if and only if for any n ∈ N there is at most one
closed subgroup H of G of index n.

(2) G∼= Ẑ if and only if for all n ∈ N there is exactly one closed sub-
group H of G of index n.

(3) An epimorphism Ẑ−→G is an isomorphism if and only if G∼= Ẑ.
(4) Let G be procyclic and f : G−→H be an epimorphism. Then the

following are equivalent:
(a) f is an isomorphism.
(b) For all n ∈ N, if G has a closed normal subgroup of index n,

then so does H.

Needless to say that in (1) and (2) the subgroup H is normal.

Remark 1.5. If G−→H is an epimorphism of procyclic profinite groups,
then any topological generator of H lifts to a topological generator of G.

The profinite group G is said to be bounded, or small, if for any n ∈ N

there are only finitely many open normal subgroups of G of index n.

Remark 1.6. If G is a bounded profinite group, then any epimorphism
G−→G is an isomorphism. See [62].

Let T be a complete L-theory, possibly many-sorted, with elimination
of imaginaries. Recall that for two parameter sets A ⊆ B, B is said to be
normal over A if B is setwise invariant under AutT (C/A), or equivalently if
for all b ∈ B, whenever c |= tpT (b/A), then c ∈ B.

As mentioned before we let Gal(A) denote the group of elementary per-
mutations of aclT(A) leaving A pointwise fixed. Gal(A) is a profinite group
with respect to the topology of pointwise convergence. For a subgroup H of
Gal(A) we let

Fix(aclT(A), H)

be the set of elements of aclT(A) which are fixed by any element of H.
Clearly Fix(aclT(A), H) = Fix(aclT(A), H̄) and Fix(aclT(A), H) is a dclT-
closed subset of aclT(A). IfH is (topologically) generated by a single element
σ, we also write Fix(aclT(A), σ) instead of Fix(aclT(A), < σ >).
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For a subset B of aclT(A) containing A we write Gal(aclT(A)/B) for the
subgroup of Gal(A) of elements that leave B pointwise fixed. The following
theorem is known as the Main Theorem of Galois Theory:

Theorem 1.7 (Poizat). Let T be a complete L-theory, possibly many-
sorted, with elimination of imaginaries, and let A be a parameter set.

Fix(aclT(A),−) and Gal(aclT(A),−) are antitone lattice isomorphisms
between closed subgroups of Gal(A) and dclT-closed subsets of aclT(A) that
contain A. Under this isomorphism, closed normal subgroups correspond to
dclT-closed B which are normal over A. One has

Fix
(
aclT(A),Gal(aclT(A)/B)

)
= dclT(B)

for any A ⊆ B ⊆ aclT(A) and

Gal
(
aclT(A)/Fix(aclT(A), H

)
= H̄

for any subgroup H of Gal(A).

The following is known as the Primitive Element Theorem.

Theorem 1.8 (Poizat). Let T be a complete L-theory, possibly many-
sorted, with elimination of imaginaries, and let A be a parameter set. Then
for any open subgroup H of Gal(A) there is some finite tuple b̄ ∈ aclT(A)
such that

Fix(aclT(A), H) = dclT(Ab̄) .

Recall that a tuple b̄ is said to have degree n ∈ N over A if b̄ has exactly
n A-conjugates. b̄ has degree n over A if and only if tpT (b̄/A) has degree
n, if and only if any L(A)-formula isolating b̄ over A has exactly n solutions
(in any model of T containing A).

Corollary 1.9. Let T be a complete L-theory, possibly many-sorted,
with elimination of imaginaries, and let A be a dclT-closed parameter set.
Assume that Gal(A) is procyclic. Then the tuple b̄ ∈ aclT(A) has degree
n ∈ N over A if and only if Gal(dclT(b̄A)/A) is cyclic of order n if and only
if Gal(dclT(b̄A)/A) is the unique quotient of Gal(A) of order n.

Furthermore the following are equivalent:

(1) Gal(A)∼= Ẑ.
(2) for all n ∈ N there is a dclT-closed set D ⊂ aclT(A) that is normal

over A and such that H = Gal(aclT(A)/D) has index n in Gal(A).
(3) For all n ∈ N there is ā ∈ aclT(A) whose type over A has degree n.
(4) For all n ∈ N there is ā ∈ aclT(A) with exactly n conjugates over

A.
(5) For all n ∈ N there is a complete (algebraic) L(A)-formula ϕ(x̄)

with exactly n realizations (in a model of T containing A).

As for fields, we call a parameter set A one-free if Gal(A)∼= Ẑ.
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1.2. Field Theory and Algebraic Geometry

All fields are assumed to live inside a fixed universal domain which is
an algebraically closed field of characteristic p (a prime number or 0) of
very large transcendence degree. Fp denotes the prime field of characteristic

p, setting F0 = Q. For a field K, we write Kalg, Ksep and K1/p∞ for
the algebraic, separable and inseparable closure of K (inside the universal

domain), respectively. K1/p∞ is also called the perfect closure or perfect

hull of K. abs(K) denotes the absolute part of K, which is K ∩ F
alg
p if

char(K) = p. If R is any ring we denote by φp the Frobenius endomorphism
of R sending x to xp if the characteristic p is positive (and the identity if
the characteristic is zero). Similarly φq denotes the endomorphism sending
x to xq for any power q = pn of p. For a field extension L/K, not necessarily
finite, Aut(L/K) denotes the group of automorphisms of L over K. If L/K
is Galois, we write Gal(L/K) instead of Aut(L/K), the Galois group of
L/K. Gal(K) denotes the absolute Galois group Gal(Ksep/K) of K. It
is a profinite group in a natural way, which we sometimes identify with
Aut(Kalg/K). For a finite field extension L/K we denote the degree of the
extension by [L : K]. For a ring R and a possibly infinite tuple of variables
X̄ we write R[X̄] for the polynomial ring over R in X̄. All we present in
this section is well-known and can be found in at least one of the following
books: [34], [35], [22], [45], [64], [65] [24], [47], [46] (of course we give
references below).

Linear Disjointness. Let F1 and F2 be two field extensions of a field
K (all contained in a common overfield). F1 is called called linearly disjoint
from F2 over K if any a1, . . . , an ∈ F1 that are linearly independent over K
are linearly independent over F2. Equivalently, the canonical morphisms of
K-vector spaces F1 ⊗K F2 −→F1[F2] is an isomorphism. If F1 are linearly
disjoint from F2 over K, then F2 is linearly disjoint from F1 over K. So we
may (and will) say that two field extensions F1 and F2 are linearly disjoint
over K. Let K ⊆ L ⊆ F1 and F2/K be field extensions. Then F1 and F2 are
linearly disjoint over K iff F2 and L are linearly disjoint over K and F2L and
F1 are linearly disjoint over L. If the fields F1 and F2 are linearly disjoint
over K, then they are algebraically independent over K. The converse is
true if the field K is algebraically closed (page 57, corollary 3 and theorem
3 of chapter 3 in [34]). We will need the following well-known criterion,
which we state as a lemma for future reference.

Lemma 1.10. If F1/K is Galois, then F1∩F2 = K if and only if F1 and
F2 are linearly disjoint over K.

Regular and Separable Field Extensions. Let F be a finitely gen-
erated field extension of K. F is said to be separably generated over K
if there is a transcendence basis t̄ = t1, . . . , td of F over K such that F is
separably algebraic over K(t̄). Such a transcendence basis is called a sepa-
rating transcendence basis of F over K. A subset B of the field K is said
to be p-independent if for any b1, . . . , bn ∈ B the family of p-monomials
bi11 . . . b

in
n with 0 ≤ iν ≤ p− 1 are linearly independent over Kp. A maximal
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p-independent subset of K is called a p-basis. [K : Kp] = pe for any field K,
where e ∈ N ∪ {∞} is the size of a (equivalently every) p-basis of K. It is
called the Ershov invariant or the degree of imperfection of K. We denote
it as er(K).

A field extension F/K is said to be separable if F is linearly disjoint

from K1/p∞ over K. One has the following characterisation of separability.

Theorem 1.11. For a field extension F/K, the following are equivalent:

(1) F/K is separable.
(2) Any finitely generated subextension F ⊇ L ⊇ K has a separating

transcendence basis over K.
(3) F is linearly disjoint from K1/pn

over K, for some n ≥ 1.
(4) Any p-independent subset of K is p-independent in F .

Proof. For the equivalence of (1), (2), and (3) see page 53, theorem 1 of
chapter 3 in [34]. The equivalence of (4) and (1) is the content of theorem
(26.9) of [45] (with theorem (26.5) ibid). 2

Note that if K is a perfect field, then any field extension of K is separa-
ble. It follows from (4) of the previous theorem that if L/K is a separable
extension, then er(L) ≥ er(K). If either is finite, then er(L) = er(K) if and
only if L/K is separably algebraic (see [22], lemma (2.7.3)).

A field extension F/K is said to be regular if F is linearly disjoint from
Kalg over K. One has the following characterisation of regular field exten-
sions.

Theorem 1.12. For a field extension F/K, the following are equivalent:

(1) F/K is regular.
(2) F/K is separable and K is relatively algebraically closed in F .
(3) F/K is separable and the restriction map

res : Gal(F )−→Gal(K)

of absolute Galois groups is surjective.

Proof. For the equivalence of (1) and (2) see page 56, theorem 2 of
chapter 3 in [34]. Let us show the equivalence of (1) and (3). If F/K is
regular, then by definition F/K is separable. As F and Kalg are linearly
disjoint over K, any σ ∈ Gal(K) lifts to an automorphism α of FKsep which
is the identity on F , by the universal property of tensor products. α in turn
lifts to an automorphism of F sep over F .
For the converse, assume that F/K is separable and the restriction map of
absolute Galois groups is surjective. We will show that K is algebraically
closed in F . So let α ∈ Kalg. As F/K is separable, we may assume that
α is separably algebraic over K. If α /∈ K, there is some automorphism
σ ∈ Gal(K) moving α. But σ lifts to some σ̃ ∈ Gal(F ), so α /∈ F . 2

F/K is primary if F is linearly disjoint from Ksep over K. As Ksep and

K1/p∞ are linearly disjoint over K and Kalg = KsepK1/p∞ , F/K is regular
if and only if it is separable and primary.
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Theorem 1.13. Let K ⊆ L ⊆ F be a tower of field extensions. If F/K
is regular resp. separable resp. primary, then so is L/K. If L/K and F/L
are separable resp. regular, then so is F/K.

Proof. The first assertion follows immediately from the definition. For
the second, see corollaries 1 and 2 on page 54 of chapter 3 in [34] for the
separability, and use this and the previous theorem for regularity. 2

Finally we mention absolutely prime ideals and affine K-algebras, where
K is a field. K is still a field. An affine K-algebra is by definition a finitely
generated K-algebra which is an integral domain whose quotient field is
a regular extension of K. The K-algebra A is an affine K-algebra if and
only if A ⊗K Kalg is an integral domain. In the terminology of Ax in [2],
affine K-algebras are finitely generated absolutely entire K-algebras. An
ideal I in a K-algebra A is called absolutely prime if I ⊗K Kalg is prime in
A ⊗K Kalg. Any affine K-algebras is the quotient of some polynomial ring
by an absolutely prime ideal.

Varieties and PAC Fields. A variety V over a field K is an integral
separated scheme of finite type over K which remains integral after extend-
ing scalars to Kalg. Affine varieties over K correspond to affine K-algebras.
To be more precise, the category of affine K-algebras is equivalent to the
category of affine varieties over K (see for example [47], proposition 4 of
Chapter II, §4). If L is a field containing K, then VL denotes the vari-
ety obtained by base extension to L. Notice that our varieties are called
absolutely irreducible or geometrically irreducible by some authors. For a
K-algebra R and a variety V over K, an R-valued point of V is a morphism
Spec(R)−→V of schemes over K. If R = L is an algebraic field extension
of K, an L-valued point will be called an L-rational point. We write V (R)
for the set of R-valued points of V .

Definition 1.14. A field K is called pseudo-algebraically closed, PAC
for short, if any variety over K has a K-rational point.

We take a moment to translate this condition to the solvability of systems
of polynomial equations with coefficients in K. Certainly the field K is
PAC if and only if any affine variety over K has a K-rational point, as any
variety is covered by open affines. Consider the affine variety V over K, say
embedded in An, for some n ∈ N, given by the equations

f1(X̄) = · · · = fr(X̄) = 0

with coefficients in K. As the category of affine varieties over K is equivalent
to the category of affine K-algebras, to give a K-rational point on V is the
same as to give a morphism of K-algebras

K[X̄]/I −→ K ,

where I denotes the ideal generated by the polynomials f1, . . . , fr. This is
in turn the same as to give a maximal ideal (X1 −a1, . . . , Xn−an) in K[X̄].
Note that the ai lie in K. Thus we see that to give a K-rational point on V
is nothing but giving a tuple ā ∈ K which solves the polynomial system of
equations f1(X̄) = · · · = fr(X̄) = 0.
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Conversely, if a field K has the property that any system of polynomial
equations

f1(X̄) = · · · = fr(X̄) = 0

has a solution ā in K whenever (f1, . . . , fr) ⊆ K[X̄] is an absolutely prime
ideal, then K is PAC. This is seen by the same arguments as above.

Note that the system of equations

f1(X̄) = · · · = fr(X̄) = 0

defines a unique n-type in the theory ACF (of Morley-rank equal to the
dimension of the variety defined by these equations) by quantifier elimination
of ACF . Regarding however the theory of K, we have just seen that K is
PAC if and only if whenever I is an absolutely prime ideal, the set of
formulas

ΣI = {f(x̄) = 0 | f ∈ I}
with coefficients in K is finitely satisfiable in K. Of course, the set of
variables need not be finite.

We have proved the equivalence of (1), (2), (3) and (7) of the following
theorem:

Theorem 1.15. Let K be a field. Then the following are equivalent:

(1) K is a PAC field.
(2) Any affine variety over K has a K-rational point.
(3) For any affine K-algebra A there is a homomorphism of K-algebras

A−→K.
(4) Any curve over K has a K-rational point.
(5) Any affine plane curve over K has a K-rational point.
(6) For any absolutely irreducible polynomial f(X,Y ) ∈ K[X,Y ] there

are a1, a2 ∈ K such that f(a1, a2) = 0.
(7) For any cardinal κ, the set ΣI is finitely satisfiable in K for any

absolutely prime ideal in K[Xν | ν < κ], the polynomial ring over
K in κ-many variables.

(8) K is existentially closed in regular field extensions.

Moreover, it is an elementary property for a field to be PAC.

Proof. The equivalence of (1), (2), (3) and (7) have been shown above.
(6) is just a reformulation of (5) because K[X̄] is catenary for any field
K. The equivalence of (1) and (5) is the content of theorem (11.2.5) in
[22]. To see that (4) is equivalent to (5), one uses theorem (11.1.1) of
[22], which states that a field K is PAC if and only if for any variety
V over K the set of K-rational points is dense in V (with respect to the
K-Zariski topology), as well as the well-known fact that any curve C over
a field K is birational over K to a plane curve over K. To see that (1) is
equivalent to (8), note that we may restrict attention to finitely generated
regular extensions. So because affine varieties over K correspond to affine
K-algebras, this equivalence reduces to the equivalence of (1), (2) and (3),
which we have proved above.

For the moreover part, we refer to [22], proposition (11.3.2). 2
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Note that by compactness, we get that a κ-saturated field K is PAC if
and only if any absolutely entire K-algebra A of size less than κ admits a
K-algebra homomorphism A−→K.

We finally mention the famous theorem of Lang-Weil estimating the
number of rational points on varieties over finite fields.

Theorem 1.16 (Lang-Weil). For any positive integers n and d there is
a constant C such that for any finite field Fq and any variety V defined by
polynomials of degree at most d in the variables X1, . . . , Xn with coefficients
from Fq ∣∣ |V (Fq)| − qdim(V )

∣∣ ≤ C qdim(V )−1/2 .

1.3. Galois Cohomology

In this section we will briefly recall some of the basics from non-abelian
Galois Cohomology, such as can be found in Serre’s book [68].

Let G be a profinite group. A G-set A is a discrete topological space on
which G acts continuously, which amounts to (στ).x = σ.(τ.x) and 1.x = x
for all σ, τ ∈ G and x ∈ A, and

A =
⋃

U≤G open

AU .

Here AU denotes the set of elements in A fixed by all σ ∈ U . The action of
G on A is often called µ.

A G-set A is called a G-group, or a G-module, if A is a group and if
µ is compatible with the group operation ◦ of A. Explicitly this means
that σ.(x ◦ y) = σ.x ◦ σ.y all x, y ∈ A and all σ ∈ G. To give A
the structure of a G-group µ (i.e. to give an action of G on A which is
compatible with the group structure of A) is the same thing as to give a
continuous homomorphism of groups

ϕµ : G −→ Aut(A) ,

where Aut(A) is the group of group automorphisms of A endowed with the
topology of pointwise convergence.

For a G-set A, we let

H0(G,A) := AG

be the set of elements of A that are invariant under the action of G. If A
is a G-group, then of course H0(G,A) is a group.

If A is aG-group, one calls a continuous 1-cocycle, or simply a continuous
cocycle, of G in A a continuous map

f : G −→ A

such that f(στ) = f(σ) ◦ σ.f(τ) for all σ, τ ∈ G. Z1(G,A) denotes the set
of continuous cocycles of G in A. For example, one calculates easily that if
a ∈ A then f : G −→ A : σ 7→ a−1 ◦ σ.a defines a continuous cocycle. We
remark that all cocycles that we consider in this thesis will be continuous,
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and we will sometimes just say cocycle instead of continuous cocycle. Two
continuous cocycles f and g are called cohomologuous if there is some b ∈ A
such that

f(σ) = b−1 ◦ g(σ) ◦ σ.b
for all σ ∈ G. One calculates that this defines an equivalence relation on
the set of continuous cocycles Z1(G,A). Its set of equivalence classes

H1(G,A) := Z1(G,A)/ ∼
is called the first cohomology set of G in A. It possesses a distinguished

element, namely the class of the unit cocycle (which sends every element of
G to 1 ∈ A), which turns H1(G,A) into a pointed set.

Let us note that for any continuous cocycle f : G−→A, the set f−1(1)
is an open subgroup of G. Indeed, using the cocycle condition and 1 ◦ 1 = 1
one verifies that f(1) = f(1) ◦ f(1), so that f(1) = 1. For arbitrary τ ∈ G,
it follows, using τ ◦ τ−1 = 1, that f(τ−1) = τ−1.f(τ)−1. So if σ, τ ∈ f−1(1),
then f(στ−1) = 1 as τ.1 = 1 for any τ ∈ G. Thus f−1(1) is a subgroup of
G. It is open because A carries the discrete topology.

Note that to give a continuous cocycle f : G−→A is the same as to give
a continuous lift of the identity

G
f ′ //

=
##HHHHHHHHHH

A⋊ϕ G

pr

��
G

where the semi-direct product is taken with respect to the action of G on A.
Indeed, if f is a continuous cocycle, then f ′(σ) := f(σ)σ defines a continuous
lift, and if f ′ is such, then f(σ) := prA(f ′(σ)σ−1) is a continuous cocycle of
G in A. Here prA denotes of course the projection of A⋊ϕ G onto A.

Example 1.17. We are particularly interested in the following example.
Let k be a perfect field and V a variety over k. A kalg-form of V is a variety
W over k that is isomorphic to V over kalg. If k is not algebraically closed,
two kalg-forms of V may or may not be isomorphic over k. The set of k-
isomorphism classes of kalg-forms of V is called the Weil-Chatelet set of V
over k, noted WC(V/k).

Now let G = Gal(k) be the absolute Galois group of k and consider
the group A = Autkalg(Vkalg) of rational automorphisms of Vkalg over kalg.
Endowed with the discrete topology, it is a G-module in a natural way. G acts
naturally on W (kalg) for any variety W over k. Therefore, if ϕ : V −→W is
a kalg-isomorphism of V onto a kalg-form W of V , we obtain a continuous
cocycle of G with values in A by mapping σ to ϕ−1σϕσ−1. If V is quasi-
projective, this yields a bijection between WC(V/k) and H1(k,Autkalg(Vkalg))
(see for example [68], proposition 5 in Chapter III, §1). Our aim in chapter
3 is to establish this correspondence for types having only one extension to
the algebraic closure of their domain.
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1.4. Difference Algebra

The proof of theorem (4.24) given in chapter 4 uses difference alge-
bra/geometry. We introduce the relevant material from the literature, mainly
from Cohn’s book [17].

Difference Rings and Difference Fields. A difference ring is a pair
(R, σ) consisting of a (commutative unitary) ring R and an endomorphism
σ of R. We follow the convention made by several authors and require the
endomorphism σ to be injective. If R is a field we call (R, σ) a difference
field. For f ∈ R the element σn(f) is called the nth transform of f . Homo-
morphisms of difference rings are ring homomorphisms compatible with the
endomorphisms, as one expects, as well as extensions and substructures of
difference rings and fields. All attributes of the underlying rings and ring
homomorphisms are used for difference rings and homomorphisms of differ-
ence rings as well. For example, if the underlying field of a difference field
(K,σ) is algebraically closed, we call (K,σ) an algebraically closed difference
field, or if the underlying field extension L/K of the difference field exten-
sion (L, τ)/(K,σ) is algebraic, we call (L, τ)/(K,σ) an algebraic difference
field extension.

We will often abuse notation and write (L, σ) for an extension of (K,σ),
or even omit the endomorphism from the notation and just write R instead
of (R, σ).

If S/R is an extension of difference rings and A is a subset of S, we
denote by R[A]σ the difference ring generated by A over R, which is the
smallest difference subring of S containing A and R. If A is just a finite
tuple of elements ā, we write R[ā]σ. In case both S and R are fields, we
write R(A)σ and R(ā)σ for the difference field generated by A and ā over
R respectively. Difference fields of the form k(ā)σ, with ā a finite tuple, are
called finitely generated over k. They need not be finitely generated over k
as pure fields. Take for example a sequence (tν)ν∈N of elements of C that
are algebraically independent over Q, and set σ(tν) = tν+1. Lift σ to an
automorphism of C. Then Q(t0)σ is not finitely generated over Q as a field.

Note that the underlying endomorphism σ of a difference field (K,σ)
need not be surjective. Take for example any non-perfect field and endow it
with the Frobenius endomorphism. However, if the endomorphism is surjec-
tive we call (K,σ) an inversive difference field. Any difference field (K,σ)
has an inversive closure, which is by definition an inversive difference field
(K inv, σinv) together with a homomorphism of difference fields ι : K −→K inv

satisfying the following universal property: to any inversive difference field
(L, τ) and homomorphism of difference fields ϕ : K −→L there is a homo-
morphism of difference fields ψ : K inv −→L such that ϕ = ψ ◦ ι. The
existence of the inversive closure of a difference field is shown the same way
as the existence of the perfect hull of a field (the latter in fact being a partic-
ular example of inversive closure considering the Frobenius endomorphism).
All difference fields considered in this thesis will be inversive unless other-
wise stated. Let us just note at this place that we will generalise this
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concept in chapter 5 to the notion of inversive Lσ-structures (see section
5.1).

If (K,σ) is a difference field, not necessarily inversive, we let

Fix(K,σ) = { a ∈ K | σ(a) = a }
and call it the fixed field of (K,σ). Note that Fix(K inv, σinv) = Fix(K,σ).
This is so because if a ∈ K inv, then (σinv)n(a) ∈ K for some n ∈ N, so
Fix(K inv, σinv) ⊆ Fix(K,σ)

Consider a difference ring (R, σ) whose underlying ring is an integral do-
main. As σ is injective by convention, it extends canonically to the quotient

field Quot(R) of R by setting σ(ab ) = σ(a)
σ(b) .

(
Quot(R), σ

)
is called the quo-

tient difference field of (R, σ), and satisfies the obvious universal property.
Note that

(
Quot(R), σ

)
may not be inversive.

Examples. We have already mentioned that the Frobenius endomor-
phism yields examples of difference fields. Consider now the field C(z) of
meromorphic functions of the Riemannian sphere P1(C) and a rational trans-
formation τ(z) = az+b

cz+d (with ad − bc 6= 0). Then (C(z), τ) is a difference
field. In fact, the name difference field originated from this type of example;
an equation of the form

p ( f(z), f(z + 1), . . . , f(z + n) ) = 0

where p is a polynomial over K and f is an unknown function is called an
algebraic difference equation.
More generally, let V be any variety over an algebraically closed field k, and
let ϕ be a dominant rational endomorphism of V . Then the rational function
field k(V ) of V over k endowed with the endomorphism corresponding to ϕ
becomes a (non-inversive) difference field, which is the quotient difference
field of the coordinate ring k[V ] endowed again with the endomorphism
corresponding to ϕ in case ϕ is everywhere defined on V .

Of particular interest are difference polynomial rings. Let (R, σ) be a
difference ring and X̄ = (X1, . . . , Xn) be a tuple of indeterminates. The
difference polynomial ring over (R, σ) in the indeterminates X̄ is the ring

R[X1, . . . , Xn, X
σ
1 , . . . , X

σ
n , . . . , X

σm

1 , . . . ]

endowed with the extension of σ suggested by the notation. We write R[X̄]σ
for the difference polynomial ring over (R, σ), the endomorphism being tacit
to that symbol. Elements of R[X̄]σ are called difference polynomials over R
and equations of the form f(X̄) = 0 for f(X̄) ∈ R[X̄]σ are called difference
equatons, or σ-equations for short, with coefficients in R. One evaluates a
difference polynomial at an n-tuple R as suggested by the notation.

Compatible Extensions. Two difference field extensions of a difference
field (K,σ) are called compatible if there is some difference field extension
of (K,σ) in which both embed (over (K,σ)). In contrast to extensions of
differential fields (say in characteristic zero), two algebraic extensions of a
difference field need not be compatible. Consider for example the difference
field (Q, id). The identity has two possible extensions to Q(i), namely the
identity and the automorphism mapping i to −i. Clearly the difference fields
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(Q(i), id) and (Q(i), i 7→ −i) are incompatible. This phenomenon will not
occur if (K,σ) is algebraically closed, or more generally if the underlying field
extensions are linearly disjoint over K. We state this fact in the following
lemma for further reference.

Lemma 1.18. Let (F1, σ1) and (F2, σ2) be difference fields with common
subdifference field (K,σ). We assume that all fields are contained in some
universal domain. If F1 is linearly disjoint from F2 over K, then there is a
unique automorphism τ on the compositum F1F2 extending both σ1 and σ2.

Proof. On the one hand, F1 and F2 are K-algebras via the inclusion. On
the other, they are K-algebras via σ followed by the inclusion. Thus σ1×σ2

is a K-bilinear isomorphism, so the assertion follows from the universal
property of tensor products. 2

So for example if F1 is a Galois extension of K and F1 ∩ F2 = K, it
follows from (1.10) that F1 and F2 are linearly disjoint over K and thus we
can amalgamate the automorphisms σ1 and σ2.

Difference Ideals. Of particular significance are the so-called perfect
and prime difference ideals, which form the analogues of radical and prime
ideals in commutative algebra.

A difference ideal, or σ-ideal for short, in a difference ring (R, σ) is a ring
ideal I of R with σ(I) = I. Note that our difference ideals are called reflexive
difference ideals by Cohn [17]. The factor ring R/I of R modulo the σ-ideal
I inherits an endomorphism from R by setting σ(a mod I) = σ(a) mod I
and thus becomes a difference ring in the natural way. R/I endowed with
this endomorphism is called the factor difference ring of (R, σ) modulo I.

We say that the difference ideal I is perfect if it is not the unit ideal and
if for all f ∈ R, if fnσ(f)m ∈ I (with n,m ∈ N), then f ∈ I. That this
definition is equivalent to Cohn’s definition (see [17]) is the content of the
following lemma.

Lemma 1.19. Let (R, σ) be a difference ring and I ⊂ R be a ring ideal.
Then the following are equivalent:

(1) I is a perfect difference ideal.
(2) σ(I) ⊆ I and for any f ∈ R, if a product of powers of transforms

of f is in I, then f ∈ I.

Proof. That (2) implies (1) is trivial. For the converse, let f ∈ R be an
element with

∏

0≤i≤N

σi(fmi) ∈ I .

Because I is an ideal, we may multiply by suitable elements σν(fµ) and
obtain

∏

0≤i≤N−1

σi(fm) σ(
∏

0≤i≤N−1

σi(fm)) ∈ I
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for some m. By the hypothesis on I it follows that
∏

0≤i≤N−1

σi(fm) ∈ I .

Iterating this process, we obtain

fmσ(fm) ∈ I ,

which implies that f ∈ I. 2

A difference ideal ℘ that is a prime1 ideal is called a prime difference
ideal, or σ-prime ideal for short. A σ-prime ideal is called maximal if it is
maximal among σ-prime ideals (with respect to inclusion). If ℘ is a prime
difference ideal in a difference ring (R, σ), a difference specialisation of ℘ is
a prime difference ideal ℘′ in (R, σ) that contains ℘.

Note that any prime difference ideal is perfect. Maximal difference prime
ideals need not be maximal ideals. Consequently, ifm is a maximal difference
prime ideal in an integral domain, then R/m need not be a field. To give an
example, consider the difference field (C, id) and the σ-equation Xσ = X+1.
The ring ideal I generated by Xσ − (X + 1) and all its transforms in the
difference polynomial ring C[X]σ is a maximal difference prime ideal. The
quotient difference ring C[X]σ/I is just the polynomial ring C[X] together
with the endomorphism X 7→ X + 1. In particular it is not a field.

If S is a subset of a difference ring (R, σ) we denote by (S)perf the perfect
difference ideal generated by S, which is by definition the intersection of all
perfect difference ideals containing S. ((S)perf is defined to be R in case there
is no perfect σ-ideal that contains S, and is then not a perfect difference ideal
in our sense.) A perfect difference ideal is called finitely generated if there is
some finite set S such that I = (S)perf . Note aside that (S)perf is in general
much bigger than the ring ideal generated by S and all its transforms. It
is obtained by the following procedure. First build the set of all f ∈ R
such that fmσ(f)n ∈ S, for some n,m ≥ 0. Then take the difference ideal
generated by that (i.e. linear combinations of elements of the set and its
transforms). Proceed like this. It is known that this process stabilises after
finitely many steps (see [17]).

Any perfect difference ideal is the (possibly infinite) intersection of σ-
prime ideals. This follows immediately from Zorn’s lemma and the fact
that

(S)perf ∩ (T )perf = (S · T )perf

for any sets S, T (see [17]).

In Ritt difference rings any perfect difference ideal is the intersection of
a finite number of prime difference ideals ( [17], chapter 3, theorem 4). A
difference ring (R, σ) is called Ritt if any perfect σ-ideal is finitely generated.
Equivalently it satisfies the ascending chain condition on perfect σ-ideals
( [17], theorem 2 of chapter 3). The fact that difference polynomial rings
over difference fields are Ritt is the content of the Finite Basis Theorem of
Ritt and Raudenbusch, which we cite from [17] (ibid, chapter 3, theorem
5).

1We require prime ideals to be different from the unit ideal.
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Theorem 1.20 (Finite Basis Theorem). Let (R, σ) be a difference ring.
If (R, σ) is Ritt, then R[X̄]σ is a Ritt difference ring.

If L/K is a difference field extension then obviously K[X̄]σ ⊂ L[X̄]σ,
and if A ⊂ Ln we write Iσ(A/K) for the vanishing difference ideal of A over
K , or just the vanishing σ-ideal of A over K, which is the set of difference
polynomials in K[X̄]σ that vanish at every element of A. In case A consists
of a single tuple ā, we just write Iσ(ā/K). One verifies easily that Iσ(A/K)
is a perfect difference ideal (or all of K[X̄]σ), and that Iσ(ā/K) is always
σ-prime. Conversely, if I is a perfect difference ideal in K[X̄]σ, then there
is some difference field extension L of K in which I has a common zero.
Namely, by convention I is not unit ideal, so we may choose some σ-prime
℘ that contains I and put L = Quot(K[X̄]σ/℘). Note that as K[X̄]σ is a
Ritt difference ring, there are finitely many σ-prime ideals in K[X̄]σ such
that

I =
⋂

℘⊇I

℘

(which correspond to the “irreducible components” of Vσ(I), see section 4.2).

A difference field (K,σ) is called generic if for any finite system of dif-
ference equations

f1(X̄) = · · · = fr(X̄) = 0

having a solution in some difference field extension of (K,σ) has a solution
in K. Using the basic facts on perfect and prime difference ideals above
one sees that (K,σ) is generic if and only if the σ-version of Hilbert’s Null-
stellensatz is true in (K,σ), namely that any σ-prime ideal in K[X̄]σ has a
solution in K. It is also equivalent to (K,σ) be existentially closed in dif-
ference field extensions. Generic difference fields serve as universal domains
for difference algebra and difference algebraic geometry, the same way as
do their counterparts, algebraically closed fields, for algebra and algebraic
geometry.



CHAPTER 2

A Prestel-Frey Theorem

The well-known theorem of Macintyre, Cherlin and Shelah states that
infinite superstable fields are algebraically closed. The converse being true
because of quantifier elimination in algebraically closed fields, one has thus
an algebraic characterisation of the class of superstable fields.

Shelah’s notion of simplicity and supersimplicity, introduced in [66],
generalises stability and superstability. Prototypical examples of supersim-
ple (pure) fields are pseudo-finite fields (see chapter 4), and the natural
question for an algebraic characterisation of supersimple fields arises.

Hrushovski shows in [26] that pseudo-finite fields are supersimple. More
general, he proves that any perfect pseudo-algebraically closed field with
bounded absolute Galois group is supersimple. Pillay and Poizat in turn
show that a supersimple field is perfect and has bounded absolute Galois
group in [54]. In 1995, Pillay conjectured that supersimple fields are pseudo-
algebraically closed.

So far a proof (or counterexample) of this conjecture seems to be out
of reach for current methods. Only particular types of curves over a super-
simple field k have been shown to have a k-rational point. Pillay, Scanlon
and Wagner showed in [55] that any rational curve over a supersimple field
k has a k-rational point, by proving that the Brauer group of k is trivial.
Pillay and Martin-Pizarro proved in [43] and [42] that the set of k-rational
points on an elliptic or hyperelliptic curve C over k, is dense in C if the
modulus of the curve in a certain moduli space satisfies some genericity as-
sumption. Assuming that k has exactly one quadratic extension (in a fixed
algebraic closure), Martin-Pizarro and Wagner showed in [44] that the set
of k-rational points on any elliptic curve E over k is dense in E.

The theorem of Prestel-Frey states that a pseudo-algebraically closed
field is never henselian unless it is separably closed (see [22], corollary
(11.5.5)). In this chapter we are going to prove this for simple fields: any
simple field which is not separably closed is not henselian (corollary (2.3)).
Our proof depends on the definability of the valuation topology in henselian
fields that are neither separably closed nor real closed proved by Koenigs-
mann (see below).

Let us recall the notion of a t-henselian field, which is the right frame
to formulate the theorem. We refer to the article of Prestel and Ziegler
[60] for details. Let (K, τ) be a field with ring topology. (K, τ) is called a
V -topological field if any subset S ⊆ K \ {0} is bounded whenever S−1 is

17
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bounded away from 0 (which means there is some U ∈ τ , 0 ∈ U , such that
U ∩S−1 = ∅). There are basically two classes of examples for V -topological
fields. For the first, let |.| be a (non-trivial) absolute value of K. The
absolute value induces a ring topology τ|.| via the sets

Vε = {x ∈ K | |x| < ε} ,
turning K into a V -topological field. The second comes from valuations.
Let v be a non-trivial valuation on K. v induces a ring topology τv via the
sets

Vγ = {x ∈ K | v(x) > γ} ,
which makes K a V -topological field. In fact, by a theorem of Kowalsky-
Dürbaum and Fleischer, any V -topological field is of one of the above men-
tioned type (see [60], theorem (3.1)).

Note that it follows therefrom that in any V -topological field there is
some strictly decreasing chain of neighbourhoods of 0.

The V -topological field (K, τ) is called t-henselian if for any n ≥ 1 there
is U ∈ τ with 0 ∈ U such that any polynomial f ∈ Xn+1+Xn+U [X]≤n−1 has
a zero in K. Here by U [X]≤n−1 we denote the set of polynomials of degree
less or equal to n− 1 having coefficients from U 1. We call a (pure) field K
t-henselian if there is a ring topology τ on K such that (K, τ) is t-henselian.
Real closed fields and henselian fields are examples of t-henselian fields. The
following theorem on t-henselian fields was proved by Koenigsmann in [32].

Theorem 2.1 (Koenigsmann). Let (K, τ) be a t-henselian field. If K
is neither separably closed nor real closed, then the topology τ is uniformly
definable in the pure field K, i.e. there is a neighbourhood filter of 0 which
is given by a definable family of definable sets.

Theorem 2.2. Let K be a field, possibly with extra structure, which has
not the strict order property. If K is t-henselian, then it is separably closed.
In particular K is never real closed, and henselian only in case it is separably
closed.

Needless to say, it is well-known that real closed fields have the strict
order property, the ordering being definable in the field language.

Proof of 2.2. K is not real closed because Th(K) does not have the strict
order property. Assume by way of contradiction that K is not separably
closed. If K admits a t-henselian topology τ , then by (2.1) there is some
formula ϕ(x̄; ȳ) and a family of tuples āν ∈ K, ν ∈ I, such that the family
{ϕ(K; āν) : ν ∈ I } forms a neighbourhood base of 0 refining the topology
τ . By the above remarks on V -topological fields we may assume that the
family {ϕ(K; aν) : ν ∈ I } is strictly decreasing (with respect to inclusion).
So it follows that K has the strict order property. 2

Corollary 2.3. Let K be a simple field. If K is t-henselian, then it is
separably closed. In particular K is never real closed, and henselian only in
case it is separably closed.

1The reader may note that this is not the original definition of t-henselianity given
in [60]. It is however equivalent by theorem (7.2) of [60].
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Proof of 2.3. Simple fields do not have the strict order property. 2

Note that the fact that simple fields cannot be real closed is well-known,
the argument being that o-minimal theories do have the strict order property.

Corollary 2.3 constitutes another property that simple and supersim-
ple fields share with PAC fields. It thus supports Pillay’s conjecture that
supersimple fields are PAC.





CHAPTER 3

On a Theorem from Galois Cohomology

In the present chapter we generalise a well-known theorem from Galois
Cohomology theory to a purely model theoretic setting. The situation is as
follows (see [68], Chapter III, §1). To a variety V over some perfect field k
one assigns the so-called Weil-Chatelet set of V over k, denoted WC(V/k).
It is by definition the pointed set of k-isomorphism classes of kalg-forms of
V , the distinguished point being the isomorphism class of V . It can be
viewed as a measure of how many “forms” V can take when transformed
with coefficients in kalg. The theorem states that for quasi-projective V ,
WC(V/k) is isomorphic as a pointed set to H1(Gal(k),Autkalg(V )), the first
Galois cohomology set of the absolute Galois group Gal(k) of k with values
in Autkalg(V ), the group of rational automorphisms of V over kalg (see [68],
proposition 5 of Chapter III, §1).

We generalise this theorem to types in a first order theory T with unique
extension to the algebraic closure of their domain, see theorem (3.3). The
theory T is only required to have elimination of imaginaries. First the rele-
vant notions are introduced for types having the unique extension property
just mentioned, such as automorphisms, forms and what we call the Weil-
Chatelet sets of types. Also we introduce for such a type p with domain
A, the first Galois cohomology set of Gal(A) with values in the group of
automorphisms of p.

To simplify readability, we sometimes write Ã instead of acl(A) and GA
instead of Gal(A) for a parameter set A in the present chapter.

3.1. Galois Cohomology and Types

We fix a possibly many-sorted first-order L-theory T with elimination
of imaginaries. Our objects, replacing varieties in the algebro-geometric
context, will be types with a unique extension to the algebraic closure of
their domain: we say that a type p over a parameter set A is acl-stationary
if it has a unique extension to acl(A). If A is algebraically closed, B ⊆ A
with acl(B) = A and p|B is acl-stationary, we say that p is acl-stationary
over B. Needless to say that acl-stationary types in stable theories are
stationary.

Morphisms of Types. Our morphisms will correspond to rational
morphisms rather than regular morphisms of varieties. Let A1 and A2 be
parameter sets with acl(A1) = acl(A2) = A, and let p1(x̄1) and p2(x̄2) be
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types over A. Assume that p1 is acl-stationary over A1 and that p2 is acl-
stationary over A2. A strong type π(x̄1, x̄2) ∈ S(A) is called a morphism

from p1 to p2, written p1
π−→ p2, if there are realizations ā1 |= p1 and ā2 |= p2

with ā1ā2 |= π and ā2 ∈ dcl(ā1, A). If B ⊆ A with acl(B) = A and π|B is acl-
stationary we say that π is over B if ā2 ∈ dcl(ā1, B). If ā realizes p1, we abuse
notation and write π(ā) for the (unique) realization of p2 corresponding to ā
under π. Note that by our definition a morphism from p to somewhere must
be over the algebraic closure of the domain of p. The set of morphisms from
p1 to p2 is denoted by Hom(p1, p2). If p1 = p2 = p, there is a distinguished

morphism in Hom(p, p), given by tp(āā/Ã) for some (any) realization ā of
p. We denote this endomorphism by 1p and call it the identity morphism
on p.

Let us make some easy observations. First, it follows directly from the
definition that π(x̄1, x̄2) |= p1(x̄1) ∧ p2(x̄2). Also, for any realizations ā1ā2

of the morphism π, ā2 ∈ dcl(ā1, A). If f is an A-definable function that
witnesses ā2 ∈ dcl(ā1, A), then f(ā) |= p2 for any realization ā |= p1.

Lemma 3.1. Let p, q ∈ S(A) be acl-stationary and let π ∈ S(Ã) be a

morphism from p to q. Let further āb̄ |= π and ϕ(x̄, ȳ) be an L(Ã)-formula

witnessing that b̄ ∈ dcl(ā, Ã). Then π is determined by

Σϕ = p(x̄) ∪ {ϕ(x̄, ȳ) }

Proof. Let ā and b̄ be tuples of the right length such that āb̄ |= Σϕ and
call f the partial function defined by ϕ. Note that p |= ∃=1ȳ ȳ = f(x̄). If

ā′b̄′ |= π then ā′ |= p so that there is some α ∈ Aut(C/Ã) with α(ā) = ā′.

Because b̄ = f(ā) and b̄′ = f(ā′), and f is definable over Ã, it follows that
b̄′ = α(b̄). Thus āb̄ ≡ eA

ā′b̄′ 2

Note aside that it follows from this characterisation that every morphism

π is over Aā for some finite tuple ā ∈ Ã.

Let for example T be ACFp, the theory of algebraically closed fields of
characteristic p ≥ 0. Then acl-stationary types are stationary , as ACFp
is stable and eliminates imaginaries. Let A = dcl(A) be a subfield (of the
monster model/field C). For two stationary types p ∈ Sn(A) and q ∈ Sm(A),
let V and W be the (affine) varieties corresponding to p and q respectively.

If the characteristic is zero, a morphism p
π−→ q “is” nothing but a rational

dominant morphism of varieties, defined over acl(A) in the algebro-geometric
sense, from V onto W . If the characteristic is positive, then π “is” a rational
dominant morphism of varieties, again defined over acl(A) in the algebro-
geometric sense, up to some power of the Frobenius morphism x 7→ xp. This
is so because for a subfield K of C, dcl(K) is K in characteristic zero and

K1/p∞ in positive characteristic.

Composition of Morphisms. Let A be an algebraically closed set and
p1, p2 and p3 be types over A. The composition π2 ◦ π1 of two morphisms

p1
π1−→ p2 and p2

π2−→ p3 is defined as follows. Choose ā1ā2 |= π1 and
ā′2ā3 |= π2 and let α ∈ Aut(C/A) send ā′2 to ā2. We define π2 ◦ π1 to be
tp(ā1α(ā3)/A). Clearly this defines a morphism, and is independent from
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the realizations of π1 and π2 and the automorphism α chosen: if b̄1b̄2 |= π1,
b̄′2b̄3 |= π2 and β ∈ Aut(C/A) with β(b̄′2) = b̄2, then there is γ ∈ Aut(C/A)
with γ(ā1) = b̄1, and one calculates that γ(π2(π1(ā1))) = β(b̄3), which shows
γ(ā1α(ā3)) = b̄1β(b̄3).

A morphism p
π−→ q is called invertible, or an isomorphism from p to q, if

there is a morphism q
ξ−→ p such that both π ◦ ξ and ξ ◦π are the identity on

p and q respectively. In this case ξ is uniquely determined: if ab |= π then
ξ = tp(ba/A), as one expects. We write π−1 for ξ and call it the inverse
morphism of π. p and q are called isomorphic if there is an isomorphism
from p to q. Needless to say that p and q might have distinct variable tuples.
An isomorphism from p to itself is called an automorphism of p. Observe
that if p is acl-stationary over B, B ( acl(B) = A, an automorphism of p
need not be over B. To give an example, consider algebraically closed fields
of characteristic zero. Let p be the generic type over ∅ of the affine line A1,
and consider the automorphism given by multiplication with

√
2. We write

Aut(p/A) for the set of automorphisms of p over the algebraically closed
set A. It is easily seen to be a group with composition of morphisms, the
neutral element being the identity on p.

Forms of Types. Let A = acl(A) and p, q ∈ S(A) be acl-stationary
over B ( A. As with automorphisms, an isomorphism p → q need not be
over B. To give an example, consider again algebraically closed fields, say
in characteristic zero. Let p1 be the generic type over ∅ of the affine plane
curve C1 given by the equation X2 +Y 2 +1 = 0, and p2 be the generic type
over ∅ of the affine plane curve C2 given by the equation X2 + Y 2 − 1 = 0.
Both curves are birational over Qalg. But obviously C1(Q) = ∅, whereas
C2(Q) is infinite, so they cannot be birational over Q – one needs i to define
an isomorphism between the two curves/types. We say that p1 and p2 are
isomorphic over B if there is some isomorphism p1 → p2 over B.

Now let A be any parameter set, not necessarily algebraically closed,

and p ∈ S(Ã) be acl-stationary over A. For a set B with A ⊆ B ⊆ Ã we

call q ∈ S(Ã) a B-form of p if q is acl-stationary over A and if there is

some isomorphism p
π−→ q over B. Being isomorphic over A is clearly an

equivalence relation on the set of Ã-forms of p. We call its set of equivalence
classes the Weil-Chatelet set of p and denote it by WC(p/A).

The action of GA. Let A be any parameter set. Recall that GA is

the set of elementary permutations of Ã leaving A pointwise fixed and that
GA is a profinite group with the topology of pointwise convergence. For any
acl-stationary types p1, p2 ∈ S(A), GA operates on Hom(p1, p2) (on the left)
by

σ.π := {ϕ(x, y;σ(ā)) | ϕ(x, y; ā) ∈ π} .

If π is invertible, then so is σ.π, and (σ.π)−1 = σ.(π−1). For if ab |= π and σ̄
is any lift of σ whose domain contains ab, then σ̄(ab) |= σ.π and the inverse

is tp(σ̄(ba)/Ã). Thus for acl-stationary p ∈ S(A) one has that GA operates
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on Aut(p/Ã). We denote this action by µp and endow Aut(p/Ã) with the
discrete topology.

Lemma 3.2. Let p, q, r ∈ S(A) be acl-stationary.

(1) For any morphisms p
π−→ q, q

ξ−→ r and all σ ∈ GA, one has σ.(ξ ◦
π) = σ.ξ ◦ σ.π.

(2) The morphism p
π−→ p is over A if and only if σ.π = π for all

σ ∈ GA.
(3) µp turns Aut(p/Ã) into a discrete GA-group.

Proof. (2) is immediate from lemma (3.1). To show (1), let p
π−→ q

and q
ξ−→ r be morphisms and σ ∈ GA. By lemma (3.1) we can choose

Ã-definable functions f and g such that π is determined by p(x̄) and f and
ξ is determined by q(ȳ) and g. It follows that ξ ◦ π is determined by the

Ã-definable function g ◦ f and σ.(ξ ◦ π) is determined by σ.(g ◦ f), which is

the Ã-definable function obtained by applying σ to the parameters from Ã
in some (any) defining formula for g ◦ f . But σ(g ◦ f) = σg ◦ σf , the latter
determining the morphism σ.ξ ◦ σ.π. Thus σ.(ξ ◦ π) = σ.ξ ◦ σ.π.

Let us finally address (3). By (1) µp is a group action. To see that it
is continuous, note that by lemma (3.1) any morphism is over Ac̄ for some

finite tuple c̄ ∈ Ã. So

Aut(p/Ã) =
⋃

Aut(p/Ã)U ,

where U runs over all open normal subgroups of GA. 2

So we can speak of continuous cocycles of GA with values in Aut(p/Ã)

and the Galois cohomology set H1(GA,Aut(p/Ã)). We now come to the
main theorem of the present chapter.

Theorem 3.3. Let T have elimination of imaginaries and p ∈ S(A) be
acl-stationary. Then there is a natural isomorphism of pointed sets

WC(p/A)
Φ−−−→ H1(GA,Aut(p/Ã)) .

Proof. Define the map Φ as follows. Let [q] be a class in WC(p/A),

represented by the Ã-form q of p, and choose an isomorphism p
π−→ q over

Ã. Then [q] is mapped to the cohomology class of the continuous cocycle1

GA−→Aut(p/Ã) : σ 7→ π−1 ◦ σ.π .
To see that Φ is well-defined, note first that this cocycle is obviously contin-

uous. Let r ∈ [q] and p
π−→ q and p

ξ−→ r be isomorphisms over Ã and q
η−→ r

be an isomorphism over A. As η is over A, one has η = σ.η for all σ ∈ GA
by lemma (3.2), so that

1r = η ◦ π ◦ π−1 ◦ σ.π ◦ σ.π−1 ◦ σ.η−1 ,

and hence

ξ−1 ◦ σ.ξ = ξ−1 ◦ η ◦ π ◦ π−1 ◦ σ.π ◦ σ.π−1 ◦ σ.η−1 ◦ σ.ξ .

1one easily verifies that this map indeed defines a continuous cocycle
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If we let γ = π−1 ◦ η−1 ◦ ξ ∈ Aut(p/Ã), then the above equation reads as

ξ−1 ◦ σ.ξ = γ−1 ◦ (π−1 ◦ σ.π) ◦ σ.γ ,

so the cocycles π−1 ◦ σ.π and ξ−1 ◦ σ.ξ are cohomologuous.

As to show injectivity, let [q] and [r] be in WC(p/A) and let p
π−→ q and

p
ξ−→ r be Ã-isomorphisms and γ ∈ Aut(p/Ã) such that

π−1 ◦ σ.π = γ−1 ◦ ξ−1 ◦ σ.ξ ◦ σ.γ .
Then ξ ◦ γ ◦π−1 is an isomorphism from q to r, which is over A because the
last equation is equivalent to ξ ◦ γ ◦ π−1 = σ.(ξ ◦ γ ◦ π−1). Hence [q] = [r].

Now for the surjectivity of Φ, let

f : GA −→ Aut(p/Ã)

be a continuous cocycle of GA with values in Aut(p/Ã). We fix a realization

a |= p and denote Da = dcl(aÃ). f defines a group action of GA on Da

via automorphisms as follows. For σ ∈ GA we let σf (a) = f(σ)−1(a) and

σf (c) = σ(c) for c ∈ Ã. As p is acl-stationary and f(σ) ∈ Aut(p/Ã) for all

σ ∈ GA, σf is an elementary map with a and σf (a) interdefinable over Ã.
So σf lifts uniquely to an automorphism of Da, which we also denote by σf .
This indeed defines a group action of GA on Da, as the following calculation
shows:

(στ)f (a) = f(στ)−1(a) = σ.f(τ)−1(f(σ)−1(a)) = σf (f(τ)−1(a)) = σf (τ f (a)) .

The third equality holds because of the very definition of the action of
GA on Da. Note that we have defined a section of the restriction map
Aut(Da/A)−→GA, or in other words, we gave a lift of every σ ∈ GA to an
automorphism of Da.

We now aim to find some finite tuple b ∈ Da with the properties that

• σf (b) = b for all σ ∈ GA, and

• tp(b/Ã) is an Ã-form of p.

For then we are done: if we have b with the above properties and if π is an

isomorphism over Ã with π(a) = b, then for all σ ∈ GA

f(σ)−1(a) = σf (a) = σf (π−1(b)) = σ.π−1(σf (b))
= σ.π−1(b) = σ.π−1π(a),

so f(σ)−1 = σ.π−1◦π, or equivalently f(σ) = π−1◦σ.π and so Φ is surjective.

In order to find b ∈ Da with the above properties, let H be the stabiliser
of a with respect to the action of GA on Da defined above, and note that
H = f−1(1) is an open subgroup of GA by continuity of f (see section 1.3).
So GA/H is finite and we can choose left representatives 1, σ1, . . . σn of
GA/H. Further, by elimination of imaginaries, Primitive Element Theorem

(1.8) implies that there is some finite tuple c̄ ∈ Ã such that dcl(c̄, A) =

Fix(Ã,H). We define

b := {ac̄, σ f
1 (ac̄), . . . , σ f

n (ac̄)}



26 3. ON A THEOREM FROM GALOIS COHOMOLOGY

and claim that b is what we have been looking for. Indeed, b ∈ Da because
σf (a) ∈ Da for all σ ∈ GA. Also, σf (b) = b for all σ ∈ GA by the very choice

of b. To see that tp(b/Ã) is an Ã-form of p, note first that b ∈ dcl(aÃ) = Da

because all σf (a) ∈ dcl(aÃ). Second, tp(b/Ã) is acl-stationary over A if
and only if any σ ∈ GA admits a lift fixing b. But as we have seen above,
this lift is given by the cocycle f , as we chose b to be a fixed point of the

group action. Finally we show that a ∈ dcl(bÃ). Choose to that end an

automorphism α of C over Ã which fixes b. α permutes the elements of b, so

α(ac̄) = σ f
i (ac̄) for some i. α(c̄) = c̄ as c̄ ∈ Ã, so because σi(c̄) = c̄ if and

only if σi ∈ H, we conclude that α(ac̄) = ac̄. In particular α(a) = a, so we
are done. 2

Remark 3.4. Following a different approach, Pillay [51] has introduced
Galois Cohomology for definable sets in homogeneous atomic structures. We
briefly recall this for convenience.

Let M be an arbitrary (possibly many-sorted) structure with elimination
of imaginaries containing the parameter set A such that M is atomic over
A and for any finite tuples ā and b̄ from M with tp(ā/A) = tp(b̄/A) there is
some automorphism α ∈ Aut(M/A) such that α(ā) = b̄. G = Aut(M/A) is
endowed with the topology of pointwise convergence. For an A-definable set
X ⊂ M eq, Autdef (X) denotes the group of bijections X −→X that are de-
finable using parameters from M . Then G acts naturally on Autdef (X) and
one has the notion of cocycle of G with values in Autdef (X). Such a cocycle
f : G −→Autdef (X) is called definable if there is some tuple ā ∈ M and
an A-definable partial function h(w̄, z̄, x) such that f(σ) = h(ā, σ(ā),−) for
any σ ∈ G. H1

def (G,Autdef (X)) denotes the first cohomology set of definable

cocycles of G with values in Autdef (X). An A-form of X is an A-definable
subset Y of M which is in definable bijection to X using parameters from
M . Two A-forms Y1 and Y2 of X are equivalent if and only if there is some
A-definable bijection from Y1 onto Y2. Clearly this is an equivalence rela-
tion, and the class of X is a distinguished element of the set of equivalence
classes. The latter has thus the structure of a pointed set.

As Pillay proves in §3 of [51], H1
def (G,Autdef (X)) is isomorphic as a

pointed set to the set of A-forms of X modulo A-definable bijection.



CHAPTER 4

Pseudo-finite Fields and Generic Difference Fields

Pseudo-finite fields emerge already in the investigation of Ax and Kochen
[3], [4] and [5] of diophantine problems over local fields in form of non-

principal ultraproducts of finite prime fields, shortly before Ax started their
systematic study in [1] and [2] in the late 1960’s. This study was continued
among others by Chatzidakis’, van den Dries’ and Macintyre’s [13], as well
as Hrushovski [26], and constitute a fruitful stimulation not only of modern
Model Theory. Together with the failure of Zil’ber’s conjecture, Ax’ results
[2] motivated the model theoretic investigation of difference fields in the

1990’s. The geometric classification of finite rank definable sets in generic
difference fields by Chatzidakis and Hrushovski [14] in conjunction with
Hrushovski’s and Pillay’s result on stable one-based groups [29], have led
to another impressive application of Model Theory in “core mathematics”:
Hrushovski’s proof of the Manin-Mumford conjecture.

Pseudo-finite fields and generic difference fields are closely related, not
only through historical development. The fixed field of a generic difference
field is a pure pseudo-finite field. On the other hand, to any pseudo-finite
field k there is some generic difference field whose fixed field is elementarily
equivalent to k.

The aim of the present chapter is to show that even more is true: given
any pseudo-finite field k there is some generic difference field whose fixed field
even equals k. We also intend to discuss with ACFA a particular example
of generic automorphisms of a stable theory from chapter 5 in greater detail.

The chapter is organised as follows. We first recall the basic theory
of pseudo-finite fields and generic difference fields in sections 4.1 and 4.2.
We include a proof of Hrushovski’s theorem on ultraproducts of difference
fields, modulo his analogue of the Lang-Weil estimates for difference fields.
The proof of the main theorems of this chapter, theorems (4.24), (4.32) and
(4.33) are presented in section 4.3. In the last section we prove a variant
of theorems (4.24) and (4.33) in the context of fractional powers of the
Frobenius.

4.1. Pseudo-finite Fields

We recall in this section some facts about pseudo-finite fields from the
literature. All of them are well-known. The original references are [2], [13]
and [26]. The basic theory can also be found in [22]. Our proof of theorem
(4.2) is very easy as we use a very weak version of the Embedding Lemma
for PAC fields (see 4.4) and has the nice feature that it can be transported

27
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to other theories of fields that “resemble” pseudo-finite fields, see section
5.2. Also our proof applies when the Galois group is bounded rather than

Ẑ. The reason for this is that, regarding the Galois group, we use only the

fact that epimorphisms of Ẑ are already automorphisms, which holds more
generally for bounded profinite groups (see [62]). We work in the pure ring
language throughout this section.

Definition 4.1. A field k is called pseudo-finite if and only if it is perfect

PAC with Gal(k) = Ẑ. The theory1 of pseudo-finite fields is called PSF .

The following theorem, fundamental for the basic model theory of pseudo-
finite fields, is due to Ax (see [2]).

Theorem 4.2 (Ax). Let F1 and F2 be pseudo-finite fields with common
subfield E. Then F1 ≡E F2 if and only if Ealg ∩ F1

∼=E Ealg ∩ F2.

Proof of theorem (4.2). The implication from left to right follows from
the following lemma.

Lemma 4.3 (Ax). Let F1 and F2 be two algebraic extensions of the field
E. Then F1

∼=EF2 if and only if ∆(F1/E) = ∆(F2/E), where for a field
extension F/E, ∆(F/E) denotes the set {p ∈ E[X] | F |= ∃x p(x) = 0}.

Proof. See lemma 5 of [2]. 2

For the converse direction we use the following weak version of the Em-
bedding Lemma for PAC fields (for the Embedding lemma for PAC fields,
see for example [22], lemma (20.2.2)).

Lemma 4.4 (Embedding Lemma). Let Ω be a sufficiently saturated pseu-
do-finite field and E ⊂ Ω be a subfield with Ω/E regular. Let F/E be a
regular field extension. Assume F is perfect and the restriction maps of
absolute Galois groups resΩE : Gal(Ω) −→ Gal(E) and resFE : Gal(F ) −→
Gal(E) are isomorphisms. Then there is an E-embedding ϕ : F −→Ω such
that Ω/ϕ(F ) is regular.

Proof. We write F = E(ā) for an (infinite) tuple ā ∈ F . As Ω is
PAC and sufficiently saturated, there is some tuple ā′ ∈ Ω and an E-
isomorphism ϕ : F = E(ā)−→E(ā′) ⊂ Ω. Denote K = E(ā′). Being
an isomorphic image of F , K is perfect and hence the extension Ω/K is
separable. The restriction maps resΩE and resKE being isomorphisms, it follows
that resΩK = (resKE )−1 ◦ resΩE is surjective. So Ω/ϕ(F ) is regular. 2

Now to prove the implication from right to left of theorem (4.2), let
Ealg ∩ F1

∼=E Ealg ∩ F2. We may identify Ealg ∩ F1 and Ealg ∩ F2, and so
assume that E is relatively (field-) algebraically closed in F1 and F2. So
the field extensions F1/E and F2/E are regular because E is perfect. It will
be enough to prove the next claim and apply back-and-forth.

1It is well-known, and modulo (1.15) not hard to see, that these properties are indeed
first-order.
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Claim: If Ω2 is a sufficiently saturated elementary extension of F2, then
there is an E-embedding ϕ : F1 −→Ω2 such that the extension Ω2/ϕ(F1) is
regular.

Proof of the claim. Note that Gal(E) is procyclic but need not be Ẑ, so
we have to work a little in order to apply the Embedding Lemma (4.4).

Ω2/F2 is a regular extension, because on the one hand F2 is perfect,
so that the extension is separable, on the other hand the extension is ele-
mentary, so that F2 is relatively algebraically closed in Ω2. So Ω2/E is
regular, too. Therefore, replacing F1 by an E-isomorphic copy if necessary,
we may assume that F1 and Ω2 are linearly disjoint over E. Choose
topological generators σ1 and σ2 of Gal(F1) and Gal(Ω2) respectively, which
extend the same topological generator of Gal(E). This is possible because
the absolute Galois groups are procyclic and the respective restriction maps
are surjective. Then σ2|F alg

2
generates Gal(F2). As F1 and Ω2 are linearly

disjoint over E, F1 and F2 are so over E. Thus F alg
1 and F alg

2 are linearly

disjoint over Ealg, and there is a unique automorphism τ of F alg
1 F alg

2 (which
is over F1F2) extending both σ1 and σ2|F alg

2
. Lift τ to an automorphism

of (F1F2)
alg, which we also denote by τ , and let L = Fix((F1F2)

alg, τ) be
the fixed field of τ inside (F1F2)

alg. Then L is perfect and τ generates
Gal(L). By the choice of τ and and because F1 and F2 are perfect, the field
extensions L/F1 and L/F2 are regular and the respective restriction maps
of absolute Galois groups are isomorphisms. So by lemma (4.4) there is an
F2-embedding ϕ of L into Ω2 such that Ω2/ϕ(L) is regular. L/F1 being
regular it follows that Ω2/ϕ(F1) is a regular extension, too. This proves the
claim.

Applying a back-and-forth argument, the proof of the theorem is com-
plete. 2

Corollary 4.5 (Ax, Chatzidakis - van den Dries - Macintyre). Let F1

and F2 be pseudo-finite fields.

(1) F1 ≡ F2 if and only if abs(F1)∼= abs(F2).
(2) Let further E be a common subfield and ā ∈ F1 and b̄ ∈ F2 be tuples

(of the same length). Then tpF1
(ā/E) = tpF2

(b̄/E) if and only if
there is an E-isomorphism

E(ā)alg ∩ F1
ϕ−−−→ E(b̄)alg ∩ F2

with ϕ(ā) = b̄.
(3) If E ⊆ F are pseudo-finite, then E 4 F iff Ealg ∩ F = E iff F/E

is regular.
(4) If A is a subset of the pseudo-finite field F , then the model theoretic

algebraic closure of A is acl(A) = Fp(A)alg ∩ F .

Proof. (1) and (2) are special instances of theorem (4.2). So is (3)
in view of the fact that if K is a perfect field and relatively algebraically
closed in a field extension F , then F/K is regular. (4) is proved using
the following standard argument, which we repeat for convenience. Assume
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some saturation of F and denote K = Fp(A)alg ∩ F . If x̄ ∈ F is a finite

tuple with x̄ /∈ K, the field L = K(x̄)alg ∩ F is a regular extension of K
because F/K is. For any n ∈ N let L1, . . . , Ln be K-isomorphic copies of L
that are pairwise linearly disjoint over K, and consider the field compositum
Ln = L1 . . . Ln of the Li. Ln is a regular extension of K, so as F is PAC
and enough saturated, we can assume that Ln is a subfield of F . The Li are
K-isomorphic to L, so letting x̄i be the K-isomorphic images of x̄ in Li, we
conclude by 2. that tp(x̄/K) is not algebraic. 2

Note that if E 4 F are pseudo-finite fields, then as the absolute Galois

groups of both is Ẑ, it follows that EalgF = F alg.

If K is a pseudo-finite field, then the absolute Galois group of abs(K)
is procyclic because K/abs(K) is regular (and hence the restriction map
Gal(K)−→Gal(abs(K)) of Galois groups is surjective). Using the Ceb-
otarev Density Theorem and the Lang-Weil Theorem, Ax shows in [2] that

conversely to any k ⊂ F
alg
p with procyclic absolute Galois group there is

some pseudo-finite field F with abs(F ) = k. (Of course if p > 0, then any

field k ⊂ F
alg
p has this property.) Let us mention that this can be seen using

only basic properties of the theory ACFA (see section 4.2): Given k ⊂ F
alg
p

as above, choose a topological generator τ of Gal(k). The difference field

(Falg
p , τ), whose fixed field is k by choice, embeds into some model (Ω, σ) of

ACFA. Its fixed field F is pseudo-finite and has absolute part k because
σ|

F
alg
p

= τ . We summarise this in the following proposition.

Proposition 4.6 (Ax). The completions of PSF are in one-to-one cor-

respondence with the subfields of F
alg
p (with p varying, and F0 = Q) whose

absolute Galois group is procyclic.

The next theorem was proved by Ax in [2]. Together with the failure
of Zil’ber’s conjecture it motivated the model theoretic study of generic
difference fields.

Theorem 4.7 (Ax). A field K is pseudo-finite if and only if it is ele-
mentarily equivalent to some non-principal ultraproduct of finite fields. If
the characteristic of K is zero one may take a non-principal ultraproduct of
the prime fields Fp, where p runs over the prime numbers, if the character-
istic of K is p > 0 one may take a non-principal ultraproduct of the fields
Fpn, where n ∈ N>0.

The proof of theorem (4.7) relies on the Cebotarev Density Theorem, as
well as on the Theorem of Lang-Weil. Hrushovski succeeded in generalising it
to difference fields, a proof of which we have included in section 4.2.1 (modulo
Hrushovski’s analogue of the Lang-Weil Theorem for difference fields).

Our short exposition on pseudo-finite fields has to stay far from being
complete. Among the numerous interesting facts on them we do not mention
the dimension- and measure-theoretic properties of definable sets which were
discovered in [13]. Also, pseudo-finite fields are archetypical examples of
supersimple fields. Supersimplicity of pseudo-finite fields has been shown by
Hrushovski in [26]. We do not include Hrushovski’s original proof of this
result here, because supersimplicity can also be derived from supersimplicity
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of ACFA and the fact that any pseudo-finite field embeds elementarily into
the fixed field of some model of ACFA (see proposition (4.16)).

4.2. Generic Difference Fields

Recall that a difference field is a field K with a distinguished endo-
morphism σ. This section recalls some of the basic theory of existentially
closed difference fields from the literature, and fixes notation concerning
difference fields. There is numerous literature on ACFA. Our exposition
owes much the lecture notes on ACFA of Chatzidakis [10]. Other refer-
ences are of course [39], [14], [15] and [11], to mention only a few. Also,
we have included a proof of Hrushovski’s theorem on ultraproducts of dif-

ference fields (Falg
p , φq), modulo his analogue of the Lang-Weil Theorem for

difference fields. As our main goal is the proof of theorems (4.24), (4.32)
and (4.33) in the next section, we cannot aim for a complete overview of the
known results about the theory of difference fields, but provide the reader
with background material in order to appreciate the next section.

A difference field (K,σ) is called generic if it is existentially closed among
difference fields. As we are in fields, this is equivalent to any finite system
of difference equations

f1(X̄) = · · · = fr(X̄) = 0

with coefficients from K having a solution in some difference field extension
of (K,σ) has a solution in (K,σ). Newly the term difference closed field is
used in the literature for what we call generic difference field. There is no
particular reason we stick to the term generic, and hope not to cause any
irritation by doing so.

We recall in this section some of the basic model theory of (generic)
difference fields from [39], [14] and [15]. The language we work in
is the natural language Lσ of difference fields, which is the ring language
L = {+,−, ·, 0, 1} augmented by a new unary function symbol σ for the
endomorphism. The class of generic difference fields is axiomatisable in the
language Lσ by the theory ACFA:

Definition 4.8. ACFA is the theory consisting of the following axiom
schemes describing properties of difference fields (K,σ).

(i) σ is an automorphism of K,

(ii) K is an algebraically closed field, and

(iii) for every affine variety U , and any variety V ⊆ U × Uσ projecting
generically onto U and Uσ, there is a tuple ā ∈ K such that
(a, σ(a)) ∈ V . Here, as usual, Uσ denotes the variety obtained by
applying σ to the defining equations of U .

Theorem 4.9 (Chatzidakis-Hrushovski). ACFA is model complete. Any
difference field embeds into some model of ACFA.

Proof. See [14], theorem (1.1). 2
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So ACFA is the model companion of the theory of difference fields.
We write aclσ for the model-theoretic algebraic closure in ACFA. There
is another closure in models of ACFA: if A is a subset of some model of
ACFA, we denote by clσ(A) the closure of A under σ and σ−1. One could
define clσ for arbitrary difference fields, but we use it only in models of
ACFA.

ACFA is not complete. Its completions are obtained by specifying the
characteristic and describing the action of σ on the algebraic closure of the
prime field. More generally, one has the following theorem.

Theorem 4.10 (Chatzidakis-Hrushovski). If (Ω1, σ1) and (Ω2, σ2) are
models of ACFA with common subdifference field (E, σ), then

(Ω1, σ1) ≡E (Ω2, σ2) iff (Ealg, σ1|Ealg) ∼=E (Ealg, σ2|Ealg) .

Proof. See [14], theorem (1.3). 2

If ā is a tuple from a model of ACFA in which (K,σ) is contained as a
subdifference field (with K algebraically closed), then (obviously) Iσ(ā/K)
describes the quantifier-free type of ā over K. From the previous theorem,
one obtains an algebraic description of the types, as well of the model-
theoretic algebraic closure in ACFA.

Corollary 4.11 (Chatzidakis-Hrushovski). Let (Ω1, σ1) and (Ω2, σ2)
be models of ACFA with common subdifference field (E, σ). Then

(1) (Ω1, σ1) ≡ (Ω2, σ2) iff (Falg
p , σ1)∼= (Falg

p , σ2) iff there is τ ∈ Gal(Fp)

with σ1τ = τσ2 on F
alg
p .

(2) tp(Ω1,σ1)(ā/E) = tp(Ω2,σ2)(b̄/E) iff there is an E-isomorphism of
difference fields

(E(ā)algσ , σ1)
ϕ−−−→ (E(b̄)algσ , σ2)

with ϕ(ā) = b̄.
(3) If A is a subfield of (Ω1, σ1), then the model-theoretic algebraic

closure of A is aclσ(A) = (clσ(A))alg.

Proof. (1) and (2) are just instances of theorem (4.10). For a proof of
(3), we refer to proposition (1.7) of [14]. 2

Recall that an element a in a model (Ω, σ) of ACFA is called transfor-
mally algebraic over some subdifference field K if Iσ(a/K) 6= 0. A tuple
ā is called transformally algebraic if all its elements are. A finite tuple
is transformally algebraic if and only if there is some n ∈ N such that
aclσ(K, ā) = K(ā, . . . , σn(ā))alg. The following remark was proved in (1.1)
of [14].

Remark 4.12 (Chatzidakis-Hrushovski). For any model (Ω, σ) of ACFA
and any subset A of Ω, the elements of Ω that are transformally algebraic
over A form an elementary substructure of (Ω, σ).

Let (Ω, σ) be a generic difference field and X̄ = X1, . . . , Xn. For any
S ⊂ Ω[X̄]σ we let

Vσ(S) = { ā ∈ Ωn | f(ā) = 0 for all f ∈ S }
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and call sets of this form σ-algebraic or σ-closed subsets of Ωn. This defines
a topology on Ωn, which is called the σ-topology on Ωn. If (K,σ) is an
algebraically closed subdifference field of (Ω, σ) and S ⊂ K[X̄]σ, we say
that Vσ(S) is a σ-algebraic set over K. If V = Vσ(S) is over K and L is
subdifference field of Ω containing K, we write V (L) for the set of solutions
of S in Ln.

For any S, T ⊆ K[X̄]σ, one has Vσ(S) = Vσ((S)perf), and (S)perf ⊆
(T )perf if and only if Vσ(S) ⊇ Vσ(T ). If S is a perfect difference ideal,
then S = Iσ(Vσ(S)). As Ω[X̄]σ is Ritt, any perfect difference ideal is finitely
generated, so that Vσ(S) = Vσ(f1, . . . , fr) for suitable difference polynomials
fi ∈ Ω[X̄]σ (using elimination of imaginaries, discussed below, and (K,σ)
being an algebraically closed subdifference field of (Ω, σ), one can find the
fi’s inK[X̄]σ even). Hence σ-algebraic sets are definable, and the σ-topology
is noetherian. With the above description of types and aclσ, it follows by
compactness that modulo ACFA, any formula ϕ(x̄) is equivalent to a finite
disjunction of formulas of the form ∃y ψ(x̄, y), where ψ(x̄, y) is quantifier-free
and has the property that for any tuple (ā, b) realizing ψ in some difference
field, b is (field-) algebraic over ā, σ(ā), . . . , σn(ā) for some n ∈ N. In more
geometric words, this reads as follows: for any definable set D ⊆ Ωn there
is a σ-closed set W ⊆ Ωn+m such that D = π(W ), where π : Ωn+m−→Ωn

is the projection on the first n coordinates and such that π is finite-to-one
on W .

We will use the term difference variety over K for a a non-empty σ-
algebraic subset V of some sufficiently saturated model of ACFA, if V
is over the algebraically closed difference field K and its vanishing ideal
Iσ(V/K) in K[X̄]σ is prime. In this case, K[V ]σ := K[X̄]σ/Iσ(V ) resp.
K(V )σ := Quot(K[V ]σ), both together with their canonical endomorphisms,
are called the difference coordinate ring resp. the difference rational function
field of V over K. These will be the only non-inversive difference rings
considered in this thesis.

Let A,B and C be subsets of some model (Ω, σ) of ACFA. A and B are
called independent over C if aclσ(AC) and aclσ(BC) are linearly disjoint
over aclσ(C). Clearly this notion of independence is invariant under auto-
morphisms, and satisfies Symmetry and Finite Character. It satisfies Tran-
sitivity as aclσ(A,B) = (aclσ(A)aclσ(B))alg for any sets A and B. That it
satisfies Extension is seen using the amalgamation property of algebraically
closed difference fields and model completeness of ACFA together with the-
orem (4.10). If ā is a finite tuple and C some parameter set (without loss a
subdifference field), then Iσ(ā/C) is a perfect difference ideal, hence finitely
generated because C[X̄]σ is Ritt. If C0 denotes the set of coefficients of
some finite set of generators of Iσ(ā/C), then ā is independent from C over
C0 by the description of aclσ and because the isomorphism type of C(ā)σ is
given by Iσ(ā/C). So by the following theorem, the notion of independence
defined above is the non-forking independence and ACFA is supersimple.

Theorem 4.13 (Independence Theorem; Chatzidakis-Hrushovski). Let
(Ω, σ) be a model of ACFA, enough saturated. Let E = aclσ(E) be an
algebraically closed subdifference field of (Ω, σ) and z̄1 and z̄2 be tuples of
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the same type over E in Ω. Let further ā and b̄ be tuples in Ω, independent
over E, such that z̄1 is independent from ā over E and z̄2 is independent from
b̄ over E. Then there is some tuple z̄ in Ω satisfying tp(z̄1/Eā)∪ tp(z̄2/Eb̄)
which is independent from āb̄ over E.

Proof. This is a special case of [14], theorem (1.9). 2

As a consequence of the Independence Theorem one obtains elimination
of imaginaries for every completion of ACFA.

Proposition 4.14 (Chatzidakis-Hrushovski). Any completion of ACFA
eliminates imaginaries.

Proof. See [14], theorem (1.10). 2

Recall that for any difference field (K,σ) we defined the fixed field of
(K,σ) to be

Fix(K,σ) = { a ∈ K | σ(a) = a } .
If m and n are integers with n 6= 0 such that σnφmp is an endomorphism ofK,
where φp denotes the Frobenius automorphism in characteristic p > 0 and
the identity otherwise, it has become a custom to call the fields Fix(K,σnφmp )
also fixed fields of (K,σ), and to refer to Fix(K,σ) as the fixed field of (K,σ).

Let for the moment L be an arbitrary first order language. Let M be an
L-structure and n ∈ N. Recall that a ∅-definable subset P of Mn is called
stably embedded in M if for any m and any set X ⊂Mmn which is definable
using parameters, X ∩ Pm is definable using parameters from P . We recall
the following lemma from [14].

Lemma 4.15 (Chatzidakis-Hrushovski). Let M be sufficiently saturated
and P ⊂ Mn be definable over ∅. Then P is stably embedded in M if and
only if any automorphism of P ind lifts to an automorphism of M . Here P ind

denotes P with its induced structure from M , i.e. the ∅-definable subsets of
Pm are those of the form Pm ∩X for ∅-definable X ⊂Mmn.

Proof. See lemma 1 of the appendix of [14]. 2

We now come back to difference fields:

Proposition 4.16 (Chatzidakis-Hrushovski-Peterzil).
(1) Let (Ω, σ) be a model of ACFA. Then for all integers m and n

(with n 6= 0) the fixed fields F = Fix(Ω, σnφmp ) are pseudo-finite fields, and

are stably embedded in (Ω, σ). If n = 1, then any subset of F k that is
definable in (Ω, σ) using parameters is definable in the pure field F , maybe
with parameters from F .

(2) If F is a pseudo-finite field, then there is some model (Ω, σ) of ACFA
such that Fix(Ω, σ) ≡ F .

Proof. (1) is proposition (7.1) of [15]. (2) is folklore, but we give a
possible proof. Let K be a pseudo-finite field and choose a (topological)
generator of its absolute Galois group, say τ . Obviously K = Fix(Kalg, τ).
By model completeness of ACFA the difference field (Kalg, τ) embeds into
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some model (Ω, σ) of ACFA. Identifying (Kalg, τ) with its image, one has
σ|Kalg = τ and so Fix(Ω, σ) is a regular extension of K. Then corollary
(4.5.3) (which is proposition (20.10.2) of [22]) implies that the extension
Fix(Ω, σ)/K is elementary. 2

The following easy remark will prove useful later on, so we state it ex-
plicitly. The second reason to do so is that it will be crucial in chapter 5,
where it will be suitably generalised.

Remark 4.17. Let (Ω, σ) be a sufficiently saturated model of ACFA and
k 4 Fix(Ω, σ). Then any field automorphism α of Fix(Ω, σ) over k lifts to
an automorphism of (Ω, σ).

Proof. Denote F = Fix(Ω, σ) and let α be a (field-) automorphism of
F over k. As F is a regular extension of k, there is a unique automorphism
ᾱ of kalgF lifting α and the identity on kalg by lemma (1.18). ᾱ commutes
with σ, so as kalgF = F alg = aclσ(F ), it is elementary in the sense of ACFA
by proposition (4.10). Thus α is an automorphism of F ind. As F is stably
embedded in (Ω, σ) by proposition (4.16), lemma (4.15) implies that α lifts
to an automorphism of (Ω, σ). 2

We briefly recall the induced structure from models of ACFA on the
fixed field from [14], to which we refer for more details and proofs. Let
(Ω, σ) be a model of ACFA and denote F = Fix(Ω, σ). For n > 1, let
Sn be the imaginary sort whose elements are the isomorphism types over
F of difference fields (L, τ), where L is an extension of F of degree n and
τ ∈ Gal(L/F ). More precisely, if L is an extension of F of degree n and
τ ∈ Gal(L/F ), then by a standard argument there is some finite parameter
tuple c̄ ∈ F of length 2n such that the difference field (L, τ) is interpretable
in the pure field F using c̄. Each element e ∈ Sn corresponds to the definable
subset of F 2n coding the corresponding difference field (L, τ). As Gal(L/F )
is abelian, it follows that Sn has precisely n elements.

Proposition 4.18 (Chatzidakis-Hrushovski). Let (Ω, σ) be a model of
ACFA and F = Fix(Ω, σ). Then the induced structure on F from (Ω, σ) is
precisely the field structure together with distinguished constants ej,n ∈ Sn,
for n > 1 and 0 ≤ j < n, where ej,n codes the isomorphism type over F of

the difference field (Fix(Ω, σn), σjFix(Ω,σn)).

Proof. See [14], proposition A of (1.13). 2

4.2.1. Ultraproducts of Frobenii. Hrushovski proved the generali-
sation of Ax’ theorem (4.7) for difference fields in [28], see theorem (4.19).
In this paragraph, we present a possible proof of Hrushovski’s theorem,
modulo his analogue for difference fields of the Lang-Weil theorem (1.16)
(see theorem (4.21) below). It is needless to say that the results in this
paragraph are not original to the present author. The proof that theorem
(4.21) implies that any non-principal ultraproduct of the difference fields

(Falg
p , φq) is a model of ACFA is taken from [10].
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Theorem 4.19 (Hrushovski). Let (K,σ) be a difference field. Then
(K,σ) is a model of ACFA if and only if there is some non-principal ultra-

product (R, σR) of difference fields (Falg
p , φq) such that (K,σ) ≡ (R, σR). If

the characteristic of K is zero one may take a non-principal ultraproduct

of difference fields (Falg
p , φp), where p runs over the prime numbers. If the

characteristic of K is p > 0 one may take a non-principal ultraproduct of

the fields (Falg
p , φpn), where n ∈ N>0.

Note first that this theorem implies Ax’ theorem (4.7). Indeed, the fixed

field of an ultraproduct
∏

(Falg
p , φq)/U is isomorphic to the ultraproduct∏

Fix(Falg
p , φq)/U . So any non-principal ultraproduct of finite fields is a

pseudo-finite field by proposition (4.16). Furthermore, given a pseudo-finite
field K, the above theorem and proposition (4.16) imply there is some non-
principal ultraproduct of finite fields that is elementarily equivalent to F .

That any non-principal ultraproduct of the difference fields (Falg
p , φq) is a

model of ACFA relies on two ingredients, the first one being the observation
that the axioms of ACFA can be weakened as follows.

Proposition 4.20. Let (K,σ) be an algebraically closed difference field.
Then (K,σ) is a model of ACFA if and only if:

For every affine variety U , and any variety V ⊆ U × Uσ with
dim(U) = dim(V ) projecting generically onto U and Uσ, there
is some tuple ā ∈ K such that (ā, σ(ā)) ∈ V .

Proof. The proof of the proposition is sketched in [10]. For convenience
we give it here. The implication from left to right is clear. For the converse
let (K,σ) be an algebraically closed difference field with the above property.
It is contained in some model (Ω, σ) of ACFA, and we are going to show that
(K,σ) is a model of ACFA, too. So let U and V be varieties over K such
that V ⊆ U × Uσ and V projects generically onto U and Uσ respectively.
By remark (4.12) there is some tuple ā ∈ Ω with (ā, σ(ā)) ∈ V and which is
transformally algebraic over K. In particular there is some n ∈ N such that

σn+1(ā) ∈ K(ā, σ(ā), . . . , σn(ā))alg .

Now consider the varieties U ′ and V ′ over K whose generic points are

(ā, . . . , σn(ā)) and (ā, . . . , σn(ā);σ(ā), . . . , σn+1(ā)))

respectively. U ′ and V ′ have the same dimension because σn+1(ā) is (field-)
algebraic over K, ā, . . . , σn(ā), and clearly V ′ ⊆ U ′ × U ′σ. Furthermore,
by the very choice of U ′ and V ′, V ′ projects generically onto U ′ and U ′σ

respectively. So by assumption there is some tuple b̄ = b̄1, . . . , b̄n ∈ K such
that (b̄, σ(b̄)) ∈ V ′. But then (b̄1, σ(b̄1)) ∈ V because (ā, σ(ā)) ∈ V , and we
are done. 2

The second ingredient for the proof of theorem (4.19) is the famous
analogue of the Lang-Weil estimates for difference fields due to Hrushovski,
which he proves in [28]. Our formulation is taken from [10].
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Theorem 4.21 (Hrushovski). Let f1(X̄, Z̄), . . . , fn(X̄, Z̄) and
g1(X̄, Ȳ , Z̄), . . . , gm(X̄, Ȳ , Z̄) be polynomials over Z. Then there is some
positive constant C such that for all prime number p and power q of p and

all tuples ā ∈ F
alg
p , if the equations f1(X̄, ā) = · · · = fn(X̄, ā) = 0 and

g1(X̄, Ȳ , ā) = · · · = gm(X̄, Ȳ , ā) = 0 define algebraic varieties U and V over

F
alg
p satisfying the requirements of the above proposition (4.20), then

∣∣ |{ā ∈ Falg
p : (ā, φq(ā)) ∈ V }| − cqd

∣∣ ≤ Cqd−1/2 .

Here d = dim(U) = dim(V ) and c = [Falg
p (V ) : F

alg
p (U)]/[Falg

p (V ) : F
alg
p (Uσ)]ins.

That this generalises the Lang-Weil theorem (1.16) is seen as follows: if
W is a variety over Fq, then one takes U = W and V the diagonal of U ×U .

Now let (K, σ) be any non-principal ultraproduct of difference fields

(Falg
p , φq). Given any (affine) varieties U and V with V ⊆ U × Uσ and

dim(U) = dim(V ) such that V projects generically onto U and Uσ, it follows

from the above theorem that for ultrafilter-many (Falg
p , φq) there is some ā ∈

F
alg
p such that (ā, σ(ā)) ∈ V . So (K, σ) is a model of ACFA by proposition

(4.20).

For the other direction, we subdivide into two cases, the case of char-
acteristic zero and of positive characteristic. Let us start with the positive
characteristic case.

Proof of theorem (4.19) for positive characteristic. Let (K,σ) be a model
of ACFA of characteristic p > 0. We are going to “construct” a non-
principal ultrafilter U on the naturals N such that

∏

n∈N

(Falg
p , φpn)/U ≡ (K,σ) .

Let (νn)n∈N be a sequence of natural numbers such that σ|Fpn = φνn
p for

every n ∈ N. For any n ∈ N we let

bn = {m ∈ N | m = νn mod n} .
Then clearly m ∈ bn iff φmp = σ|Fpn . We content that

V = {bn | n ∈ N } ∪ Cofin(N)

has the finite intersection property. Indeed, any bn is infinite, and if k
denotes the greatest common divisor of the naturals n1 and n2, then by the
choice of the νi we have bk ⊆ bn1 ∩ bn2 .

Let U be an ultrafilter containing V and (K, τ) be the difference field∏
n∈N

(Falg
p , φpn)/U . As (Fpn , σ|Fpn ) ⊂ (Falg

p , φνp) for any ν ∈ bn, it follows

that (Fpn , σ|Fpn ) ⊂ (Falg
p , φνp) for U-many ν. Thus σ|

F
alg
p

= τ |
F
alg
p

, and hence

(K,σ) ≡ (K, τ) by corollary (4.11.1). 2

The proof in the characteristic zero case will require the Cebotarev Den-
sity Theorem, which we briefly recall for convenience from [22]. We treat
the number field case only, the function field case working alike (consult
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[22]). In fact for the proof below it would suffice to consider only finite
Galois extensions of Q rather than of number fields.

Cebotarev Density Theorem. Let p be a prime ideal of a number
field K. We write Op for the valuation ring and K(p) for the residue field
corresponding to p. Assume that p is unramified in a finite Galois extension
L/K. For an extension P of p to L we denote by D(L/K,P) the decompo-
sition group of P, which is the subgroup of Gal(L/K) of all α ∈ Gal(L/K)
with α(P) = P. As p is unramified in L/K, the canonical endomorphism

ΦP : D(L/K,P) −→ Gal(L(P)/K(p))

defined by ΦP(σ)(ā) = σ(a) for a ∈ OP, is an isomorphism. Now K(p) is a
finite field, say with pr elements. So φrp is a generator Gal(L(P)/K(p)). The
preimage in D(L/K,P) under ΦP of this generator is called the Frobenius

automorphism of P in L/K. We denote it by Fr
L/K
P or simply FrP if there is

no danger of ambiguity. As P ranges over its conjugates τP under Gal(L/K)
(so over all extensions of p in L/K), FrP ranges over all its conjugates
τFrPτ

−1 under Gal(L/K). In this manner p determines a conjugacy class

in Gal(L/K), which is written
(
L/K

p

)
and called the Artin-symbol of p in

L/K. It is tacit to this symbol that p is unramified in L/K. Finally, the
Dirichlet density of a set A of primes in K is defined to be

δ(A) = lim
s→1+

∑
p∈A Np−s

∑
p∈P(K) Np−s

if this limit exists, where P(K) denotes the set of primes in K and Np the
number of elements of K(p) (called the absolute norm of p). The fact we
need about the Dirichlet density is that if A is a finite set, then δ(A) = 0.

Theorem 4.22 (Cebotarev). Let L/K be a finite Galois extension of
global fields and σ ∈ Gal(L/K). Then the Dirichlet density of PL/K(σ)
exists and equals |C|/|Gal(L/K)|, where C is the conjugacy class of σ in
Gal(L/K).

Here PL/K(σ) is the set of primes p with σ ∈
(
L/K

p

)
. The consequence

of the Cebotarev Density Theorem we are after is that under the assumption
of the theorem the set PL/K(σ) is infinite.

Proof of Theorem 4.19 for characteristic zero. Let (K,σ) be a model of
ACFA of characteristic zero. We will “construct” an ultrafilter U on the
set P(Q) of primes in Q such that

∏

p∈P(Q)

(Falg
p , φp)/U ≡ (K,σ) .

First note that for a finite Galois extension L/Q and any automorphism
β ∈ Gal(L/Q) it is an elementary property of β (strictly speaking of the
difference field (L, β)) to be in a given conjugacy class C of Gal(L/Q). In-
deed, any two automorphisms of L are conjugate in Gal(L/Q) if and only
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if the corresponding difference fields are isomorphic. Now choose a primi-
tive element α of L/Q and let n be the degree of L/Q. Then the action
of β on L is determined by its action on α, which can be expressed in Lσ.
Thus the isomorphism type of the difference field (L, β) is described by the
Lσ-sentence

∃x p(x) = 0 ∧ σ(x) =
n−1∑

ν=0

aνx
ν ,

where p(X) is the minimal polynomial of α over Q and aν ∈ Q are chosen
appropriately. Note aside that the two above equations generate the vanish-
ing difference ideal of α over Q, which in turn determines the isomorphism
type of the difference field structure on L. All parameters are in Q, so
multiplying by the common denominator of the parameters, we obtain an
Lσ-sentence without parameters, which we denote ψp,C or ψp if it is clear
which conjugacy class is meant.

Now we write Qalg as an ascending union Qalg =
⋃
ν∈N

Q(αν) of finite

Galois extensions Q(αν) of Q with αν algebraic integers. For each ν we
fix some fν(X) ∈ Z[X] of minimal degree with fν(αν) = 0 and let ψν be
the Lσ-sentence introduced above for p = fν and C the conjugacy class of
σ|Q(αν) in Gal(Q(αν)/Q). We define

a(fν) :=
{
p ∈ P(Q)

∣∣∣ σ|Q(αν) ∈
(Q(αν)/Q

p

)}

and content that

V =
{
a(fν)

∣∣ ν ∈ N
}
∪ Cofin(P(Q))

has the finite intersection property, where Cofin(P(Q)) denotes the Frechet
filter on P(Q). Indeed, a(fν) ⊆ a(fµ) whenever µ ≤ ν and as a(fν) =
PQ(αν)/Q(σ|Q(αν)) for all ν, each of the a(fν) is infinite by the Cebotarev
Density Theorem.

Now choose any ultrafilter U containing V. We claim that the ultrapro-
duct

(K, τ) =
∏

p∈P(Q)

(Falg
p , φp)/U

is elementarily equivalent to (K,σ). To see this, consider one of the exten-
sions Q(αν)/Q and let p ∈ a(fν). Then p is unramified in Q(αν)/Q, and if
P extends p to Q(αν), then FrP is conjugate to σ. Thus

(Q(αν),FrP) |= ψν ,

which implies that in (Q(αν),FrP) the equation

mFrP(αν) =
∑

aiα
i
ν

holds, with m and the ai being the integers given by ψν . As we have chosen
αν to be an algebraic integer and because ΦP(FrP) = φp, we may take
residues modulo P and conclude that

m̄ φp(αν) =
∑

ai αν
i
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is true in the difference field
(
Q(αν)(P), φp

)
, which is of course a sub-

difference field of (Falg
p , φp). This shows that (Falg

p , φp) |= ψν for U-many
p ∈ P(Q), so

(K, τ) |= ψν .

We have shown that for all ν there are automorphisms ϕ of Q(αν) such
that σ|Q(αν) = ϕ−1 ◦ τ |Q(αν) ◦ ϕ. Of course there are only finitely many
because Q(αν) is a finite extension of Q. Ordering all these automorphisms
by inclusion we obtain a countable tree that is finitely branched. So there
is an infinite branch by König’s lemma. The union over such a branch is
an automorphism ϕ ∈ Aut(Qalg) with the property that ϕσ|Qalg = τ |Qalg ϕ.
Hence (K, τ) ≡ (K,σ) by corollary (4.11.1). 2

We end this section with the following remark from [28].

Remark 4.23 (Hrushovski). Let (Ω, σ) be a model of ACFA of charac-
teristic zero. Then Ω has infinite transcendence degree. In positive charac-

teristic, there are2 σ ∈ Gal(Fp) such that (Falg
p , σ) |= ACFA.

Proof. See section (13.3) of [28]. 2

4.3. Prescribed Fixed Fields

As we have seen in proposition (4.16) (which is proposition (7.1) of [15]),
if k is a pseudo-finite field, then there is some model of ACFA whose fixed
field is elementarily equivalent to k. The main result of the present chapter
is the following theorem, stating that this elementary equivalence can be
strengthened to identity.

Theorem 4.24. Any difference field whose fixed field k is pseudo-finite
embeds into a model (Ω, σ) of ACFA such that Fix(Ω, σ) = k.

Notice that by our convention any difference field is inversive. However,
the theorem applies to non-inversive difference fields as well, as passing to
the inversive closure does not change the fixed field (see section 1.4).

While in positive characteristic there are automorphisms σ of the alge-

braic closure F
alg
p of the prime field such that (Falg

p , σ) is a model of ACFA,
any model of ACFA in characteristic zero has infinite transcendence degree,
see remark (4.23). However there is an abundance of pseudo-finite subfields
of Qalg (combine the Free Generators Theorem (18.5.6) from [22] and the
PAC-Nullstellensatz (18.6.1) from [22]), and by our theorem any of them
is the fixed field of a model of ACFA.

From the algebro-geometric point of view, the main ingredient in the
proof of theorem (4.24) is corollary (4.28), stating that over an algebraically
closed difference field (F, σ) whose fixed field k is pseudo-finite, every prime
difference ideal admits a specialisation whose difference rational function
field has fixed field k. In particular every maximal difference ideal over
(F, σ) (resp. “closed point” on the difference variety) has this property.

2in fact Hrushovski shows in [28] that the set of σ ∈ Gal(Fp) with (Falg
p , σ) |= ACFA

is co-meager (with respect to the profinite topology on Gal(Fp)).
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Given a difference field (F, σ) as in the statement of the theorem, we
will accomplish a standard chain construction to construct an existentially
closed difference field extension of (F, σ) having fixed field k. The first step
is to reduce to algebraically closed difference fields (corollary (4.26)).

Lemma 4.25. Any difference field (F, σ) whose fixed field k has procyclic
absolute Galois group admits an extension (F sep, σ̄) such that

Fix(F sep, σ̄) = k .

Proof. Let L = F ∩ ksep be the elements of F separably algebraic over
k. Since k has procyclic absolute Galois group, any element x ∈ L, which
generates the unique (in ksep) algebraic extension of k of degree [k[x] : k], is
mapped into L by all automorphisms of ksep over k. Therefore L is invariant
under Gal(ksep/k). As σ transforms algebraic elements into algebraic ones,
it restricts to an automorphism of L with fixed field k. Thus L/k is Galois
and σ|L generates Gal(L/k).

Now σ|L extends to a topological generator τ of Gal(ksep/k) because
Gal(ksep/k) is procyclic and res : Gal(ksep/k) → Gal(L/k) is surjective.

Of course ksep/L is a Galois extension and thus by choice of L, F and
ksep are linearly disjoint over L. So as σ and τ agree on L we can find
a (unique) automorphism of Fksep extending σ and τ . We lift it to an
automorphism σ̄ ∈ Aut(F sep) and claim that Fix(F sep, σ̄) = Fix(F, σ) = k.
To see this, note first that Fix(F sep, σ) ⊂ Fix(F, σ)sep. Indeed, let p ∈ F [X]
be the minimal polynomial of some x ∈ Fix(F sep, σ̄). Because σ̄(x) = x,
one calculates that3 pσ(x) = pσ(σ̄(x)) = σ̄(p(x)) = 0, which implies p = pσ

and thus that all coefficients of p are contained in Fix(F, σ). Thus x ∈ ksep.
Finally, as τ is a (topological) generator of Gal(ksep/k), it follows that x ∈ k.

2

Corollary 4.26. Any difference field (F, σ) whose fixed field k is pseudo-
finite admits an extension (F alg, σ̄) such that

Fix(F alg, σ̄) = k .

Proof. If (F, σ) is separably closed, then σ lifts uniquely to an automor-
phism σ̄ of F alg. One has that Fix(F alg, σ̄) = Fix(F, σ)perf . 2

The second step is to find to a given system of difference equations over
F (in finitely many variables) a solution in a difference field extension which
“does not increase the fixed field” (corollary (4.28)).

Lemma 4.27. Let (F, σ) be an algebraically closed difference field with
pseudo-finite fixed field k. If V is a difference variety over F and there are
f, g ∈ F [V ]σ, g 6= 0, with σ(fg ) = f

g , then there is λ ∈ k such that

V ∩ Vσ( f(X̄) − λg(X̄) ) 6= ∅ .
Here f(X̄) and g(X̄) denote representatives of f and g in F [X̄]σ.

3pσ denotes the polynomial obtained by applying σ to the coefficients of p.
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Proof. The difference variety V is a definable subset of some sufficiently
saturated model (Ω, σ) of ACFA. Let us consider the formula with para-
meters from F

ϕ(z) = ∃x̄ x̄ ∈ V ∧ f(x̄) − z g(x̄) = 0 ∧ σ(z) = z ,

which defines a subsetX of Fix(Ω, σ). X is non-empty because we can embed
the integral domain F [V ]σ over F into (Ω, σ), and denoting the images of f
and g under this embedding by a and b, our assumption implies that a

b ∈ X.

As X is a subset of Fix(Ω, σ) and as F is dclσ-closed, the canonical
parameter of X is in k = F ∩ Fix(Ω, σ). By proposition (4.16) (which is
proposition (7.1) of [15]), X is definable in the pure field Fix(Ω, σ). As any
field automorphism of Fix(Ω, σ) over k lifts to an automorphism of (Ω, σ)
(remark (4.17)) it follows that X is definable in Fix(Ω, σ) using parameters
from k.

Now F is algebraically closed by assumption, so Fix(Ω, σ) is a regular
extension of k. Both k and Fix(Ω, σ) being pseudo-finite, Fix(Ω, σ) is an
elementary extension of k. And because X 6= ∅, we conclude that there is
some element in k satisfying ϕ. 2

Recall that if ℘ is a prime difference ideal in a difference ring (R, σ) then
a difference specialisation of ℘ is a prime difference ideal ℘′ in (R, σ) that
contains ℘. By definition ℘′ is not the unit ideal.

Corollary 4.28. If (F, σ) is an algebraically closed difference field with
pseudo-finite fixed field k and ℘ is a prime difference ideal over (F, σ), then
there is a difference specialisation ℘′ of ℘ such that k is the fixed field of
Quot(F [X̄]σ/℘

′).

We will use corollary (4.28) in the form that under the above assump-
tions, Fix

(
Quot(F [X̄]σ/℘), σ

)
= k for all maximal prime difference ideals ℘

over (F, σ).

Proof. Choose a maximal prime difference ideal m containing ℘ and
let (F ′, σ′) denote the (non-inversive) difference field Quot(F [X̄]σ/m), as
always endowed with its canonical endomorphism. Then W := Vσ(m) is a
difference variety over F with difference rational function field (F ′, σ′). As
m is maximal, W is minimal over F : there is no non-empty σ-algebraic set
over F that is strictly contained in W .

Now if f
g ∈ F ′ is an element with σ′(fg ) = f

g , it follows by minimality

of W and lemma (4.27) that W ⊂ Vσ( f(X̄) − λg(X̄) ) for some λ ∈ k. So

f(X̄) − λg(X̄) ∈ m and therefore f
g = λ ∈ k. 2

Stated in other words, the content of corollary (4.28) is that there is
some (closed) difference subvariety of Vσ(℘) whose rational function field
has fixed field k.

Proposition 4.29. For any algebraically closed difference field (F, σ)
with pseudo-finite fixed field k and any non-empty σ-algebraic set V over F
there is an algebraically closed difference field extension (L, σ̄) of (F, σ) such
that V (L) 6= ∅ and Fix(L, σ̄) = k.
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Proof. As the σ-topology is noetherian, we may assume that V is irre-
ducible over F . Also, by (4.28), we may assume that F (V )σ has fixed field
k. Let (F ′, σ′) denote the inversive closure of F (V )σ. Given any difference
field (M, τ) and its inversive closure (M ′, τ ′), one has that Fix(M, τ) =
Fix(M ′, τ ′). So we conclude that Fix(F ′, σ′) = k.

Choosing any lift σ̄ of σ to L = F ′alg we see that Fix(L, σ̄) = k as
well. Indeed, this was already shown in the proof of lemma (4.25): for any
a ∈ Fix(L, σ̄), the minimal polynomial of a over F ′ is left fixed under σ.
After embedding (L, σ̄) over (F, σ) into a sufficiently saturated model of
ACFA, we have that V (L) 6= ∅ and Fix(L, σ̄) = k by construction. 2

Proof of 4.24. Let (F, σ) be a difference field with pseudo-finite fixed
field k. We are going to construct an existentially closed difference field
extension of (F, σ) having k as fixed field. Again by corollary (4.26) we may
assume that F = F alg.

By proposition (4.29) any consistent quantifier-free Lσ-formula with pa-
rameters from F can be realized in an algebraically closed difference field
extension (L, σ̄) of (F, σ) such that Fix(L, σ̄) = k. Now a standard chain ar-
gument gives an existentially closed difference field extension of (F, σ) with
fixed field k. 2

Corollary 4.30. Every pseudo-finite field k is isomorphic to the fixed
field of some model of ACFA.

Proof. Choose any generator σ of the absolute Galois group of k and
apply the theorem to the difference field (kalg, σ). 2

Remark 4.31. Note that the proof gives in fact many models of ACFA
having k as fixed field. Because Gal(k) is abelian, any two of its generators
σ give non-isomorphic difference fields (kalg, σ), which in turn give models
of ACFA not elementarily equivalent over kalg and having k as fixed field.

We end this section by giving some variants of theorem (4.24). In posi-
tive characteristic p, we have more fixed fields coming in via the Frobenius
automorphism φp. Let n ∈ Z and consider the fixed field Fix(Ω, σφnp ) of
the model (Ω, σ) of ACFA. Then all definable subsets of Fix(Ω, σφnp ) are
definable in the pure field Fix(Ω, σφnp ) (see (4.16), which is proposition (7.1)
from [15]). Our proof actually shows the following.

Theorem 4.32. Let (F, σ) be a difference field of characteristic p > 0
and n ∈ Z. Assume that σφnp is an endomorphism of F such that the fixed
field k = Fix(F, σφnp ) is pseudo-finite. Then (F, σ) embeds into some model
(Ω, σ) of ACFA such that Fix(Ω, σφnp ) = k.

Note that if n < 0, the condition that σφnp is an endomorphism of F
forces F to be perfect, as our difference fields are inversive.

Proof. We denote τ = σφnp . First we may assume that (F, τ) is inversive.
Then by theorem (4.24), (F, τ) extends to some model (Ω, τ) of ACFA
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whose fixed field is k. Putting σ̄ = τφ−np we obtain a model (Ω, σ̄) of ACFA
containing (F, σ) as a subdifference field, and with Fix(Ω, σ̄φnp ) = k. 2

We also obtain the following variant of Theorem (4.24), which has been
pointed out to us and proved independently by Zoé Chatzidakis (unpub-
lished).

Theorem 4.33. Let (F, σ) be an algebraically closed difference field of
positive characteristic p and Σ ⊆ Z be a set of integers such that for all
n ∈ Σ the fixed field Fix(F, σφnp ) is pseudo-finite. Then there is some model
(Ω, σ) of ACFA such that for all n ∈ Σ,

Fix(Ω, σφnp ) = Fix(F, σφnp ) .

Sketch of Proof of Theorem (4.33). Giving a strict proof would mean
repeating the above arguments almost literally. Instead we indicate how to
adjust the proof of theorem (4.24) to show the following statement. It is
the analogue of proposition (4.29) and so ensures that we can construct the
desired model of ACFA by the same chain argument as in (4.24):

For any algebraically closed difference field (F, σ) with kn = Fix(F, σφnp )
pseudo-finite for n ∈ Σ and any non-empty σ-algebraic set V over F there
is an algebraically closed difference field extension (L, σ̄) of (F, σ) such that
V (L) 6= ∅ and Fix(L, σ̄φnp ) = kn for all n ∈ Σ.

First we choose a maximal prime difference idealm over (F, σ) containing
Iσ(V ) and let W = Vσ(m). F (W )σ might be non-perfect. But if we show
that f ∈ kn for all f ∈ F (W )σ with σφnp (f) = f , then the same is true for the

elements of F (W )perf
σ because kn is perfect (and σφnp is a field automorphism

of F (W )perf
σ ). So let f, g ∈ F [W ]σ with g 6= 0 and σφnp (

f
g ) = f

g . If we

consider in lemma (4.27) the formula

ϕn(z) = ∃x̄ x̄ ∈ V ∧ f(x̄) − z g(x̄) = 0 ∧ σφnp (z) = z ,

then the proof of lemma (4.27) shows that

W ∩ Vσ( f(X̄) − λg(X̄) ) 6= ∅
for some λ ∈ kn. So by minimality of W it follows that Fix(F ′, σφnp ) = kn
for all n ∈ Σ, where F ′ denotes the perfect closure of F (W )σ. Finally, for
any lift σ̄ of σ to L := F ′alg one has that V (L) 6= ∅, and that σ̄φnp lifts σφnp .
So as in the proof of proposition (4.29) we conclude that Fix(L, σφnp ) = kn
for all n ∈ Σ. 2

4.4. Fractional Powers of the Frobenius

Let n,m ∈ Z with n 6= 0 and recall that φp denotes the Frobenius map
in positive characteristic p and the identity in characteristic zero. For a
difference field (K,σ), we write Fn,m(K) = Fix(K,σnφmp ) and denote by

(Fn,m(K), σ)

the difference field consisting of Fn,m(K) together with the restriction of the
automorphism of (K,σ). If (Ω, σ) is a model of ACFA then (Fn,m(Ω), σ)
is a subdifference field of (Ω, σ) whose underlying field is pseudo-finite (see
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proposition (4.16), which is proposition (7.1) from [15])). In view of theorem
(4.24) it is natural to ask whether given a difference field (k, σ) which is
elementarily equivalent to a difference field (Fn,m(Ω), σ), for some model
(Ω, σ) of ACFA, is there some model (K,σ) of ACFA such that (k, σ) =
(Fn,m(K), σ)?

The next theorem answers this question positively.

Theorem 4.34. Let (k, σ) be a difference field and n,m ∈ Z with n 6= 0.
If (k, σ) is elementarily equivalent to the difference field (Fn,m(Ω), σ), for
some model (Ω, σ) of ACFA, then there is some (K,σ) |= ACFA such that

(k, σ) = (Fn,m(K), σ) .

Note that if the characteristic is zero, then theorem (4.34) is already
covered by theorem (4.24), as the field Fix(k, σ) is definable in (k, σ) and k
is a finite extension of Fix(k, σ) of degree n (see also below).

The proof of theorem (4.34) will use the theory PSF(n,m,p), which Ryten
introduces in [63]. For coprime positive integers n,m with n > 1 and a prime
number p, PSF(n,m,p) axiomatises the class of those difference fields (F, σ)
for which there is some model (Ω, σ) of ACFA such that the difference
subfield Fix(Ω, σnφmp ) is elementarily equivalent to (F, σ). Actually we will
only need the results on PSF(n,m,p) stated below in fact (4.36), which we
cite from [63].

Definition 4.35. Let n,m be positive coprime integers with n > 1 and
p be a prime number. Then PSF(n,m,p) is the theory of difference fields
(F, σ) given by the following axioms:

(1) F is a pseudo-finite field of characteristic p.
(2) σ is an automorphism of F with σnφmp = id.
(3) Let U = U(x̄) be a variety over F and Uσ = U(ȳ), with x̄ = (xij |

1 ≤ i ≤ n, 1 ≤ j ≤ N) and ȳ = (yij | 1 ≤ i ≤ n, 1 ≤ j ≤ N).
Suppose V ⊆ U × Uσ is a variety over F containing the algebraic

sets V (yij − xi+1 j) and V (yp
m

nj − x1j). Further suppose that V
projects generically onto U and Uσ and suppose W is a proper F -
algebraic subset of V . Then there is some a ∈ V (F ) \W (F ) such
that a = bc with b ∈ U , b = (bij | 1 ≤ i ≤ n, 1 ≤ j ≤ N) and
c ∈ Uσ, c = (cij | 1 ≤ i ≤ n, 1 ≤ j ≤ N) and bij = σ(cij) for all
i, j.

(4) For any tower of finite extensions F ⊆ K ⊆ L with (K,σ) an
extension of (F, σ) such that (F, σ) = (Fn,m(K), σ) there is some
extension of σ to L such that (F, σ) = (Fn,m(L), σ).

Fact 4.36 (Ryten). Let n,m be positive coprime integers with n > 1
and p be a prime number.

(1) If (Ω, σ) is a model of ACFA of characteristic p, then (Fn,m(Ω), σ)
is a model of PSF(n,m,p).

(2) Let (F, σ) |= PSF(n,m,p). Then there is some model (Ω, σ) of
ACFA such that (F, σ) ≡ (Fn,m(Ω), σ).
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(3) Let (Ω, σ) be a model of ACFA. Then any subset X of a cartesian
power of Fn,m(Ω) which is definable in (Ω, σ) using parameters is
definable in the difference field (Fn,m(Ω), σ) using parameters from
Fn,m(Ω).

(4) Let (F, σ) |= PSF(n,m,p). Then there is some σ̄ ∈ Aut(F alg) such

that (F, σ) ⊂ (F alg, σ̄) and (Fn,m(F alg), σ̄) = (F, σ).

Proof. For a proof of (1) see lemma (3.3.5) of [63], for (2) see theorem
(3.3.15) of [63], (3) is lemma (3.3.22) of [63] and (4) is lemma (3.3.6) of
[63]. 2

Now in order to prove theorem (4.34), we will first prove the following
variant. Theorem (4.34) follows therefrom by fact (4.36.4).

Theorem 4.37. Let (F, σ) be an algebraically closed difference field of
positive characteristic p and D ⊂ N>1 × N≥1 such that (n,m) = 1 for all
(n,m) ∈ D. Assume that the difference field (Fn,m(F ), σ) is a model of
PSF(n,m,p) for all (n,m) ∈ D. Then (F, σ) extends to a model (Ω, σ) of
ACFA such that

(Fn,m(Ω), σ) = (Fn,m(F ), σ)

for all (n,m) ∈ D.

Proof of theorem (4.37). The idea of proof of theorem (4.24) works in
the present situation, and the precise proofs are (almost) literally the same.
However, for the convenience of the reader, we sketch the proofs most of the
times.

First, given a model (F, σ) of PSF(n,m,p), fact (4.36.4) allows us to pass

to some difference field extension (F alg, σ̄) without enlarging the difference
field (Fn,m(F ), σ). Second, we want to find a solution to a finite system of

difference equations over (F alg, σ̄) without increasing (Fn,m(F alg), σ̄). This
is done in the next two lemmata.

Lemma 4.38. Let (Ω, σ) be a model of ACFA and (k, σ) 4 (Fn,m(Ω), σ).
Let X be a subset of some cartesian power of Fn,m(Ω). If X is k-definable
in (Ω, σ) then it is k-definable in the difference field (Fn,m(Ω), σ).

Proof. We may assume that (Ω, σ) is sufficiently saturated. By fact
(4.36.3) X is definable in the difference field (Fn,m(Ω), σ) using parameters.

Let α be an automorphism of (Fn,m(Ω), σ) leaving k pointwise fixed. As
(k, σ) 4 (Fn,m(Ω), σ), the underlying field extension Fn,m(Ω)/k is elemen-
tary, and hence regular by corollary (4.5.3). So by lemma (1.18) we find an
automorphism α̃ of Fn,m(Ω)alg = Fn,m(Ω) · kalg extending both α and the

identity on kalg. Note that α̃|Fn,m(Ω) commutes with σ because of the choice

of α and α̃|kalg commutes with σ because α̃ is the identity on kalg. Thus
α̃ commutes with σ on Fn,m(Ω)alg. As Fn,m(Ω)alg is algebraically closed in
the sense of ACFA, it follows that α̃ is elementary in the sense of ACFA.
Hence α lifts to an automorphism of (Ω, σ) because (Fn,m(Ω), σ) is stably
embedded. This shows that X is k-definable in (Fn,m(Ω), σ). 2
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Lemma 4.39. Let (F, σ) be an algebraically closed difference field of char-
acteristic p > 0 and D ⊂ N>1×N≥1 such that (n,m) = 1 for all (n,m) ∈ D.
Assume that the difference field (Fn,m(F ), σ) is a model of PSF(n,m,p) for
all (n,m) ∈ D, and that V is a difference variety over F . If there are

(n,m) ∈ D and f, g ∈ F [V ]σ, g 6= 0, with σnφmp (fg ) = f
g , then there is

λ ∈ Fn,m(F ) such that

V ∩ Vσ( f(X̄) − λg(X̄) ) 6= ∅ .

Here f(X̄) and g(X̄) denote representatives of f and g in F [X̄]σ.

Sketch of Proof. As in the proof of lemma (4.27), the difference variety
V is a definable subset of some sufficiently saturated model (Ω, σ) of ACFA.

Assume there are (n,m) ∈ D and f, g ∈ F [V ]σ, g 6= 0, with σnφmp (fg ) = f
g ,

and consider the formula

ϕn,m(z) = ∃x̄ x̄ ∈ V ∧ f(x̄) − z g(x̄) = 0 ∧ σnφmp (z) = z .

The subset Xn,m of Fn,m(Ω) defined by ϕn,m(z) is non-empty as the inte-
gral domain F [V ]σ can be embedded over (F, σ) into (Ω, σ), and then by
our assumption the images a and b of f and g under this embedding satisfy
a
b ∈ Xn,m. The canonical parameter of Xn,m is in F ∩ Fn,m(Ω) = Fn,m(F ).
So as (Fn,m(F ), σ) |= PSF(n,m,p), we have (Fn,m(F ), σ) 4 (Fn,m(Ω), σ),
and hence lemma (4.38) implies thatXn,m is definable in (Fn,m(Ω), σ) us-
ing parameters from Fn,m(F ). Now as (Fn,m(F ), σ) 4 (Fn,m(Ω), σ) and
Xn,m 6= ∅, we conclude there is λ ∈ Fn,m(F ) with λ ∈ Xn,m, which proves
the lemma. 2

The following corollary is the analogon to corollary (4.28) for the present
context.

Corollary 4.40. Let (F, σ) be an algebraically closed difference field
of characteristic p > 0 and D ⊂ N>1 × N≥1 such that (n,m) = 1 for all
(n,m) ∈ D. Assume that (Fn,m(F ), σ) is a model of PSF(n,m,p) for all

(n,m) ∈ D, and let ℘ ⊂ F [X̄]σ be a prime difference ideal over (F, σ). If ℘′

is a maximal prime difference ideal over (F, σ) containing ℘, then

(Fn,m(F ), σ) = (Fn,m(K), σ) ,

where (K,σ) denotes the inversive closure of the quotient difference field
Quot(F [X̄]σ/℘

′).

Note that σnφmp is an endomorphism of Quot(F [X̄]σ/℘
′) by our assump-

tion m ≥ 1.

Proof. Let ℘′ ⊂ F [X̄]σ be a maximal prime difference ideal containing
℘, and consider the difference variety W := Vσ(℘

′) over F . Denote (F ′, σ′)
the difference rational function field of W over F . As ℘′ is maximal, W is
minimal over F . If f

g ∈ F ′ is an element with σnφmp (fg ) = f
g , it follows by

minimality of W and lemma (4.39) that W ⊂ Vσ(f(X̄) − λg(X̄)) for some

λ ∈ Fn,m(F ). Hence f(X̄) − λg(X̄) ∈ ℘′ and thus f
g = λ ∈ Fn,m(F ).



48 4. GENERIC DIFFERENCE FIELDS

The lemma follows now because Fn,m(Linv) = Fn,m(L) for any (non-
inversive) difference field (L, σ). Indeed, if λ ∈ Linv with σnφmp (λ) = λ, then

σkn(λ) = a ∈ L, for some k ∈ N. But this shows λ = φkmp (a) ∈ L. 2

Collecting the above we obtain the following analogue of proposition
(4.29), which allows us to carry out the same chain construction as before
without increasing the fixed field.

Proposition 4.41. Let (F, σ) be an algebraically closed difference field
of characteristic p > 0 and D ⊂ N>1 × N≥1 such that (n,m) = 1 for all
(n,m) ∈ D. Assume that (Fn,m(F ), σ) |= PSF(n,m,p) for all (n,m) ∈ D.
Then for any non-empty σ-algebraic set V over F there is an algebraically
closed difference field extension (L, σ̄) of (F, σ) such that V (L) 6= ∅ and

(Fn,m(L), σ̄) = (Fn,m(F ), σ)

for all (n,m) ∈ D.

Sketch of Proof. We may assume that V is minimal (and hence also
irreducible) over F . Then by corollary (4.40) we have

(Fn,m(F (V )σ), σ) = (Fn,m(F ), σ)

for all (n,m) ∈ D. As before, we choose any lift σ̄ of σ to the algebraic
closure L of F (V )inv

σ . Then σ̄nφmp lifts σnφmp , V (L) 6= ∅ and

(Fn,m(L), σ̄) = (Fn,m(F ), σ)

for all (n,m) ∈ D. 2

The last proposition enables us to carry out the standard chain con-
struction to extend (F, σ) to a model of ACFA without increasing any of
the fixed fields Fix(F, σnφmp ), for all (n,m) ∈ D simultaneously. This finishes
the proof of theorem (4.37). 2

Proof of theorem (4.34). Let (k, σ) be a difference field elementarily
equivalent to (Fn,m(Ω), σ), for some model (Ω, σ) of ACFA and some inte-
gers n and m with n 6= 0. We are going to show that there is some model
(K,σ) of ACFA such that (k, σ) = (Fn,m(K), σ). Clearly we may assume
that n ≥ 1, for otherwise we work in the model (Ω, σ−1) of ACFA.

First look at the case m = 0. In that case, the theorem follows quite
easily from theorem (4.24): because (k, σ) ≡ (Fn,0(Ω), σ), we have that
Fix(k, σ) is a pseudo-finite field, so (k, σ) extends to some model (K,σ) of
ACFA such that Fix(k, σ) = Fix(K,σ) by theorem (4.24). In any model
of ACFA, the fixed field of σn is the unique extension of degree n of the
fixed field of σ, and hence k has degree n over Fix(k, σ) again because
(k, σ) ≡ (Fn,0(Ω), σ). It follows that (k, σ) = (Fn,0(K), σ).

This proves the theorem for characteristic zero, and for positive charac-
teristic and m = 0. So let us now assume that the characteristic p is positive
and m 6= 0. In that case, the same argument as above will allow us to derive
the theorem from theorem (4.37).
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We may assume that m ≥ 1, for if m ≤ −1, note that σnφmp =

(σ−nφ−mp )−1 and pass to (Ω, σ−1). Theorem (4.32) deals with the case

n = 1,4 so we may assume that m ≥ 1 and n > 1.

Now let d be the greatest common divisor of n and m and write n′ = n/d
and m′ = m/d. The field Fn′,m′(Ω) is pseudo-finite by proposition (4.16)
and Fn,m(Ω) is a finite extension of Fn′,m′(Ω) of degree d. Clearly the dif-
ference field (Fn′,m′(Ω), σ) is definable in (Fn,m(Ω), σ) and is a model of
PSFn′,m′,p. Because (k, σ) is elementarily equivalent to (Fn,m(Ω), σ) it fol-
lows that Fn′,m′(k) is pseudo-finite, that k has degree d over Fn′,m′(k), and
that (Fn′,m′(k), σ) is a model of PSFn/d,m/d,p. As n′ and m′ are coprime,
theorem (4.37) implies that (k, σ) extends to some model (K,σ) of ACFA
such that Fn′,m′(K), σ) = Fn′,m′(k), σ). As (Fn,m(K), σ) is the unique de-
gree d extension of Fn′,m′(K), σ) inside K, we have (Fn,m(K), σ) = (k, σ).

2

4We did not have to take the automorphism to the data because σ is definable in the
pure field Fix(Ω, σφm

p ), as it is a power of the Frobenius there.





CHAPTER 5

Generic Automorphisms of Stable Theories

The question whether any pseudo-finite field is the fixed field of a generic
automorphism could be answered positively in the previous chapter. Yet
there are more theories of fields which admit generic automorphisms. For
example, the theory of differential fields in characteristic zero, where the
fixed differential field of a generic automorphism is a pseudo-finite pseudo-
differentially closed differential field, as well as the theory of separably closed
fields of given Ershov invariant e, where the fixed field is a one-free PAC
field of Ershov invariant e. So the same question demands an answer in these
contexts, and as turned out, the answer in each case is also positive. More
even, roughly the same idea as in theorem (4.24) proves to be successful in
the above cases.

The aim of the present chapter is to give a uniform proof of an analogue
of theorem (4.24) for all the aforementioned theories of fields. This requires
us to generalise the special setting of fields and pass to stable theories with
a generic automorphism.

To be more precise, the context we work in is the following. We let T be a
countable complete stable theory with quantifier elimination and elimination
of imaginaries in the language L and let σ be a new unary function symbol.
We denote Lσ = L∪{σ} and Tσ = T∪{“σ is an L-automorphism”}. A model
(M,σ) of Tσ is called generic, and σ is called a generic automorphism of T ,
if it is existentially closed among models of Tσ. We assume that the generic
automorphisms of T form an elementary class, axiomatised by the theory
TA, and assume that TA eliminates imaginaries. aclT and dclT denote the
algebraic and definable closure in the sense of T . In this setting, we prove

Theorem. Let (M,σ) be a model of TA and K 4L Fix(M,σ) be an L-
elementary substructure. If

dclT
(
aclT(K),Fix(M,σ)

)
= aclT

(
Fix(M,σ)

)
,

then there is some model (N, σ) ≡ (M,σ) with Fix(N, σ) = K.

Therefrom we deduce the aspired results on generic automorphisms of
fields mentioned above.

The chapter is organised as follows. Section 5.1 recalls the basic model
theory of TA from the literature, mainly from [16]. With this occasion,
we introduce the concept inversive Lσ-structures, adapted from difference
algebra. We develop the general theory of TA for arbitrary cardinalities of
L. Also, we prove that TA eliminates imaginaries if it satisfies the Inde-
pendence Theorem over algebraically closed sets. Section 5.2 deals with the

51
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fixed structure of a generic automorphism and with the PAC property. We
define the PAC property without requiring stability of the ambient theory
and analyse the relation to the definitions that already exist in the liter-
ature. The fixed structure of a generic automorphism is PAC. Section
5.3 provides known examples of stable theories that admit generic automor-
phisms, whereby our main emphasis is placed on the stable theories of fields.
Section 5.4 is concerned again with PAC structures in stable theories. The
rest of the chapter does not depend on the main result of this section: We
prove an analogue of the Elementary Equivalence Theorem for PAC fields,
for one-free PAC substructures of models of a stable theory. In section
5.5 we introduce the notion of conservative embedding, which will play a
key rôle in our construction of generic automorphisms with prescribed fixed
structures later on. After discussing some examples we prove in proposition
(5.63) that the fixed structures F of models (M,σ) of TA are conservatively
embedded over any L-elementary substructure K with

dclT(aclT(K), F ) = aclT(F ) .

The main results of this chapter are obtained in section 5.6. Given a suffi-
ciently saturated model (M,σ) of TA, we give a complete characterisation of
those L-elementary substructures K of the fixed structure of (M,σ) which
occur itself as fixed structures of generic automorphisms. This is achieved
in theorem (5.68). As turns out, those K 4 Fix(M,σ) which occur as fixed
structures of some (N, σ) |= TA are precisely those over which Fix(M,σ) is
conservatively embedded, and precisely those with

dclT(aclT(K), F ) = aclT(F ) .

We also discuss some variants and corollaries. Finally we apply the results
from the previous sections to various theories of fields with generic auto-
morphism in section 5.7. In particular we prove that any pseudo-finite field
is the fixed field of some generic difference field, that any one-free pseudo-
differentially closed field of characteristic zero is the fixed differential field
of some generic difference-differential field, and that any one-free PAC field
of finite Ershov invariant is the fixed field of some generic separably closed
difference field.

Notation and Conventions. We have to distinguish carefully between
types, definable sets and so on in the sense of T on the one hand, and in
the sense of TA on the other. So it is worthwhile setting notation and
conventions for the present chapter at this point, even though some is a
reminder from chapter 1.

When dealing with generic automorphisms, we let T denote a complete
stable theory with infinite models and with quantifier elimination and elimi-
nation of imaginaries in the language L and let σ be a new unary function
symbol. T might be many-sorted1, but we talk nevertheless of the home sort
of T . We denote Lσ = L∪{σ} and Tσ = T ∪{“σ is an L-automorphism”}. A
model (M,σ) of Tσ is called generic, and σ is called a generic automorphism

1In this case we strictly have to consider a tuple σ = (σi) of automorphisms, one for
each sort. For the sake of simple notation, we just don’t.
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of T , if it is existentially closed among models of Tσ. In what follows, we
always assume that the class of generic models of Tσ forms an elementary
class, or in other words that Tσ has a model companion. We call this model
companion TA, and say that TA exists for short, or that T admits generic
automorphisms.

C denotes the monster model of T . aclT and dclT denote algebraic and
definable closure, tpT (ā/A) the type of some (possibly infinite) tuple ā over
the parameter set A, all in the sense of T . For parameter sets A ⊂ B ⊂ C,
AutT (B/A) is the set of elementary permutations of A in the sense of T and
Gal(A) denotes AutT (aclT(A)/A), the absolute Galois group of A.

TA may not be complete. If (M,σ) is a model of TA and A ⊂ M , we
denote by aclσ(A) and dclσ(A) the algebraic and definable closure of A in
(M,σ). We write clσ(A) for the closure of A under σ and σ−1. For a possibly
infinite tuple ā ∈ M , tpσ(ā/A) denotes the (complete) type of a over A in
(M,σ). All these depend on the model or the completion of TA chosen,
however we use this simpler notation if it is clear from the context which
model we are working in. Otherwise we will use the more precise though
illegible notation acl(M,σ)(A), tp(M,σ)(a/A) and the like. Also, if (M,σ) is a

model of Tσ, we abuse language and write (N, σ) for an extension of (M,σ).

In either case, if we say definable we always mean definable with pa-
rameters, unless we state to the contrary. Sets and parameter sets will be
subsets of the monster model C of T and parameter sets in the sense of T ,
unless stated otherwise. By saturation of C it is clear that for any comple-
tion of TA there is some σ ∈ Aut(C) such that (C, σ) is a monster model of
that completion of TA. So we sometimes say “we choose σ ∈ AutT (C) such
that (C, σ) |= TA” instead of saying “we choose a monster model (C, σ) of
TA”.2

5.1. General Model Theory of TA

In this section we describe the general model theory of TA, for which
[16] is our main reference. Before we do so we discuss the amalgamation

property for partial automorphisms in stable theories and introduce inversive
Lσ-structures. The language L need not be countable in this section, except
at the end where we briefly discuss the question of existence of TA.

Amalgamation of Automorphisms (la PAPA). We first discuss la
proprieté d’amalgamation des paires d’automorphismes, PAPA for short. It
was introduced by Lascar in [37] and plays a particular rôle in the general
model theory of TA. We use his modification from [36].

Definition 5.1. Let L be an arbitrary language, and denote by Lσ the
language obtained from L by adding a new unary function symbol σ. Let
T be an L-theory and C be the monster model of T . T is said to have the
PAPA if the class of of Lσ-structures (A, σ), where A is an aclT-closed
subset of C and σ ∈ AutT (A), has the amalgamation property with respect

2see also our convention concerning the monster model made in section 1.1
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to Lσ-homomorphisms that are elementary in the sense of T . Explicitly:
if A0, A1 and A2 be aclT-closed subsets of C and σi ∈ AutT (Ai) for i =
0, 1, 2, and if f1 : A0 −→A1 and f2 : A0 −→A2 are elementary maps such
that f1σ0 = σ1f1 and f2σ0 = σ2f2, then there are aclT-closed A3 ⊂ C and
σ3 ∈ AutT (A3), and elementary maps g1 : A1 −→A3 and g2 : A2 −→A3

with g1σ1 = σ3g1 and g2σ2 = σ3g2, such that g1f1 = g2f2.

Lemma 5.2. Let T be a stable L-theory. Let A be any parameter set and
p and q be types over A at least one of which is stationary. Then for every
partial elementary map σ whose domain contains A,

σ(p⊗A q) = σ(p) ⊗σ(A) σ(q) .

A word on the notation: the left hand side product of types p ⊗A q
is taken in the type space over the parameter set A, the right hand side
product σ(p) ⊗σ(A) σ(q) in the type space over the parameter set σ(A).

Proof. Say p is stationary. Then σ(p) is stationary, too, hence both
products p⊗ q and σ(p)⊗ σ(q) are well-defined. If (z̄1, z̄2) realises σ(p⊗ q),
then (σ−1(z̄1), σ

−1(z̄2)) realises p⊗ q, which implies that σ−1(z̄1) realises p
and σ−1(z̄2) realises q. So z̄1 |= p and z̄2 |= q, hence (z̄1, z̄2) |= σ(p) ⊗ σ(q),
which proves the claim. 2

Proposition 5.3 (Lascar). Let T be a stable theory with elimination of
imaginaries and quantifier elimination3. Let A1, A2 and A3 be aclT-closed
subsets of C with A1 ⊂ A2 and A1 ⊂ A3, and let σi ∈ AutT (Ai) for i = 1, 2, 3
with σ2|A1 = σ1 = σ3|A1. If A2 is independent from A3 over A1, then σ2∪σ3

is elementary (in the sense of T ).

Proof. This was proved by Lascar in [36]. As T is stable and A1 is
algebraically closed, both p2 := tp(A2/A1) and p3 := tp(A3/A1) are station-
ary by elimination of imaginaries. So using the previous lemma (5.2) we
compute

σ1(p2 ⊗A1 p3) = σ1(p2) ⊗σ1(A1) σ1(p3)

= tp(σ2(A2)/σ1(A1)) ⊗σ1(A1) tp(σ3(A3)/σ(A1))

= tp(σ2(A2)σ3(A3)/σ1(A1))

Hence σ2 ∪ σ3 is elementary. 2

Corollary 5.4 (Lascar). “Stable theories have the PAPA”
Let T be a stable L-theory with elimination of imaginaries and quantifier
elimination. Then T has the PAPA.

Proof. We just have to note that if A0, A1, A2 and σ0, σ1, σ2 are as in
definition (5.1), then as T is stable we can replace A1 by an A0-isomorphic
copy A′1 such that A′1 |⌣

A0

A2 in the sense of T and, if ψ : A1 −→A′1 is a (local)

isomorphism over A0, replace σ1 by σ′1 = ψσ1ψ
−1. 2

3if T does not eliminate quantifiers, one requires the inclusion maps A1 ⊂ A2 and
A1 ⊂ A3 to be elementary.
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We now introduce the concept of inversive Lσ-structure, which genera-
lises the notion of inversive difference field in difference algebra. Consider
an arbitrary language L, without fixing a specific theory T . We call an
Lσ-structure (A, σ) inversive if σ is an automorphism of the L-structure A.
Let (A, σ) be an Lσ-structure with σ an L-embedding of A into itself. We
define the inversive closure of (A, σ) to be an inversive Lσ-structure (Ainv, σ)
together with an Lσ-embedding ι : (A, σ)−→ (Ainv, σ) satisfying the follow-
ing universal property: For any Lσ-homomorphism ϕ : (A, σ)−→ (B, σ)
with (B, σ) inversive there is a unique Lσ-morphism ψ : (Ainv, σ)−→ (B, σ)
such that ϕ = ψ ◦ ι.

(Ainv, σ)
ψ // (B, σ)

(A, σ)

ι

OO
ϕ

99tttttttttt

Lemma 5.5. Any Lσ-structure (A, σ) with σ an L-embedding has an
inversive closure (Ainv, σ). Moreover, (Ainv, σinv) is unique up to (unique)
Lσ-isomorphism.

Proof. The lemma is proved using an easy chain argument and the well-
known fact that if f : B−→C is an L-embedding of L-structures, then
there is an L-overstructure B∗ of B and an L-isomorphism f∗ : B∗−→C
extending f . 2

Remark 5.6. Note that if the Lσ-morphism ϕ : (A, σ)−→ (B, σ) is an
embedding, then so is ψ : (Ainv, σinv)−→ (B, σ). In that case, we will often
consider the inversive closure be embedded in (B, σ). For example if (B, σ)
is a model of TA, then Ainv = clσ(A) and σinv is the restriction of σ to Ainv.

In this terminology, proposition (5.3) implies that if T is a stable L-
theory with elimination of imaginaries and quantifier-elimination, then the
class of inversive Lσ-structures (A, σ), with A an aclT-closed L-substructure
of the monster model C of T , has the strong amalgamation property4 with
respect to Lσ-homomorphisms that are elementary in the sense of T . Note
that we can also amalgamate infinitely many (Ai, σi). To be more precise,
if (Ai, σi)i<λ is a family of algebraically closed inversive Lσ-structures, all
containing (A, σ) and with the Ai pairwise independent over A, then

⋃
i<λ

σi

is elementary. We summarise this in the following corollary.

Corollary 5.7. Let T be a stable L-theory with elimination of ima-
ginaries and quantifier elimination5 and monster model C. Let λ be any
cardinal and (Ai, σi)i<λ be a sequence of inversive Lσ-structures, with each
Ai an aclT-closed subset of C. Assume for i > 0 we have Lσ-embeddings
fi : (A0, σ0)−→ (Ai, σi). Then there is some inversive (Aλ, σλ) with Aλ ⊂ C

aclT-closed and Lσ-embeddings gi : (Ai, σi)−→ (Aλ, σλ) for all i > 0 such

4recall that strong means that in definition (5.1), one requires additionally that
g1(A1) ∩ g2(A2) = g1f1(A0).

5again, if we do not have quantifier elimination, we have to require all maps to be
elementary in the sense of T .
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that for any i 6= j: gifi(Ai)∩gjfj(Aj) = gifi(A0) and gifi(Ai) is independent
from gjfj(Aj) over gifi(A0) in the sense of T .

Proof. Reasoning similar as in the proof of the last corollary, we may
assume that the Ai are pairwise independent over A0 in the sense of T . 2

Basic Model Theory of TA. We now start our discussion of the
model theory of TA. We let L be an arbitrary first-order language, possibly
many-sorted, and T be a complete stable L-theory with infinite models. We
assume that T has quantifier elimination and elimination of imaginaries in
L. σ be a new unary function symbol6. We denote Lσ = L ∪ {σ} and
Tσ = T ∪ {“σ is an L-automorphism”}. In general, a model of an arbitrary
(not necessarily complete) theory is called generic if it is existentially closed
among models of that theory. So a model (M,σ) of Tσ is called generic, and
σ is called a generic automorphism of T , if it is existentially closed among
models of Tσ. Clearly generic models of Tσ exist, because Tσ is an ∀∃-theory
due to quantifier elimination of T . We assume that the class of generic
models of Tσ forms an elementary class, in other words that Tσ has a model
companion. This model companion is called TA. To abbreviate we say
that TA exists, or that T admits generic automorphisms.

Recall our convention that if (M,σ) is a model of TA and A ⊂ M ,
then aclT and dclT denote the algebraic and definable closure of A in the
L-structure M , whereas aclσ(A) and dclσ(A) denote the algebraic and de-
finable closure of A in the Lσ-structure (M,σ), respectively. Further, we
write clσ(A) for the closure of A under σ and σ−1.

Let (M,σ) be a model of TA (or of Tσ even). If A ⊂M is an aclT-closed
subset with σ(A) ⊆ A, then A is obviously an Lσ-substructure of (M,σ) in
a natural way. In particular, if we start with an Lσ-substructure (A, σ) then
aclT(A) will naturally be an Lσ-structure, because σ is an L-automorphism.

Theorem 5.8 (Chatzidakis-Pillay). Let T be a stable L-theory with
quantifier elimination and elimination of imaginaries such that TA exists.

If (M1, σ1) and (M2, σ2) are models of TA containing a common Lσ-
substructure (A, σ) then putting σ′i = σi|aclT(A) we have

(M1, σ1) ≡A (M2, σ2) iff (aclT(A), σ′1)
∼=A (aclT(A), σ′2).

Note that the (aclT(A), σ′i) are not necessarily inversive.

Proof. This was proved by Chatzidakis and Pillay in [16], proposition
(3.5).

If (M1, σ1) ≡A (M2, σ2) we can choose a common elementary extension
(M3, σ3). Then clearly (aclT(A), σ1)∼= (aclT(A), σ3)∼= (aclT(A), σ2), the iso-
morphisms being over A.

For the converse, let ϕ1 : (aclT(A), σ′1)−→ (aclT(A), σ′2) be an Lσ-iso-
morphism over A. σ′1 and σ′2 are elementary maps in the sense of T , so

6We note again that strictly speaking we have to consider a tuple σ = (σi) of auto-
morphisms, one for each sort of L. For the sake of simple notation, we just don’t.
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by quantifier elimination of T they are L-embeddings of aclT(A) into itself.
Hence by lemma (5.5) ϕ1 lifts to an Lσ-isomorphism

ϕ2 : clσ1(aclT(A)), σ′′1) −→ clσ2(aclT(A)), σ′′2)

of the inversive closures (here we write σ′′i for σi|clσi (aclT(A))). As σ(A) ⊆ A

and the σi are L-automorphisms it follows that

clσi(aclT(A)) = aclT(clσi(A)) (i = 1, 2) .

Thus Ai := clσi(aclT(A)) are aclT-closed and (Ai, σi) are inversive. We
identify them and apply proposition (5.3) to see that σ1∪σ2 is elementary. It
extends to some (M,σ) |= Tσ, which in turn extends to some model (M3, σ3)
of TA, the model companion of Tσ. Model completeness of TA implies that
(M3, σ3) is an elementary extension of both (M1, σ1) and (M2, σ2). The
embeddings are the identity on A, so (M1, σ1) ≡A (M2, σ2). 2

The following immediate consequence will prove useful later on, so we
state it in a remark for future reference.

Remark 5.9. Under the assumptions as in theorem (5.8), any bijection
between aclσ-closed sets that is elementary in the sense of T and commutes
with σ is elementary in the sense of TA.

Corollary 5.10 (Chatzidakis-Pillay). Let T be a stable L-theory with
quantifier elimination and elimination of imaginaries such that TA exists.
Then TA∪qfdiag((A, σ)) is complete for any A = aclT(A) and σ ∈ AutT (A).
In particular the completions of TA are classified by the isomorphism type
of the Lσ-structure (aclT(∅), σ).

Proof. Immediate from theorem (5.8). 2

Let us note aside that one does not have to use parameters to describe
the isomorphism type of (aclT(∅), σ|aclT(∅)). See remark (5.17) for an expla-
nation.

Corollary 5.11 (Chatzidakis-Pillay). Let T be a stable L-theory with
quantifier elimination and elimination of imaginaries such that TA exists.
Let A be an Lσ-substructure of the two models (M1, σ1) and (M2, σ2) of TA.
If ā ∈M1 and b̄ ∈M2, then

tp(M1,σ1)(ā/A) = tp(M2,σ2)(b̄/A)

if and only if there is an isomorphism of Lσ-structures

acl(M1,σ1)(Aā) −→ acl(M2,σ2)(Ab̄)

over A which maps ā to b̄. Here acl(M1,σ1)(Aā) is endowed with the restric-
tion of σ1 and acl(M2,σ2)(Aā) with the restriction of σ2.

Proof. This is just a special instance of theorem (5.8). 2

Corollary 5.12 (Chatzidakis-Pillay). Let T be a stable L-theory with
quantifier elimination and elimination of imaginaries such that TA exists.
Let A be a subset of some model of TA. Then

aclσ(A) = aclT(clσ(A)) .
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Proof. The corollary was proved by Chatzidakis and Pillay in [16]. The
proof we give here is motivated by a standard argument for fields (see for
example the proof of (4.5.4)).

Let σ ∈ AutT (C) such that (C, σ) |= TA. Let A = aclT(clσ(A)) and
assume a /∈ A. We are going to show that a /∈ aclσ(A).

Note that σ restricts to an automorphism of A, because it restricts to
an automorphism of clσ(A) and hence of aclT(clσ(A)), since σ is an L-
automorphism. So (A, σ|A) is an inversive aclT-closed Lσ-structure and
TA ∪ qfdiag(A, σ|A) is complete by (5.10).

Put A1 = aclσ(A, a) and σ1 = σ|A0 . Note that because A1 is aclσ-
closed, it is aclT-closed and (A1, σ1) is inversive. Consider now the sequence
(Ai, σi)i<ω with (A0, σ0) = (A, σ|A) and (Ai, σi) = (A1, σ1) for i > 0. By
corollary (5.7) we find an inversive (Aω, σω) with Aω = aclT(Aω) ⊂ C and
Lσ-embeddings gi : (Ai, σi)−→ (Aω, σω) such that gi(Ai)∩gj(Aj) = A when-
ever i 6= j. In particular, if ai denotes the image of a under gi, the ai are
pairwise distinct. As in the proof of (5.8), (Aω, σω) extends to some model
(M,σ) of TA, which contains (A, σ|A) as a substructure by construction.
So as TA ∪ qfdiag(A, σ|A) is complete, we can embed (M,σ) over A into
(C, σ). The images of the ai under this embedding are then pairwise distinct
realisations of tpσ(a/A) by theorem (5.8), so a /∈ aclσ(A). 2

The following remark will prove useful later on.

Remark 5.13. With the same assumptions as in theorem (5.8), let
(A, σ) be an Lσ-substructure of some model (M,σ) of TA. If A is aclT-
closed, then Ainvis aclσ-closed.

Proof. The (underlying set of the) inversive closure of A in (M,σ) is
clσ(A). As σ is an L-automorphism, we have as in the proof of theorem
(5.8) that clσ(aclT(A)) = aclT(clσ(A)). So Ainv = aclσ(A) by corollary
(5.12). 2

By model completeness every Lσ-formula is modulo TA equivalent to
an existential formula. The description of types in TA allows us to do even
better. We aim to show a weak quantifier elimination result for TA, namely
that modulo TA, any formula ϕ(x̄) is equivalent to a finite disjunction of for-
mulas of the form ∃ȳ θ(x̄, σ(x̄), . . . , σn(x̄); ȳ, σ(ȳ), . . . , σm(ȳ)), where θ is a
quantifier-free L-formula which implies that (ȳ, σ(ȳ), . . . , σm(ȳ)) is algebraic
over x̄, σ(x̄), . . . , σn(x̄) in the sense of T , see corollary (5.16).

Let A be a set of parameters (in the sense of T ) and x̄ be a (possibly
infinite) tuple of variables. We let Σ(x̄/A) be the set of Lσ(A)-formulas of
the form

∃ȳ θ
(
x̄, σ(x̄), . . . , σn(x̄); ȳ, σ(ȳ), . . . , σm(ȳ); ā, σ(ā), . . . , σl(ā)

)

where ā ∈ A and θ
(
x̄0, . . . , x̄n; ȳ0, . . . , ȳm; z̄0, . . . , z̄l) is a quantifier-free L-

formula with the property that for all realisations

(d̄0, . . . , d̄n; b̄0, . . . , b̄m; c̄0, . . . , c̄l)
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of θ in models of T , b̄0, . . . , b̄m is algebraic over d̄0, . . . , d̄n, c̄0, . . . , c̄l (in the
sense of T ). For a tuple ā in some model (M,σ) |= TA with A ⊂ M let
Σ(ā/A) be the set of ϕ ∈ Σ(x̄/A) true of ā in (M,σ). Note that we allow ā
to be the empty tuple. The information in Σ(ā/A) is enough to determine
the isomorphism type over A of (aclσ(A, ā), σ), as we will see in the next
lemma.

Lemma 5.14. Let T be a stable L-theory with quantifier elimination and
elimination of imaginaries such that TA exists.

Let A be a common subset of the models (M1, σ1) and (M2, σ2) of TA.
Let ā and b̄ be tuples in M1 and M2 respectively of the same length. If
Σ(ā/A) = Σ(b̄/A), then tp(M1,σ1)(ā/A) = tp(M2,σ2)(b̄/A).

Note that since the language L as well as the set Amight be uncountable,
we cannot use König’s lemma.

Proof. By corollary (5.11) we have to construct an Lσ-isomorphism over
A from aclσ(Aā) onto aclσ(Ab̄) mapping ā to b̄.

Let A1 and A2 denote the Lσ-substructures generated by Aā and Ab̄ in
(M1, σ1) and (M2, σ2) respectively. The quantifier-free diagrams of A1 and
A2 are contained in Σ(ā/A) = Σ(b̄/A), and coincide. So there is an Lσ-
isomorphism f : A1 −→A2 over A taking ā to b̄. Note that f is elementary
in the sense of T by quantifier elimination.

Claim: f lifts to an elementary bijection f̄ (in the sense of T ) from
aclT(A1) onto aclT(A2) such that f̄σ1 = σ2f̄ .

Let us postpone for short the proof of the claim and assume it is true.
Then we know that f extends to an Lσ-isomorphism between aclT(A1) and
aclT(A2), the former endowed with the restriction of σ1, the latter with the
restriction of σ2. By lemma (5.5) this isomorphism lifts to an isomorphism
of the inversive closures, which are aclσ(Aā) and aclσ(Ab̄) respectively by
remark (5.13) (of course both endowed with the corresponding restriction
of σ1 and σ2). So when we have proved the claim we have also proved the
lemma by corollary (5.11).

Proof of the Claim. To prove the claim we work entirely in T . Let M
be a model of T containing the parameter sets A1 and A2. σ1 and σ2 are
partial elementary selfmaps of aclT(A1) and aclT(A2) respectively (strictly
speaking we replace σ1 and σ2 by their restrictions).

To get f̄ we first define a (directed) inverse system (MS)S∈I of partial
elementary maps

aclT(A1)
g−−→ aclT(A2)

such that gσ1 = σ2g. The index set I is the set of dclT-closed subsets
S ⊂ aclT(A1) of the form S = dclT(A1, s̄) for some finite tuple s̄ ∈ aclT(A1).
Putting S1 ≤ S2 if and only if S1 ⊆ S2 we obtain a pre-ordering on I
(by which we mean that ≤ is reflexive and transitive). Clearly (I,≤) is a
directed pre-ordering: for S1, S2 ∈ I, choose finite tuples s̄1 and s̄2 such that
Si = dclT(A1, s̄i), and let S3 = dclT(A1, s̄1, s̄2). Then S3 ∈ I with S1 ≤ S3

and S2 ≤ S3.
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For S ∈ I we define MS to be the set of elementary maps

S ∪ σ1(S)
gS−−→ aclT(A2)

with the property that gS(σ1(c)) = σ2(gS(c)) for all a ∈ S. By our as-
sumption that Σ(ā/A) = Σ(b̄/A), each MS is non-empty. Further, any MS

is finite: choose a finite tuple s̄ ∈ aclT(A1) with dclT(A1, s̄) = S, and let
ϕ(x̄) ∈ L(A1) isolate tpT (s̄/A1). Then, as gS is elementary, gS(s̄) realises
fϕ(x̄) and gS(σ1(s̄)) realises fσ1ϕ(x̄), and in fact gS is determined by these
realisations. As ϕ is algebraic and f and σ1 elementary, there are only
finitely many realisations of fϕ(x̄) and fσ1ϕ(x̄).

For S1 ≤ S2 we let πS2
S1

: MS2 −→MS1 be the canonical restriction map.
Endowing all MS with the discrete topology, we obtain an inverse system of
non-empty compact spaces, so the inverse limit

G = lim
←−−
S∈I

MS

is non-empty by theorem (3.6) of chapter VIII in [20]. We choose any f̄ ∈ G
and content that f̄ is the promised extension of f .

Clearly f̄ extends f as any element of A1 is definable over A1. To see
that it is elementary (in the sense of T ), let s̄ ∈ aclT(A1) be a finite tuple.
Then f̄ |S∪σ1(S) = gS for some gS ∈ MS , where S = dclT(A1, s̄). So f̄ is

elementary. The same argument shows that f̄(σ1(c)) = σ2(f̄(c)) for all
c ∈ aclT(A1). Finally, to show that f̄ is surjective, let d ∈ aclT(A2) and
ϕ(x) ∈ L(A2) isolate tpT (d/A2). Let c̄ = c0, . . . , cn be the set of realisations
of f−1ϕ(x). Clearly c̄ ∈ aclT(A1), and f̄ |S = gS |S for some gS ∈MS , where
S = dclT(A1, c̄). As gS is elementary, there is some i with gS(ci) = d. Hence
f̄ is onto.

This proves the claim, and also the lemma. 2

Remark 5.15. Instead of inverse limits and theorem (3.6) of chapter
VIII in [20] in the above proof we could have applied the following kind of
Rado’s Selection Lemma: Let F be a system of finite partial maps A−→B,
closed under restriction, such that for all finite A0 ⊂ A the set

{f ∈ F | dom(f) = A0}
is finite and non-empty. Then there is F : A−→B such that for all finite
non-empty subsets A0 ⊂ A there is f ∈ F with F |A0 = f .

Corollary 5.16 (Weak Quantifier Elimination). Let T be a stable L-
theory with quantifier elimination and elimination of imaginaries such that
TA exists. Then any Lσ-formula ϕ(x̄) is modulo TA equivalent to a finite
disjunction of formulas in Σ(x̄/∅).

Proof. In view of lemma (5.14), the statement is an example of the
following more general principle: If τ is any theory and ∆ some set of
formulas (in the language of τ) closed under conjunction such that all types
in τ are implied by some subset of ∆, then modulo τ every formula is
equivalent to some finite disjunction of formulas in ∆. This is a consequence
of compactness, and follows immediately from theorem (5.3) in [56]. We
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just have to note that Σ(x̄/∅) is closed under conjunction (up to equivalence,
but this does no harm), so the corollary follows from lemma (5.14). 2

Remark 5.17. We have already remarked that one does not need to use
parameters in order to describe the action of σ on aclT(∅). This is indeed a
special case of lemma (5.14), taking A to be the empty set and ā to be the
empty tuple.

Independence Theorem and Simplicity.

Definition 5.18. Let σ ∈ AutT (C) such that (C, σ) |= TA. For subsets
A, B and C of C we say that A is independent from C over B if and only
if aclσ(AB) is independent from aclσ(CB) over aclσ(B) in the sense of T .

We will see (within the next few results) that this is non-forking inde-
pendence, turning TA into a simple theory. We start with the following
lemma, which is proved in [16], though it is not explicitly stated there.

Lemma 5.19 (Chatzidakis-Pillay). Let T be stable with elimination of
imaginaries and M be a model of T . Let further A,B and C be aclT-closed
sets containing M that are pairwise independent over M . Then dclT(BC)
is aclT-closed in dclT(aclT(AB), aclT(AC)).

Proof. For convenience we repeat the proof from [16]. If λ ∈
dclT(aclT(AB), aclT(AC)) is algebraic over BC we may choose tuples ā ∈ A,
b̄ ∈ B, c̄ ∈ C, β ∈ aclT(ā, b̄) and γ ∈ aclT(ā, c̄) such that λ is definable
over b̄c̄βγā, say by the L-formula ϕ(x, b̄, c̄, β, γ, ā). Further there are L-
formulas ψ1(y1, b̄, ā) and ψ2(y2, c̄, ā) isolating tpT (β/ā, b̄) and tpT (γ/ā, c̄)
respectively. Consider p = tpT (λ, b̄, c̄/A). By the above, p represents the
L-formula δ(x, x̄1, x̄2; z̄), where δ(x, x̄1, x̄2; z̄) implies that ψ1(y1, x̄1, z̄) and
ψ2(y2, x̄2, z̄) are consistent formulas algebraic in y1 and y2 respectively, for all
of whose realisations y1 and y2 respectively, the formula ϕ(x, x̄1, x̄2, y1, y2, z̄)
has exactly one realisation in x.

As aclT(BC) is independent from A over M , p does not fork over M .
So because M is a model of T and as T is stable, p is the heir of p|M , so the
latter represents the formula δ(x, x̄1, x̄2, z̄). In other words there is ā′ ∈M
such that p|M |= δ(x, x̄1, x̄2; ā

′). It follows that there are β′ |= ψ1(y1, b̄, ā
′)

and γ′ |= ψ2(y2, c̄, ā
′) such that λ is definable over b̄c̄β′γ′ā′. B and C are

algebraically closed, so β′ ∈ B and γ′ ∈ C, and hence λ ∈ dclT(BC). 2

The following theorem is due to Chatzidakis and Pillay [16].

Theorem 5.20 (Independence Theorem over models of Tσ). Let T be
a stable L-theory with quantifier elimination and elimination of imaginar-
ies such that TA exists. Let (M,σ) be a model of Tσ and A, B ⊃ M be
independent over M . Assume that c̄1 and c̄2 are tuples realising the same
type over M with c̄1 independent from A over M and c̄2 independent from
B over M . Then there is a tuple c̄ independent from AB over M realising
tpσ(c̄1/A) ∪ tpσ(c̄2/B).

Proof. This theorem was proved by Chatzidakis and Pillay in [16]. For
convenience we repeat their proof here.
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Without loss we may assume that A and B are aclσ-closed. Choose c̄
with c̄ ≡A c̄1 and, writing C = aclσ(M, c̄), such that C is independent from
AB over M .

Fist note that as T is stable, corollary (5.12) shows that aclσ(A1A2) =
aclT(aclσ(A1), aclσ(A2)) for any sets A1, A2 ⊂ C. So because σ restricts to
automorphisms of A, B and C respectively, we find that aclσ and aclT agree
onA, B, C, AB, AC, BC andACB. Let us call σAB = σ|aclT(AB) and σAC =
σ|aclT(AC). Then proposition (5.3) implies that σAB ∪ σAC is elementary in
the sense of T . Working in C, we want to find an automorphism τ on
aclT(ABC) extending σAB and σAC such that (aclT(BC), τ |aclT(BC)) and
(aclσ(B, c̄2), σ) are Lσ-isomorphic over (B, σ) via an isomorphism sending c̄
to c̄2.

To that end we define σBC on aclT(BC) as follows. Because T is stable,
we may use corollary (5.11) to first choose an Lσ-isomorphism ϕ1 over M
from (C, σ) onto (aclσ(M, c̄2), σ) sending c̄ to c̄2. As C and aclσ(M, c̄2) are
both independent from B over M , this isomorphism extends to an Lσ-iso-
morphism over B from (dclT(BC), σ) onto (dclT(aclσ(M, c̄2), B), σ). Now
we extend the latter to an L-isomorphism ϕ2 from aclσ(B, c̄) onto aclσ(B, c̄2)
and put σBC = ϕ−1

2 σ|aclσ(B,c̄2)ϕ2.

We want to show that α = σAB∪σAC∪σBC is elementary in the sense of
T . For then α lifts to an automorphism τ of aclT(ABC) and we can, using
(5.10), embed (aclT(ABC), τ) over AB into (C, σ). The image of c̄ under
this embedding is the promised realisation of tpσ(c̄1/A) ∪ tpσ(c̄2/B).

We know already that σAB ∪ σAC is elementary, so let z̄0 enumerate
dclT(BC), z̄1 enumerate dclT

(
aclT(AB), aclT(AC)

)
\ dclT(BC) and z̄2 enu-

merate aclT(BC)\dclT(BC). Because T is stable, we know by lemma (5.19)
that dclT(BC) is aclT-closed in dclT(aclT(AB), aclT(AC)). So because σAB,
σAC and σBC are automorphisms onto their domains it follows that

tpσ(z̄2z̄0) ⊢ tpσ(z̄2z̄1z̄0)

and

tpσ(σBC(z̄2)(σAB ∪ σAC)(z̄0)) ⊢ tpσ(σBC(z̄2)(σAB ∪ σAC)(z̄1z̄0)) .

But σBC and σAB ∪ σAC coincide on dclT(BC) by construction, so

tpσ(σBC(z̄2)σBC(z̄0)) ⊢ tpσ(σBC(z̄2)(σAB ∪ σAC)(z̄1z̄0)) ,

which implies that

tpσ(z̄0z̄1z̄2) = tpσ(α(z̄0z̄1z̄2))

because σBC is elementary. 2

Corollary 5.21 (Chatzidakis-Pillay). Let T be a stable theory and as-
sume TA exists. Then any completion of TA is simple. If T is superstable,
then any completion of TA is supersimple.

Proof. This was shown in [16], we repeat their proof for convenience.

We first show simplicity of TA in case T is stable, so let (C, σ) be a
sufficiently saturated model of TA. Clearly the notion of independence
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defined above is invariant under automorphisms and satisfies Symmetry and
Finite Character. Note that, by corollary (5.12),

aclσ(AB) = aclT(aclσ(A), aclσ(B))

for all sets A and B, wherefrom Transitivity follows.

To show Extension, let ā be a tuple and A ⊂ B be subsets of C. We
may assume that A and B are aclσ-closed and consider the Lσ-structures
(A, σ0), (aclσ(Aā), σ1) and (B, σ2), where σi denotes the corresponding re-
striction of σ to A, aclσ(Aā) and B. By corollary (5.7) we may assume that
aclσ(Aā) and B are independent over A in the sense of T . By model com-
pleteness of TA we can embed (C, σ) over B into (C, σ). Then the type of
image of ā under this embedding is the desired extension of tpσ(ā/A) to B.

To show Local Character, let ā be a tuple and A be a subset of (C, σ).
We may assume that A is aclσ-closed. As clσ(ā) is countable, it follows
that there is some A0 ⊂ A with |A0| ≤ |T | = |TA| such that clσ(ā) |⌣

A0

A

in the sense of T . By Transitivity (for T ) we may assume that A0 is aclσ-
closed. Then still |A0| ≤ |TA|. It follows that A0clσ(ā) |⌣

A0

A, which im-

plies aclT(A0clσ(ā)) |⌣
A0

A, both in the sense of T . But aclT(A0clσ(ā)) =

aclσ(A0, ā) by corollary (5.12), so ā is independent from A over A0 in the
sense of TA.

We suppose now that T is superstable and aim to show that TA is
supersimple. Let ā ∈ M and B = aclσ(B) ⊂ M for some model (M,σ) of
TA. As T is superstable there is m > 0 such that tp(ā/B{σi(ā)}i∈N) does
not fork over B, σ(ā), . . . , σm(ā) in the sense of T . Also there is some finite
A0 ⊂ B such that tp(ā, σ(ā), . . . , σm(ā)/B) does not fork over A0, again in
the sense of T .

Let A = aclσ(A0). We will show by induction that ā, σ(ā), . . . , σk(ā) is
independent from B over A in the sense of T for all k > 0. Therefrom it
follows that aclσ(A, ā) is independent from B over A, which is equivalent to
ā being independent from B over A0 in the sense of TA.

If k ≤ m there is nothing to show. Assume the statement is true for k.
By choice of m and transitivity we know that

ā |⌣
B,σ(ā),...,σm(ā)

B, σ(ā), . . . , σk+1(ā) .

Also by transitivity it follows from ā, σ(ā), . . . , σm(ā) |⌣
A
B that

ā |⌣
A,σ(ā),...,σm(ā)

B, σ(ā), . . . , σm(ā) .

Again transitivity implies that

ā |⌣
A,σ(ā),...,σm(ā)

B, σ(ā), . . . , σk+1(ā)

and thus
ā |⌣
A,σ(ā),...,σk+1(ā)

B, σ(ā), . . . , σk+1(ā) .
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Together with σ(ā), . . . , σk+1(ā) |⌣
A
B, which comes from the induction hy-

pothesis, transitivity yields

ā, σ(ā), . . . , σk+1(ā) |⌣
A
B .

2

The following proposition gives a criterion for when TA is even stable.
It is a direct consequence of corollary (5.11), so we omit the proof.

Proposition 5.22. Let A be aclσ-closed and ā be a tuple. Then tpσ(ā/A)
is stationary if and only if for any set B containing A that is aclσ-closed and
independent from ā over A, σ|dclT(B,C) has a unique extension to aclT(B,C)
up to conjugation in AutT (aclT(B,C)/dclT(B,C)), where C = aclσ(Aā).

We will later be interested fields with a generic automorphism. In that
cases, TA is simple unstable. However, the quantifier-free fragment of TA
is always stable.

Lemma 5.23. Let T be a stable complete L-theory with quantifier elim-
ination and elimination of imaginaries such that TA exists. Then TA is
quantifier-free stable (i.e. every completion of TA is quantifier-free stable).
Furthermore, if T is totally transcendental then TA is quantifier-free totally
transcendental.

Proof. Let σ ∈ AutT (C) such that (C, σ) |= TA and A be a subset of

(C, σ) of size λ with λ|T | = λ. Then λω = λ. We may assume that A is aclσ-
closed . Then A is also aclT-closed. Consider a tuple ā ∈ (M̄, σ). Obviously
qftpσ(ā/A) is uniquely determined by qftpL(σi(ā)i∈Z/A) by quantifier elim-
ination of T . As T is stable there are only λ-many (quantifier-free) types
over A of sequences of length ω.

The second part was proved by Bustamante-Medina (see [7], the discus-
sion preceding remark (3.32)). Since we are going to use this fact later on,
we repeat his argument here. So assume that T is totally transcendental and
let A = aclσ(A) ⊂ C and ā ∈ C be a tuple. Let B = dclT(A, σi(ā)|i < 0) and
consider tpT (ā/B). Now our assumption that T is totally transcendental
implies that there is some n ∈ N such that tpT (ā/B) is the unique non-
forking extension of tpT (ā/A, σ−n(ā), . . . , σ−1(ā)) to B. Because σi is an
L-automorphism, it follows that tpT (σi(ā)/σi(B)) is the unique non-forking
extension of the type tpT (σi(ā)/A, σi−n(ā), . . . , σi−1(ā)) to σi(B). This
shows that TA is quantifier-free totally transcendental. 2

So in particular we have local ranks on quantifier-free formulae in TA.
Quantifier-free stability of TA has the following consequence, which will play
an important rôle in our proof of theorem (5.65). Recall that for a theory T ′

and parameter set A in T ′ the locally isolated quantifier-free types are said
to be dense in (the space of) quantifier-free types over A if for any quantifier-
free formula ϕ(x̄) in the language of T ′ there is some quantifier-free type π
containing ϕ such that for any finite set ∆ of quantifier-free formulae there
is some δ(x̄) ∈ π (in the language of T ′) such that δ(x̄) ⊢ π|∆.
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Proposition 5.24. Let T be a countable complete stable L-theory, with
quantifier elimination and elimination of imaginaries. Assume that TA
exists and eliminates imaginaries. Then for any completion of TA and
any parameter set A (in the sense of that completion) the locally isolated
quantifier-free types are dense in the space of quantifier-free types over A. If
T is totally transcendental, then the isolated quantifier-free types are dense
in the quantifier-free types over A.

Proof. It is well-known that in a countable stable theory the locally
isolated types are dense over any parameter set (see for example [74], theo-
rem (11.8)). Even if TA might be unstable, its quantifier-free fragment is
stable by lemma (5.23). It is countable because T is. From now on the
proof follows the same line as for countable stable theories: Let ϕ(x̄) be a
quantifier-free Lσ-formula and (∆i)i∈N be an enumeration of all finite sets of
quantifier-free Lσ-formulae ψ(x̄, ȳ). One constructs recursively a sequence
ϕi(x̄) of quantifier-free Lσ(A)-formulae. Starting with ϕ0(x̄) = ϕ(x̄) one
lets ϕn+1(x̄) be a quantifier-free Lσ(A)-formula of minimal ∆n+1-rank and
-degree with |= ϕn+1(x̄) → ϕn(x̄). Then {ϕn(x̄) | n ∈ N} axiomatises a
locally isolated quantifier-free type over A that contains ϕ(x̄). 2

Finally we want to mention the impact of the Independence Theorem on
elimination of imaginaries. We say that TA satisfies the Independence Theo-
rem over algebraically closed sets if it satisfies the Independence Theorem
(5.20) with the hypothesis (M,σ) |= Tσ weakened to (M,σ) be an aclσ-
closed substructure of (C, σ) (of the home sort of (C, σ), not of (C, σ)eq). At
first sight this may seem peculiar, so let us point out that if aclT(A) is a
model of T , as for example when T is ACF or SCFe (e ∈ N) or when T
is strongly minimal with aclT(∅) infinite, then this is nothing but theorem
(5.20). When T is DCF , TA exists and also satisfies the Independence
Theorem over algebraically closed sets, as proved by Bustamante-Medina
[7].

Proposition 5.25. Let T be stable and eliminate imaginaries and let
TA satisfy the Independence Theorem over algebraically closed sets. Then
TA eliminates imaginaries (i.e. every completion of TA does).

Note that this was proved for several theories of fields with generic auto-
morphism, for example in the case when T is ACF by Chatzidakis and
Hrushovski in [14], when T is SCFe (e ∈ N) by Chatzidakis in [12], when
T is DCF by Bustamante-Medina in [7], and for strongly minimal T with
aclT(∅) infinite by Chatzidakis and Pillay in [16]. We step here along Pillay’s
proof line in [52] where he did the strongly minimal case.

Proof of proposition (5.25). Let (M,σ) be a model of TA and e be an
imaginary element. We may assume that (M,σ) is enough saturated. To
distinguish, we write aclσ and dclσ if we compute the respective closure in
the home sort (and obtain subsets if M), and acleqσ and dcleqσ if we compute
the respective closure in (M,σ)eq. Choose a ∅-definable function f and a
tuple ā ∈ M such that e = f(ā). Let b̄ realise the type of ā over e and be
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independent from ā over e. Further let c̄ ∈ M realise the type of ā over e
and be independent from aclσ(ā, b̄) over acleqσ (e).

There is a unique smallest aclσ-closed subset A ⊂M (notM eq) such that
c̄ is independent from aclσ(ā, b̄) over A: if Cb(p) is the canonical basis of the
type p = tp((σi(c̄))i∈Z/aclσ(ā, b̄)), all in the sense of T , then we just take
A = aclT(Cb(p)). Thereby we may assume that Cb(p) ⊂ M by elimination
of imaginaries of T . A does the job because clearly σ(p) = p and hence
σ(Cb(p)) = Cb(p), which implies that A = aclσ(A) by corollary (5.12).

At first we want to show that e is algebraic over A. To that end, let
us show that A ⊆ acleqσ (e). We have chosen c to be independent from
aclσ(ā, b̄) over acleqσ (e), so c is independent from acleqσ (ā, b̄) over acleqσ (e). By
transitivity we obtain that c is independent from acleqσ (ā, b̄) over acleqσ (a)
because e ∈ acleqσ (ā). Hence c is independent from aclσ(ā, b̄) over aclσ(ā), as
a, b, c ∈ M . By the choice of A, we then have that A ⊆ aclσ(ā). The same
argument shows that A ⊆ aclσ(b), whence we get A ⊆ aclσ(ā) ∩ aclσ(b̄). As
acleqσ (ā) ∩ acleqσ (b̄) = acleqσ (e) we conclude that A ⊆ acleqσ (e).

So A ⊆ acleqσ (e). c is independent from aclσ(ā, b̄) over A, so it is in-
dependent from acleqσ (ā, b̄) over acleqσ (A). As acleqσ (A) ⊆ acleqσ (e)acleqσ (a, b),
transitivity implies that c is independent from e over A. But e is algebraic
over c, so it must be algebraic already over A.

We want to show that e is even definable over A. To that end choose any
realisation ā′ of tpσ(ā/A). There is some b̄′ realising tpσ(ā

′/A) which is in-
dependent from ā′ over A, with f(b̄′) = f(ā′) and which is independent from
b̄ over A. As A is aclσ-closed we can apply the Independence Theorem over
algebraically closed sets to find some realisation d̄ of tpσ(ā/Ab̄)∪tpσ(ā

′/Ab̄′).
But then f(ā) = f(d̄) = f(ā′), so it follows that e is definable over A.

What we have shown is that there is some real tuple ā′ with ā′ ∈ acleqσ (e)
and e ∈ dcleqσ (ā′). As T eliminates imaginaries, the set of e-conjugates of ā′

is interdefinable with a real tuple, and thus so is e. 2

Reducts. The reduct of (M,σ) we will primarily deal with is (M,σφ),
where φ is an automorphism of T which is L-definable over ∅. We have
not found the following in the literature in this generality. It is a direct
generalisation of [14], corollary (1.12).

Proposition 5.26. Let T be a stable L-theory with quantifier elimina-
tion and elimination of imaginaries such that TA exists. Let (M,σ) |= TA
and φ be an automorphism of T that is L-definable over ∅. Let further
k ∈ Z \ {0} and n ∈ N.

(1) The reduct (M,σkφ) is a model of TA. If (M,σ) is κ-saturated,
then so is (M,σkφ).

(2) If there is τ ∈ AutT (aclT(∅)) such that τn = σ|aclT(∅), then there
is some elementary extension (N, σ) of (M,σ) and τ ′ ∈ AutT (N)
extending τ such that (N, τ ′) |= TA and τ ′n = σ.

Proof. Obviously (M,σkφ) |= Tσ. We show that (M,σkφ) is existentially
closed in models of Tσ.
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First note that if (M,σ) |= TA, then so is (M,σ−1). Indeed, if (N, τ) is
a model of Tσ extending (M,σ−1), then (N, τ−1) is a model of Tσ extending
(M,σ). So to prove 1., we may assume that k ≥ 1.

Second, by the assumption made on φ, if (N, τ) |= Tσ extends (M,σφ),
then (N, τ ◦ φ−1) |= Tσ extends (M,σ), and (M,σφ) is existentially closed
in (N, τ) if and only if (M,σ) is so in (N, σ ◦ φ−1). Thus we may assume
that φ = id.

Let (N, τ) |= Tσ be an extension of (M,σk). To show that (M,σk) is
existentially closed, it clearly suffices to show that there is some elementary
extension M ′ of M and some automorphism σ′ of M ′ extending σ such that
σk|N = τ . Choose Ni |= σitp(N/M) for any i ∈ [0; k − 1], starting with
N0 = N , such that N0, . . . , Nk−1 are pairwise independent over M in the
sense of T . Choose further elementary maps σi : Ni−1 −→Ni for i ≥ 1
extending σ and define σk := τ ◦ (σk−1 ◦ · · · ◦σ1)

−1. Then σk : Nk−1 −→N is
an elementary map extending σ. As T is stable, it follows from lemma (5.2)
that σ′ = σ1 ∪ · · · ∪ σk is elementary (in the sense of T ) and thus extends to
an automorphism of some elementary extension M ′ of M that contains N .
By abuse of notation we call this automorphism σ′, too. By construction,
σ′ extends σ and σ′k|N = τ .

It is clear that if (M,σ) is κ-saturated, then so is (M,σkφ).

For the second assertion, we may assume that (M,σ) is enough satu-
rated. Then from the above argument it follows that (M,σn) is enough
saturated, so by the description of the completions of TA we are done. 2

Existence of TA. To round up our exposition of the general model
theory of TA, we shortly mention the question of existence. T is assumed
to be countable in this paragraph.

Given a model complete theory T , neither necessarily complete nor nec-
essarily stable, it is a general (open) problem to find necessary and sufficient
conditions on T for the class of existentially closed models of Tσ to be ele-
mentary. Baldwin and Shelah gave such a characterisation in [6] in the case
when T is a countable complete model complete stable theory. We present
the translation of Pillay from [50].

Recall that an L-theory T has non-fcp7 if for any L-formula θ(x̄, ȳ, z̄),
with x̄ and ȳ variable tuples of the same length, there is an L-formula φ(z̄)
such that for any ā for which θ(x̄, ȳ, ā) defines an equivalence relation E, E
has infinitely many classes if and only if |= φ(ā).

Theorem 5.27 (Baldwin-Shelah, Pillay). For a countable stable theory
T with quantifier elimination, TA exists if and only if

(1) T has non-fcp, and
(2) for every finite set ∆1 of L-formulas there is a finite set of L-

formulas ∆2 ⊇ ∆1, such that for any (M,σ) |= Tσ, any complete

7we use Shelah’s definition, which is well-known to be equivalent to Keisler’s for stable
theories T , see [30]
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∆1-type p(x̄, ȳ) over M , where x̄ and ȳ have the same length, and
for any complete ∆2-type q(x̄, ȳ) over M extending p(x̄, ȳ), if q(x̄, ȳ)
implies that the ∆2-type of ȳ over M equals σ of the ∆2-type of x
over M , then there is a complete type q′(x̄, ȳ) over M extending
p(x̄, ȳ) such that q′(x̄, ȳ) implies that tp(ȳ/M) = σ(tp(x̄/M)).

Proof. For a proof we refer to [50]. 2

As outcome of the proof given in [50], one obtains the following axioms
for TA in case it exists. Let ϕ(x, y, z) be an L-formula and set ∆1 = {ϕ}.
Let ∆2 be a finite set of L-formulas containing ∆1 as in fact (5.27). Then
the axiom scheme contains:

(M,σ) is a model of Tσ, and for all d ∈ M and all complete ∆2-types
q(x, y) over M such that ϕ(x, y, d) ∈ q and q(x, y) implies that tp∆2

(y/M) =
σ(tp∆2

(x/M)), there is some (a, b) ∈M realising ϕ(x, y, d) with σ(a) = b.

This is first order because T has the non-fcp: As T is stable, a com-
pactness argument shows that for any model M of T and for any formula
ϕ(x̄; ȳ) in L there is a finite set ∆ of L-formulae such that any ϕ-type p over
M is definable by a formula ψ(ȳ, ā), with ψ(ȳ; z̄) ∈ ∆ and ā ∈ M . Since T
has the non-fcp, given a finite set of formulas ∆ and δ(x, z) ∈ L, there is
some L-formula ψ(z) such that for any model M of T and any tuple a ∈M ,
M |= ψ(a) if and only if δ(x, a) defines a complete ∆-type over M .

5.2. Fixed Structures and the PAC-property

We discuss the fixed structure Fix(M,σ) of a generic automorphism
(M,σ) |= TA and the PAC property. We define the notion of a PAC
structure for arbitrary theories, in particular without requiring that the
ambient theory be stable, and analyse the relation to the existing definitions:
for example if the ambient theory is stable, then our definition coincides with
those in the literature. We also include the proof that Fix(M,σ) is a PAC
structure.

5.2.1. Fixed Structures. For an Lσ-structure (A,α), we call

Fix(A,α) = { a ∈ A : α(a) = a }
the fixed set of (A,α). Let us start noting some easy observations. First, if
T is an arbitrary L-theory and (M,σ) |= Tσ, then Fix(M,σ) is a dclT-closed
subset of M because σ is an L-automorphism of M . Hence if Fix(M,σ) is
non-empty, it is an L-substructure of M . The same holds for Fix(M,σφ) for
all automorphisms φ ofM that are L-definable without parameters. Further-
more, as σ is an Lσ-automorphism, it restricts to an automorphism of the
L-structure Fix(M,σφ), and by definition we have σ|Fix(M,σφ) = φ−1. For
the same reason φ is an Lσ-automorphism, so Fix(M,σφ) is definably closed
in the Lσ-structure (M,σ). Hence Fix(M,σφ) is also an Lσ-substructure of
(M,σ).

In the following we will not distinguish between the subset Fix(M,σ)
of M and the L-substructure Fix(M,σ) of M , and call Fix(M,σ) the fixed
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structure of (M,σ). For an automorphism φ of T that is L-definable without
parameters, Fix(M,σφ) will be called fixed structure also.

Remark 5.28. If TA eliminates imaginaries, then Fix(M,σφ) is stably
embedded in all (M,σ) |= TA.

Proof. The canonical parameter of a definable subset X of Fix(M,σφ)
is fixed by σφ. 2

In particular, if (M,σ) is sufficiently saturated, then by lemma (4.15)
any automorphism of Fix(M,σ)ind lifts to an automorphism of (M,σ). The
structure Fix(M,σ)ind is a priori richer than the L-structure Fix(M,σ) in
that there are more definable sets. However we will show in section 5.5 that
in some sense Fix(M,σ)ind is not richer than Fix(M,σ), namely we will
show that Fix(M,σ) is conservatively embedded over certain L-elementary
substructures, see lemma (5.62) and proposition (5.63).

5.2.2. PAC-Structures. The fixed structure Fix(M,σ) of a model
(M,σ) of TA has a particularly interesting property: it is a so-called PAC-
substructure of M (see proposition (5.40)). So far this notion was defined
only for substructures of a stable theory. We are going to introduce the no-
tion of a PAC structure for an arbitrary first order theory T with quantifier
elimination. Below we will analyse the relationship between our definition
and the known definitions in the literature for stable theories. But before, let
us recall a few observations concerning substructures of models of T , which
we use frequently in what follows. All are trivial or follow immediately from
quantifier elimination of T .

Let T be an arbitrary first-order L-theory with quantifier elimination.
If K is an L-substructure of some model of T , then of course any K ′ ≡L K
embeds into some model of T . If K is dclT-closed, then so is K ′, and further,
being dclT-closed does not depend on the embedding or on the model into
which K embeds. This follows from quantifier elimination of T . So by
abuse of language we say that K is dclT-closed, even if we have not fixed
an embedding. Also Gal(K), the group of permutations of aclT(K) over K
that are elementary in the sense of T , is independent of the embedding of K
into some model of M , up to isomorphism. So we will talk of Gal(K) even
if no embedding into a model of T is specified. Finally if K ′ 4L K, then
aclT(K ′) ∩K = K ′.

Definition 5.29. Let T be an arbitrary L-theory with quantifier-elimi-
nation and K be an L-structure which embeds into some model of T .

(1) An extension F ⊇ K of L-structures is called regular for T if F
embeds into some model of T such that
(a) aclT(K) ∩ F = K and
(b) The restriction map Gal(F )−→Gal(K) is surjective.

(2) K is said to be a pseudo-algebraically closed structure for T , or
shortly a PAC-structure for T , or PAC for T , if K is existentially
closed in all L-extensions that are regular for T .
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Obviously any model of T is PAC for T . If K is a PAC structure for T
and contained in the model M of T , we say that K is a PAC-substructure
of M for short. We also say that K is dclT-closed PAC for T to abbreviate
K is a dclT-closed PAC L-substructure of some model of T . If it is clear
from the context what theory T is meant, we just say that F ⊇ K is a
regular extension. Also, as in field theory, we write F/K for the extension
of L-structures K ⊆ F .

Remark 5.30. (1) The property of the extension F/K to be regular
for T does not depend on the embedding into a model of T . For
as F embeds into some model, qfdiag(F ) is a complete type in the
sense of T by quantifier elimination. Hence any two images are
conjugate over ∅ (in the monster model of T ). Likewise, for an
L-structure K to be PAC for T is independent of the embedding.

(2) K is PAC if and only if any regular extension embeds into some
elementary extension of K.

(3) If F/K is regular for T and K ⊂ H ⊂ F , then H/K is regular for
T .

The PAC-property originates from Ax’s article [2], where he introduced
the notion of a PAC-field (called regularly closed field there). It has by
now run through several steps of generalisation; first by Hrushovski [26]
and later by Pillay and Polkowska [53]. We will analyse the relationship
between these generalisations and our definition, but before that we give
some examples.

Example 5.31. Let e ∈ N and T be SCFe,b, the theory of separably
closed fields of Ershov invariant e in the language L with constant symbols
b1, . . . , be for the p-basis and the λ-functions. A field K can be expanded to
a dclT-closed PAC structure for SCFe,b if and only if K is a PAC field of
Ershov invariant e.

Proof. Choosing a p-basis for K we may assume that K is an L-
substructure of some (sufficiently saturated) model Ω of SCFe,b. Because
aclSCFe,b

(F ) = F sep for any subfield F of Ω that contains the p-basis b1, . . . , be,
an extension F/K of L-structures is regular for SCFe,b if and only if the
field extension Quot(F )/K is regular. 2

Example 5.32. Let L be the ring language with λ-functions and SCF∞,λ
be the L-theory of separably closed fields of infinite Ershov invariant. A field
K can be expanded to a dclT-closed PAC structure for SCF∞,λ if and only
if K is a PAC field of infinite Ershov invariant.

Proof. The proof is the same as in the previous example. Separability
of the field extension F/K is ensured by the λ-functions of F extend the
λ-functions of K. 2

Example 5.33. Let L be the natural language of differential fields and
T be DCF0, the theory of differentially closed fields of characteristic zero.
A differential field K is PAC for DCF0 if and only if K is a pseudo-
differentially closed differential field: any differential variety over K has
a K-rational point.
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Proof. Similar as in the previous example. 2

Example 5.34. Recall from [59] that a field K is called pseudo-real
closed (PRC for short) if K is existentially closed in all regular field exten-
sions to which any ordering of K extends. Let T be RCF , the theory of real
closed fields, in the language L of rings with ordering <. If K is a PRC
field, then then any expansion of K to an ordered field is PAC for RCF .

Proof. Let K be a PRC field, and < a field ordering on K. For an L-
extension F of (K,<) that is regular for RCF , the underlying field extension
is regular. Thus K is existentially closed in F . 2

We now analyse the relationship of our definition and those in the li-
terature. Recall (e.g. from chapter 1) that a primary field extension of a
perfect field is regular, and that regular field extensions F of a perfect field
k correspond to stationary types over k (in ACF ). The following lemma
can be viewed a generalisation of this observation.

Lemma 5.35. Let T be a stable L-theory with quantifier elimination and
elimination of imaginaries, and let K and F be dclT-closed L-substructures
of some model of T . Assume that F extends K. Then the following are
equivalent:

(1) aclT(K) ∩ F = K.
(2) F/K is regular for T .
(3) tpT (F/K) is stationary (in the sense of T ).

Proof. By elimination of imaginaries for T and as F is dclT-closed,
tpT (F/F ∩ aclT(K)) is stationary. So (1) implies (3).

To show that (3) implies (2), let p = tpT (F/K) be stationary. If b ∈
aclT(K) ∩ F has n conjugates over K, then p has at least n extensions to
aclT(K). As K is dclT-closed it follows that b ∈ K.
Furthermore, α

(
tpT (F/aclT(K))

)
= tpT (F/aclT(K)) for all α ∈ Gal(K) by

stationarity, so α∪ idF is elementary and lifts to an element of Gal(F ). Thus
F/K is regular for T .

That (2) implies (1) is trivial. 2

Corollary 5.36. Let L be the ring language and T be ACFp (with p a
prime of zero). A field K is a dclT-closed PAC structure for T if and only
if K is a perfect PAC field of characteristic p.

Proof. Any field extension of a perfect field is separable, so the assertion
follows from lemma (5.35) and theorem (1.12). 2

Corollary 5.37. Let T be a totally transcendental L-theory with quan-
tifier elimination and elimination of imaginaries, and let K be an L-sub-
structure of some model of T . Then the following are equivalent:

(1) K is a dclT -closed PAC structure for T .
(2) Any formula of Morley-degree one with parameters in K has a so-

lution in K.
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Hrushovski [26] takes property (2) of the above equivalence to define
the notion of a PAC-structure in strongly minimal theories.8

Let κ be a cardinal. Recall that an L-structure K is quantifier-free κ-
saturated if any quantifier-free type in the sense of Th(K) of size at most κ
is realised in K.

Corollary 5.38. Let T be a complete stable L-theory with quantifier
elimination and elimination of imaginaries. Let K be an L-substructure
of some model of T and κ ≥ |T |+ be a cardinal. Then the following are
equivalent:

(1) K is a quantifier-free κ-saturated L-structure which is dclT -closed
and PAC L structure for T .

(2) For any subset A ⊂ K of size at most κ, any stationary type over
A in the sense of T is realised in K.

Pillay and Polkowska [53] defined the notion of a κ-PAC substructure
of a model of a stable theory by property (2) of the above equivalence.

Proof of corollary (5.38). We first prove (1) implies (2), so let K be
quantifier-free κ-saturated, dclT -closed and PAC for T , A be a subset of
K of size at most κ and let p be a stationary type over A in the sense of T .
If ā realises p and is independent from K over A in the sense of T , then the
L-extension F = dclT(ā,K) of K is regular for T by lemma (5.35). Hence
the set π = qfdiagL(dclT(ā, A)) is finitely satisfiable in the L-structure K
and can be viewed a partial type in the sense of K with parameters from A.
By the saturation assumption on K there is a realisation b̄ of π in K. Now
by quantifier elimination of T it follows that b̄ |= p.

For the converse, it is clear that K is dclT-closed. To show that K is
PAC for T , let F/K be regular for T , and ā ∈ F be a finite tuple that
satisfies the quantifier-free L-formula ϕ(x̄, m̄), with m̄ ∈ K. By lemma
(5.35) the type p = tpT (ā/K) is stationary, as dclT(ā,K)/K is regular for
T and K is dclT-closed. Because T is stable there is some subset A0 ⊂ K
with |A0| ≤ |T | such that p|A0,m̄ is stationary. Then by assumption p|A0,m̄

is realised in K. In particular there is some b̄ ∈ K with K |= ϕ(b̄, m̄).

To see that K is quantifier-free κ-saturated, let K1 4L K and K2 be
an elementary extension of K1. Assume that K1 and K2 have size at most
κ. K1 and K2 embed into models of T and are dclT-closed because K is
so. Furthermore aclT(K1) ∩K2 = K1, so by elimination of imaginaries for
T it follows from lemma (5.35) that tpT (K2/K1) is stationary. Hence K2

embeds over K1 into K. This shows that K is quantifier-free κ-saturated.
2

Remark 5.39. It follows from the above proof that if Th(K) happens
to be model complete, then “quantifier-free κ-saturated” can be replaced by
“κ-saturated”.

8We note that Hrushovski requires tpT (ā/aclT (C) ∩ dclT (Cā)) to be stationary for
any tuple ā and parameter set C, instead of full elimination of imaginaries. We could have
done so, too, but we want to stay coherent with our general assumption of elimination of
imaginaries.
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Proposition 5.40 (Pillay-Polkowska). Let T be stable with quantifier
elimination and elimination of imaginaries. Assume that TA exists and
eliminates imaginaries. Then for any model (M,σ) of TA, Fix(M,σ) is a

dclT -closed PAC L-structure for T . Furthermore Gal(Fix(M,σ)) = Ẑ.

Proof. That Fix(M,σ) is a PAC for T follows from lemma (4.1) of [53].

That Gal(Fix(M,σ)) = Ẑ follows from a standard argument. We give the
proof for convenience.

To begin with, it is clear that Fix(M,σ) is dclT-closed, as σ is an L-
automorphism.

Denote F = Fix(M,σ). It follows from Galois Theory [57] that Gal(F )
is procyclic. Namely, F = Fix(aclT(F ), σ|aclT(F )) and so σ|aclT(F ) generates
Gal(F ) topologically. Hence we only have to show that for any n ∈ N there
is an open subgroup of Gal(F ) of index n. Reasoning as in the proof of (5.26)
we find an extension (N, σ) |= Tσ of (M,σ) and pairwise distinct elements
c0, . . . , cn−1 ∈ N with σ(ci) = ci+1 (where cn = c0). Hence

(N, σ) |= ∃x̄ σn(x̄) = x̄ ∧
n−1∧

i=1

σi(x̄) 6= x̄

and thus so does (M,σ). So we find a ∈ M with σn(a) = a and σi(a) 6= a
for all i ∈ [1;n−1]. Using elimination of imaginaries and Galois theory [57]
we see that the stabiliser of the tuple a, σ(a), . . . , σn−1(a) in Gal(F ) is an
open subgroup of Gal(F ) of index n.

To show that F is PAC let H be a regular extension of F . By definition
H embeds into some model of T , which we may assume to contain M also.
As in the proof of corollary (5.38) we may assume that H = dclT(āK) for
some finite tuple ā. So p = tpT (H/F ) is a complete stationary type in the
sense of T by lemma (5.35). Further we may assume that H is independent
from M over F in the sense of T . It follows from stationarity of p that
σ(p) = p because σ leaves F pointwise fixed. Hence σ∪ idH is elementary in
the sense of T , and so extends to some automorphism τ of some model N of
T . As TA is the model companion of Tσ, we may assume that (N, τ) |= TA.
Because TA is model complete we have (M,σ) 4 (N, τ), whence it follows
that that F is existentially closed in H. 2

Remark 5.41. The notion of regular extension for T serves us mainly
to define the PAC property. We could have defined both only for stable
theories, by saying that an extension F/K is regular if and only if it is
regular in the sense of our definition (5.29), and additionally the canonical
basis of tpT (F/K) is contained in K (rather than in dclT(K)). If we did this,
then PAC fields would be exactly the PAC structures for ACF . However,
we would loose example (5.34).

5.3. Generic Automorphisms of Stable Fields

After the general theory in the previous sections, we now discuss some
examples. We are particularly interested in the following theories of stable
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fields with a generic automorphism, though other theories admit generic
automorphisms, too. We give references below.

Algebraically Closed Fields. Maybe the most prominent example
is ACFA, the theory of algebraically closed fields with a generic automor-
phism. We have already discussed it in the previous chapter, so we recom-
memorate only briefly. For references we refer to the previous chapter. Let
Lring = { 0, 1,+,−, · } be the ring language and T be ACF , the Lring-theory
of algebraically closed fields. T is model complete and admits quantifier
elimination. It is strongly minimal and eliminates imaginaries. ACFσ has a
model companion, ACFA. ACFA is supersimple unstable. The fixed field
of a model of ACFA is a pseudo-finite field, and to any given pseudo-finite
field k there is a model of ACFA whose fixed field is elementarily equivalent
to k.

Differentially Closed Fields. Recall that a differential field (K, d)
consists of a field K together with a derivation d : K −→K. Let Ld be the
natural language of differential fields, namely Ld = { 0, 1,+,−, ·, d } with d
a unary function symbol for the derivation. (K, d) is called differentially
closed if it is existentially closed among differential fields (as Ld-structures).
We call DCF0 the L-theory of differentially closed fields in characteristic
zero. DCF0 is complete and admits quantifier elimination. It is ω-stable of
rank ω and eliminates imaginaries. We refer to [75] and [72] for details on
differential algebra and differentially closed fields.

If (K, d) is a differential field and σ is an automorphism of (K, d), that
is, a field automorphism commuting with the derivation, we call (K, d, σ) a
difference-differential field. We let Ld,σ be the language of differential fields
augmented by a unary function symbol σ.

Fact 5.42 (Hrushovski, unpublished). DCF0 admits generic automor-
phisms. The model companion of the Ld,σ-theory of difference-differential
fields of characteristic zero is called DCFA.

Proof. We refer the reader to Bustamante-Medina’s thesis [8].

Fact 5.43 (Bustamante-Medina). DCFA satisfies the Independence Theo-
rem over algebraically closed sets and eliminates imaginaries. If (k, d) is a
differential field, then (k, d) ≡Ld

Fix(Ω, d, σ) for some model Fix(Ω, d, σ) of
DCFA if and only if

(1) k is pseudo-finite of characteristic zero, and
(2) (k, d) satisfies the geometric axioms of differentially closed fields:

For every (absolutely irreducible) affine variety V over k and (abs.
irred.) subvariety W of the torsor9 τ(V ) of V projecting generically
onto V , there is a ∈ V (k) such that (a, d(a)) ∈W .

Proof. The Independence Theorem over algebraically closed sets for
DCFA is proved in [7], theorem (3.31). Elimination of imaginaries was

9Recall for an affine variety V ⊆ An defined over the differential field (K, d) the
torsor τ(V ) of V is the subvariety of A2n defined by the equations f(X̄) = 0 and
Pn

j=1
∂f

∂Xj
(X̄)Yj + fd(X̄) = 0, for all f ∈ I(V ).
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proved in [7], proposition (3.36). The last assertion was mentioned in [7],
theorem (4.4) and the discussion following theorem (4.4). 2

It is well-known that a differential field of characteristic zero is pseudo-
differentially closed10 if and only if it satisfies condition (2) of the above
equivalence. As Pillay and Polkowska show in [53], proposition (5.6), the
class of PAC-substructures of models of DCF0 is axiomatised by the above
axiom scheme (2).

Separably Closed Fields. We fix a prime number p and e ∈ N. We
call SCFe,b the theory of separably closed fields of Ershov invariant e in
the language L(b̄), which denotes the ring language augmented by constant
symbols b̄ = b1, . . . , be for the p-basis. SCFe,b is model complete, stable
and eliminates imaginaries. We refer to [18] for proofs and more details on
separably closed fields.

Fact 5.44 (Chatzidakis). SCFe,b admits generic automorphisms. The
model companion of the L(b̄)σ-theory of difference fields with p-basis b̄ is
denoted by SCFAe,b (note that the p-basis is fixed by the automorphism).
SCFAe,b satisfies the Independence Theorem over algebraically closed sets
and eliminates imaginaries. The fixed field of a model of SCFAe,b is a one-
free PAC field with p-basis b̄, and to any one-free PAC field k with p-basis b̄
there is some model of SCFAe,b whose fixed field is elementarily equivalent
to k (in the language L(b̄)).

Proof. For the proof of this fact we refer to [12]. 2

Note that though SCFe,b does not eliminate quantifiers, it serves as an
example for the theory developed in the previous sections. For if T denotes
a model complete theory in the language L and Tσ has a model companion
TA, and if TM denotes the Morleysation of T , then (TM )σ∪TA is the model
companion of (TM )σ.

Let us mention that the theory SCF∞,λ of separably closed fields of infi-
nite Ershov invariant in the ring language with λ-functions is complete and
eliminates quantifiers (see [18]). Also, SCF∞,λ admits generic automor-
phisms (see [12]). However it does not eliminate imaginaries, so we cannot
apply our theorem (5.65) in that case.

Though our main interest is in fields, we do not keep quiet about some
other stable theories which admit generic automorphisms. We will be very
brief and refer the reader to the references given below.

Theories of Finite Morley Rank. Recall that an L-theory T of finite
Morley rank is said to have the definable multiplicity property, DMP for
short, if T has definable Morley rank and if whenever φ(x̄, ā) has Morley
rank n and Morley degree k there is some L-formula ψ(ȳ) ∈ tpT (ā/∅) such
that for all ā′ in some model M of T , M |= ψ(ā′) if and only if φ(x̄, ā′) has
Morley rank n and Morley degree k. An argument of Lascar [36] shows that
if T is a theory of finite Morley rank with DMP , then TA exists (see [36],

10see the definition in example (5.33)
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example 5). Hasson and Hrushovski [25] show that if T is strongly minimal,
then TA exists if and only if T has the DMP .

The theory ACF is a particular example, but also the theory of an
infinite set as well as the theory of infinite K-vector spaces (for a given field
K). Note that for the latter two, TA is stable by proposition (5.22), as in
both cases dclT(A) = aclT(A) for any parameter set A.

Modules. Chatzidakis and Pillay show in [16] that if T is a complete
ω-stable theory of modules, that TA exists. TA is stable in this case, because
any model (M,σ) of Tσ can by viewed again as a module over R[σ, σ−1] if
M is an R-module.

5.4. One-free PAC structures

In this section we wish to generalise theorem (4.2) on pseudo-finite fields
to one-free PAC structures of a stable theory. This is done under the as-
sumption that this class is elementary (see theorem (5.47)).

As we have mentioned in section 1.2, the PAC fields form an elementary
class. Also, if T is an L-theory of finite Morley rank with the DMP , quanti-
fier elimination and elimination of imaginaries, then the class of dclT-closed
PAC-substructures K of models of T is elementary. Namely, because of the
DMP it is a first order property of the tuple m̄ that the formula ϕ(x̄, m̄)
has multiplicity one, expressed by a quantifier-free formula. So one writes
down the L-theory expressing that K is an L-substructure of some model
of T and that any degree-one formula (in the sense of T ) with parameters
in K has a solution in K.

In general however, even if T is stable, the class of PAC-structures is
not necessarily elementary (we refer to [53] for examples). We fix for the
rest of this section a complete stable L-theory T with quantifier elimination
and elimination of imaginaries such that TA exists and has also elimination
of imaginaries. Our aim is to generalise theorem (4.2) for the class of L-
structures that are PAC for T and that are elementarily equivalent (in the
language L) to Fix(M,σ) for some (M,σ) |= TA. We do this under the
assumption that this class is elementary, and let Σ denote its common L-
theory.

Corollary 5.45. Let Σ be a consistent L-theory whose models are pre-
cisely those L-structures K that are PAC for T and for which there is some
model (M,σ) of TA such that K ≡L Fix(M,σ). Then Σ is a simple theory.
If T is superstable, then Σ is supersimple.

Proof. By definition of Σ, any modelK |= Σ is elementarily equivalent as
an L-structure to Fix(M,σ) for some model (M,σ) of TA. As simplicity and
supersimplicity are preserved under interpretations (see corollary (2.8.11)
and remark (2.8.14) of Wagner’s book [71]), the assertion follows from
corollary (5.21). 2

Example 5.46. We have mainly the following examples in mind. As is
well-known, in all of them the class of L-structures under consideration is
elementary.
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(1) Let L be the ring language and T be (any completion of) ACF .
Then Σ is nothing but the theory of pseudo-finite fields.

(2) Let L be the natural language of differential fields and T be DCF0,
the theory of differentially closed fields of characteristic zero. A
PAC substructure of some model of T is nothing but a pseudo-
differentially closed field of characteristic zero, and the class of
one-free pseudo-differentially closed fields of characteristic zero is
elementary (see fact (5.43)). Σ is the theory of one-free pseudo-
differentially closed differential fields of characteristic zero.

(3) Let e ∈ N and T be SCFe,b, the theory of separably closed fields of
Ershov invariant e, in the ring language with constant symbols for
the p-basis and λ-functions. As we have seen in example (5.31) a
PAC structure for T is nothing but a PAC field of Ershov invariant
e. Σ is the theory of one-free PAC fields of Ershov invariant e.

Generalising (4.2) we wish to prove the following theorem.

Theorem 5.47. Let T be a complete stable L-theory with quantifier
elimination and elimination of imaginaries. Assume that TA exists and eli-
minates imaginaries. Further, we assume that Σ is a (consistent) L-theory
whose models are precisely the PAC substructures of models of T that are
elementarily equivalent to the L-structure Fix(M,σ) for some model (M,σ)
of TA.

Let F1 and F2 be models of Σ containing a common L-substructure E.
Then F1 ≡E F2 if and only if there is some model M of T and an L-
embedding ϕ of E into M and L-embeddings of F1 and F2 into M extending
ϕ such that aclT(E) ∩ F1

∼=E aclT(E) ∩ F2 as L-structures.

We need some preparation before we give the proof. By assumption any
model of Σ is an L-substructures of some model of T , so our observations
in section 5.2 on L-substructures of models of some theory with quantifier
elimination apply to models of Σ. Let us list for convenience what these
observations import into the present situation: Let K |= Σ. Then K is
dclT-closed because K ≡L Fix(M,σ), for some model (M,σ) of TA, and
Fix(M,σ) is dclT-closed. If K ′ is another model of Σ with K ′ 4L K, then
aclT(K ′) ∩ K = K ′. If E is an L-substructure of K with aclT(E) ∩ K =
E, then obviously E is dclT-closed and thus by lemma (5.35) the natural
restriction map Gal(K)−→Gal(E) is surjective, and that K/E is regular
for T . In particular K/K ′ is regular for T if K ′ 4L K.

Recall from chapter 1 that a parameter set A in a model of T is called

one-free if Gal(A) = Ẑ. In the same vein we call an L-structure K one-free

if it is an L-substructure of some model of T and Gal(K) = Ẑ. Let us
note that in the examples of fields above it is an elementary property to be
one-free.

Lemma 5.48. Let T be a complete stable L-theory with quantifier elim-
ination and elimination of imaginaries. Assume that TA exists and elimi-
nates imaginaries. Further, we assume that Σ is an L-theory whose models
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are precisely the L-structures which are PAC for T and that are elementar-
ily equivalent to the L-structure Fix(M,σ), for some model (M,σ) of TA.
Let K |= Σ.

(1) Gal(K) is procyclic. If K is |L|-saturated, then Gal(K) = Ẑ.

(2) If K 4L Fix(M,σ) for some (M,σ) |= TA, then Gal(K) = Ẑ if
and only if dclT

(
aclT(K),Fix(M,σ)

)
= dclT

(
Fix(M,σ)

)
.

Proof. To show (1), we may assume that K 4L Fix(M,σ) for some
model (M,σ) of TA. We abbreviate F = Fix(M,σ). Recall from above
that K is aclT-closed in F . So it follows that the natural restriction map
res : Gal(F )−→Gal(K) is surjective, whence Gal(K) is procyclic. To show

that Gal(K) = Ẑ in case K is |L|-saturated, we use the following claim.

Claim: Let T be a complete theory with quantifier elimination. Let A
be an L-substructure of some model of T whose underlying set is dclT-closed
and let ϕ(x̄, ȳ) be an L-formula. Then there is some set πϕ(z̄) of L-formulas
such that for any tuple ā ∈ A, πϕ is realised by ā in the L-structure A if and
only if ϕ(x̄, ā) is a complete consistent L(A)-formula in the sense of T .

Proof of the claim. The proof is immediate, so we omit it. 2

Now let n ∈ N. By lemma (1.9) we have to show that there is some
L-formula ϕ(x̄, z̄) and some ā ∈ K such that ϕ(x̄, ā) is a complete L(K)-
formula with exactly n solutions in a model of T containing K, because
Gal(K) is procyclic.

As Gal(F ) = Ẑ by proposition (5.40), it follows from lemma (1.9) that
there is ϕ(x̄, z̄) ∈ L and m̄ ∈ F such that ϕ(x̄, m̄) is a complete L(F )-
formula in the sense of T with exactly n solutions in M . Let δn(z̄) be a
quantifier-free L-formula such that M |= δn(c̄) if and only if ϕ(x̄, c̄) has
exactly n solutions in M . Then, as F is an L-substructure of M , we see
that m̄ realises {δn(z̄)} ∪ πδn(z̄) in F , where πδn is the set of L-formulae
given by the claim. As K 4L F and because K is |L|-saturated, there is

some realisation of {δn(z̄)}∪πδn(z̄) in K. We have shown that Gal(K) = Ẑ.

To prove (2), let (M,σ) be a model of TA with K 4L Fix(M,σ). Again
we abbreviate F = Fix(M,σ). We have just seen that Gal(K) is procyclic
and that res : Gal(F )−→Gal(K) is surjective. Clearly dclT(aclT(K), F ) =
aclT(F ) if and only if the automorphism group AutT (aclT(F )/aclT(K), F )
is trivial. By what has just been said, this is equivalent to res be an iso-
morphism, as any α ∈ AutT (aclT(F )/aclT(K), F ) restricts to the identity

in Gal(K). By lemma (1.4) this in turn is equivalent to Gal(K) = Ẑ. 2

Proof of theorem (5.47). Let F1 and F2 be two models of Σ and E be
a common L-substructure. Clearly aclT(E) ∩ F1

∼=E aclT(E) ∩ F2 in case
F1 ≡E F2, because by quantifier elimination of T , if F is a model of Σ
containing E, and M is a model of T containing F , then any a ∈ F which
is algebraic over E inside M is algebraic over E inside F .

For the converse, we may assume that E is aclT-closed in F1 and in F2.
Then F1/E and F2/E are regular for T by the remarks preceding lemma
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(5.48). Without loss we may assume that F2 is |L|-saturated, so Gal(F2) = Ẑ

by lemma (5.48.1). Choose a sufficiently saturated elementary extension Ω2

of F2, contained in some sufficiently saturated model of T . Then Ω2 is PAC
for T because Ω2 |= Σ. Furthermore Ω2/F2 and Ω2/E are regular for T ,
again by the remarks preceding lemma (5.48). E is dclT-closed because F1

is, so tpT (F1/E) is stationary and we may assume that F1 is independent
from Ω2 over E (in the sense of T ). Thus F1 is independent from F2 over
E. We choose topological generators σ1 and σ2 of Gal(F1) and Gal(F2)
respectively, both extending the same topological generator of Gal(E). Fur-
ther we choose an extension τ of σ2 to aclT(Ω2) that topologically generates
Gal(Ω2). Because aclT(F1) and aclT(F2) are independent over aclT(E), it
follows from proposition (5.3) that σ1 ∪ σ2 is elementary. We choose a lift
σ3 of σ1 ∪ σ2 to aclT(aclT(F1), aclT(F2)) = aclT(F1, F2) and let K denote
Fix(aclT(F1, F2), σ3).

Clearly K is dclT-closed. σ3 extends σ2, so Gal(K) = Ẑ. For the same
reason F2 is aclT-closed in K, hence the extension K/F2 is regular for T .
By lemma (5.35) tpT (K/F2) is stationary and so we can embed K over F2

into Ω2 because Ω2 is PAC for T and sufficiently saturated. We denote the
image by K ′. K ′ is dclT-closed because K is. Furthermore, τ restricts to
an element of Gal(K ′). As the restriction maps Gal(Ω2)−→Gal(F2) and
Gal(K ′)−→Gal(F2) are isomorphisms, it follows that the restriction of τ to
aclT(K ′) topologically generates Gal(K ′). This implies that the extension
Ω2/K

′ is regular for T .11 As in the proof of theorem (4.2) the assertion
follows by back-and-forth. 2

Corollary 5.49. Let F1 and F2 be models of Σ.

(1) F1 ≡ F2 if and only if there are embeddings of F1 and F2 into
models of T such that aclT(∅) ∩ F1

∼= aclT(∅) ∩ F2 as L-structures.
(2) Let further E be a common L-substructure and ā ∈ F1 and b̄ ∈ F2

be tuples (of the same length). Then tpF1
(ā/E) = tpF2

(b̄/E) if and
only if there are embeddings of F1 and F2 into models of T and an
E-isomorphism of L-structures

aclT(E, ā) ∩ F1
ϕ−−−→ aclT(E, b̄) ∩ F2

with ϕ(ā) = b̄.
(3) Let E ⊆ F be models of Σ, both contained in some model of T .

Then E 4 F if and only if aclT(E) ∩ F = E if and only if F/E is
regular for T .

Corollary 5.50. Let F |= Σ and A be a subset of F . Assume F is
embedded in some model of T . Then the model-theoretic closure of A in the
L-structure F is

aclF (A) = aclT(A) ∩ F .

Proof. We may assume that F is sufficiently saturated. Denote A0 =
aclT(A) ∩ F and let a ∈ F \ A0. Let F0 = aclT(A0, a) ∩ F . The extension
F0/A0 is regular by the remarks preceding lemma (5.48), so tpT (F0/A0) is

11Note that this was the Embedding Lemma in section 4.1.
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stationary. We can choose an infinite sequence (Fi)i<ω of realisations of
tpT (F0/A0) that are pairwise independent over A0 in the sense of T . As
A0 is aclT-closed in every Fi, it follows that Fi ∩ Fj = A0 whenever i 6= j.
All Fi are conjugate over A0 (in C), so they are isomorphic as autonomous
L-structures. We denote ai the image of a under these isomorphisms. Now
look at D = dclT(Fi : i < ω) ⊂ C. As tpT (F0/A0) is stationary, so is its
ω-fold free amalgam, which is tpT (Fi : i < ω /A0). Hence D/A0 is regular
for T . Because F is PAC for T and sufficiently saturated, we may assume
that D ⊂ F , and that aclT(Fi) ∩ F = Fi for all i ∈ N. By (2) of corollary
(5.49) it follows that a is not algebraic over A0 in the sense of F . 2

Note that as special cases, we obtain theorem (4.2), as well as the ana-
logues of that theorem for the class of one-free PAC fields of fixed Ershov
invariant e ∈ N, as well as the analogue for the class of one-free pseudo-
differentially closed differential fields of characteristic zero.

We have obtained theorem (5.47) quite recently. We are sure it can be
pushed further, for example to bounded PAC structures of stable theories.
For time reasons this will be done elsewhere.

5.5. Conservative Embedding

In the first part of this section we introduce the notion of conservative
embedding of one structure into another. Loosely speaking, the universe of P
is conserved when plunged into M . It will play a key rôle in our construction
of generic automorphisms in section 5.6. We first give the definition, and
then discuss examples and some first properties. In the second part of
the section we show that the fixed structure Fix(M,σ) is conservatively
embedded in the model (M,σ) of TA over L-elementary substructures K
with

dclT(aclT(K),Fix(M,σ)) = aclT(Fix(M,σ)) .

5.5.1. Definition and Examples. Consider an extension of languages
L ⊂ L′ and let M be an L′-structure. If P is a substructure of M with
respect to the language L, then a priori the structure induced on P from
the L′-structure M is richer than the L-structure on P . If this is not the
case, we call P conservatively embedded in M :

Definition 5.51. Let L and L′ be first-order languages with L ⊂ L′ and
assume that P is an L-substructure of the L′-structure M .

(1) We say that P is conservatively embedded in M if every subset of
(some cartesian power of) P that is L′-definable in the L′-structure
M using parameters from M is L-definable in the L-structure P
using parameters from P .

(2) If A is a subset of P , we say that P is conservatively embedded
over A in M if every subset X of (some cartesian power of ) P
that is L′-definable in the L′-structure M using parameters from
A, is L-definable in the L-structure P using parameters from A.
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If P is conservatively embedded over A in M , it is not necessarily conser-
vatively embedded in M : for if X ⊂ P cannot be defined over A in M , there
is a priori no reason for it be definable in the structure P at all, whatever
parameters we allow. In the definition we allow M to define X only with
parameters from A. In return we keep control over the parameters needed
to define X in P .

While part (1) of the above definition serves just as a compact way of
speaking, we want to emphasise with part (2) on the property which will be
crucial in the proofs of section 5.6.

Remark 5.52. It follows immediately from the definition that if an
L-structure P is conservatively embedded in the L′-structure M and L′-
definable in M without parameters, then it is stably embedded.

The principal example of a conservatively embedded substructure we
have in mind is the fixed field of a generic automorphism.

Example 5.53. Let (Ω, σ) |= ACFA. Then Fix(Ω, σ) is conservatively
embedded in (Ω, σ) (see [14], proposition (1.11)). If Ω has positive charac-

teristic and Frob denotes the Frobenius automorphism, then Fix(Ω, σFrobk)
is conservatively embedded for all k ∈ Z (see [15], proposition (7.1)).

Example 5.54. Let (Ω, d, σ) |= DCFA. Then Fix(Ω, d, σ) is conserva-
tively embedded in (Ω, d, σ) (see [7], proposition (4.6)).

Example 5.55. Let e be a natural number and (Ω, σ) |= SCFAe. Then
Fix(Ω, σ) is conservatively embedded in (Ω, σ) (see [12], proposition (4.3)).

Generalising these results, we will prove in (5.64) that if TA eliminates
imaginaries, then Fix(M,σφ) is conservatively embedded in (M,σ) for any
model (M,σ) of TA and for any L-automorphism φ that is L-definable with-
out parameters. Indeed, this follows immediately from proposition (5.63),
which states that Fix(M,σφ) is conservatively embedded in (M,σ) over any
L-elementary substructure K 4L Fix(M,σφ) with

dclT
(
aclT(K),Fix(M,σφ)

)
= aclT

(
Fix(M,σφ)

)
.

As in the above examples, the condition on the definable and algebraic
closure of the involved structures is always satisfied, this implies in particular
that, in the above examples, the fixed field is conservatively embedded over
elementary substructures.

Unfortunately not every field of interest definable in our context is con-
servatively embedded.

Example 5.56. Let again (Ω, σ) |= ACFA. Then Fix(Ω, σ) is a proper
subfield of Fix(Ω, σ2) that is not definable in the pure field Fix(Ω, σ2). This
follows from proposition (2.12) of [13], which states that if F is a pseudo-
finite field and S is an infinite subset of F definable using parameters, any
element of F is of the form a+ b+ cd for suitable a, b, c, d ∈ S.

Example 5.57. Let (Ω, d, σ) |= DCFA and consider the (difference)
field of constants C (defined by the formula d(x) = 0). C is not stably
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embedded in (Ω, d, σ) (see [7], proposition (4.5)). So by (5.52) it cannot be
conservatively embedded.

For ∅-definable L-substructures, being conservatively embedded over a
subset is preserved under elementary extensions:

Lemma 5.58. Let M1 4 M2 be an elementary extension of L′-structures
and ϕ ∈ L′ a formula without parameters. Assume that ϕ(M1) is an L-
substructure of M1 for some L ⊂ L′ and A ⊂ ϕ(M1). Then ϕ(M1) is
conservatively embedded in M1 over A if and only if so is ϕ(M2) in M2.

Proof. The proof is straightforward using relativisation of quantifiers.
2

5.5.2. Conservative Embedding of the Fixed Structure. The aim
of this section is to prove proposition (5.63), which states that if T is a
stable L-theory with quantifier elimination and elimination of imaginaries
such that TA exists and eliminates imaginaries, and if (M,σ) is a model of
TA, then Fix(M,σφ) is conservatively embedded over every L-elementary
substructure K with

dclT
(
aclT(K),Fix(M,σ)

)
= aclT

(
Fix(M,σ)

)
.

Notice that in the case of fields, this last condition is always satisfied. For
example if k and F are pseudo-finite fields with k 4 F , then kalgF = F alg.

The reason is that the absolute Galois groups are Ẑ.

We have seen in proposition (4.18) what the induced structure on the
fixed field Fix(Ω, σ) from models (Ω, σ) of ACFA is. With the notation
as in proposition (4.18), if k 4 Fix(Ω, σ) considered as pure fields, then
all ej,n are already contained in keq. So knowing that Fix(Ω, σ) is stably
embedded is already enough in this case. Working without fields, we have
no explicit description of the induced structure. Proposition (5.63) bypasses
this problem.

That the above condition is in fact necessary follows from the next propo-
sition.

Proposition 5.59. Let T eliminate imaginaries and (N, σ) 4 (M,σ) be
models of Tσ. Then dclT

(
aclT(Fix(N, σ)) , Fix(M,σ)

)
= aclT

(
Fix(M,σ)

)
.

We note that if (N, σ) and (M,σ) were models of TA, the proposition
would follows from lemma (5.48) and proposition (5.40).

Proof. We denote FM = Fix(M,σ) and FN = Fix(N, σ). The automor-
phism σ (of M) restricts to topological generators of Gal(FM ) and Gal(FN )
respectively because FM = Fix(aclT(FM ), σ) and FN = Fix(aclT(FN ), σ).
Hence both Gal(FM ) and Gal(FN ) are procyclic and the restriction map

Gal(FM )
res−−→ Gal(FN ) is surjective. Thus AutT

(
aclT(FM )/aclT(FN ), FM

)

is trivial if and only if res is an isomorphism. So by lemma (1.4) and corol-
lary (1.9), it suffices to show that for all n ∈ N and b̄ ∈ aclT(FM ) of degree
n over FM there is c̄ ∈ aclT(FN ) of degree n over FN .
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To see this, note that as σ generates Gal(FM ) and b̄ has degree n over
FM , we have

(M,σ) |= ∃x̄ σn(x̄) = x̄ ∧
n−1∧

i=1

σi(x̄) 6= x̄

and thus

(N, σ) |= ∃x̄ σn(x̄) = x̄ ∧
n−1∧

i=1

σi(x̄) 6= x̄ ,

and we are done. 2

Lemma 5.60. Let T be a stable L-theory with quantifier elimination and
elimination of imaginaries and let φ be an automorphism of T which is L-
definable over ∅. Assume that TA exists and eliminates imaginaries. If
(M,σ) |= TA and K 4L Fix(M,σφ), then dclσ(K) = K and aclσ(K) =
aclT(K). Furthermore aclT(K) ∩ Fix(M,σφ) = K.

Proof. Fix(M,σφ) is an L-substructure of M and φ is quantifier-free de-
finable by quantifier elimination of T . So σ|Fix(M,σφ) = φ−1 is an L-definable
automorphism of the L-structure Fix(M,σφ). As K 4L Fix(M,σφ) it fol-
lows that σ(K) = K, so aclσ(K) = aclT(K) by corollary (5.12). As σ is an
Lσ-isomorphism, Fix(M,σφ) is dclσ-closed, and again because σ|Fix(M,σφ) =

φ−1 and K 4L Fix(M,σφ) we conclude that dclσ(K) = K.

If a ∈M is algebraic over K and fixed by σφ, then a is algebraic over K
in the L-substructure Fix(M,σφ) of M by quantifier elimination of T . 2

Lemma 5.61. Let T be a stable theory eliminating imaginaries, A a set
of parameters, p ∈ S(acl(A)) and β ∈ Aut(C/A) an automorphism of the
monster model of T over A. Then β(p) = p if and only if p|acl(A)∩Fix(β) is
stationary.

Proof. β(p) = p if and only if β leaves the canonical basis of p pointwise
fixed. By elimination of imaginaries, the latter is equivalent to the canonical
basis be contained in acl(A) ∩ Fix(β). 2

Lemma 5.62. Let T be a stable L-theory with quantifier elimination and
elimination of imaginaries and let φ be an automorphism of T which is
L-definable over ∅. Assume that TA exists and eliminates imaginaries.

Let (M,σ) |= TA be sufficiently saturated. If K 4L Fix(M,σφ) with
dclT

(
aclT(K),Fix(M,σφ)

)
= aclT

(
Fix(M,σφ)

)
then the natural restriction

map

res : AutLσ

(
(M,σ)/K

)
−→ AutL

(
Fix(M,σφ)/K

)

is surjective. Here AutL
(
Fix(M,σφ)/K

)
denotes the group of automor-

phisms over K of the L-structure Fix(M,σφ).

Proof. We abbreviate F = Fix(M,σφ). By quantifier elimination of T
and as F is an L-substructure of M , any automorphism α ∈ AutL(F/K ) is
a partial elementary map in the sense of T . It commutes with σ|F because
σ|F = φ−1 and φ is an L-definable over ∅ automorphism of F .
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We are going to lift α to a permutation α̃ of aclT(F ) that is elementary
in the sense of T and commutes with σ. As aclT(F ) = aclσ(F ) by lemma
(5.60), remark (5.9) then implies that α̃ is elementary in the sense of TA.
Then in particular α is an automorphism of the induced structure from
(M,σ) on F . So by saturation of (M,σ), lemma (4.15) implies that α lifts
to an automorphism of (M,σ) over K.

To lift α we work entirely in T . α is an elementary permutation of
the set F and commutes with σ. Let ā ∈ F . As aclT(K) ∩ F = K
by lemma (5.60) and because α leaves K pointwise fixed, it follows from
lemma (5.61) that tpT (ā/K) is stationary. So tpT (α(ā)/K) is stationary
too and equals tpT (ā/K), again because α is the identity on K. As any
b̄ ∈ aclT(K) is independent from F over K it follows that tpT (ā/Kb̄) =
tpT (α(ā)/Kb̄), hence tpT (ā, b̄) = tpT (α(ā), b̄). This shows that the map
id|aclT(K) ∪ α is elementary. It lifts uniquely to an elementary permutation
α̃ of dclT(aclT(K), F ), which is aclT(F ) by assumption. α̃ commutes with
σ by construction, so we are done. 2

Note that this lemma is in a sense stronger than the statement that
Fix(M,σφ) is stably embedded, since we lift the automorphisms of Fix(M,σφ)
overK with respect to the L-structure, not the induced structure, see lemma
(4.15). However, stable embeddedness of Fix(M,σφ) seems not to follow
from the statement of the above lemma.

Proposition 5.63. Let T be a stable theory with quantifier elimination
and elimination of imaginaries and let φ be an automorphism of T which
is L-definable over ∅. Assume that TA exists and has elimination of imagi-
naries.

Let (M,σ) be a model of TA and K 4L Fix(M,σφ). If

dclT
(
aclT(K),Fix(M,σφ)

)
= aclT

(
Fix(M,σφ)

)
,

then Fix(M,σφ) is conservatively embedded over K in (M,σ).

Proof. First note that if (N, σ) is an elementary extension of (M,σ),
then Fix(M,σφ) is conservatively embedded over K in (M,σ) if and only
if Fix(N, σφ) is so in (N, σ) by lemma (5.58). Furthermore it follows from
proposition (5.59) that dclT

(
aclT(K),Fix(N, σφ)

)
= aclT

(
Fix(N, σφ)

)
. So

we may assume that (M,σ) is sufficiently saturated.

Let X be a subset of (some cartesian power of) Fix(M,σφ) that is K-
definable in (M,σ). By lemma (5.62) we can lift any automorphism of
Fix(M,σφ) over K to an automorphism of (M,σ) over K, which shows that
for any tuple a ∈ Fix(M,σφ) the type of a over K in the sense of Fix(M,σφ)
(relativised to σφ(x) = x) implies modulo the theory of (M,σ) the type of a
over K in (M,σ). Hence by compactness X is definable in the L-structure
Fix(M,σφ) using parameters from K. 2

As a special case of proposition (5.63) we obtain the following result. It
was proved before in the cases of fields: when T is ACF by Chatzidakis,
Hrushovski and Peterzil in [15], for separably closed fields with generic
automorphism by Chatzidakis in [12], when T is DCF0 by Bustamante-
Medina in [7] and for strongly minimal T by Pillay in [52].
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Corollary 5.64. Let T be a stable L-theory with quantifier elimination
and elimination of imaginaries and let φ be an automorphism of T which is
L-definable over ∅. Assume that TA exists and eliminates imaginaries. Let
(M,σ) be a model of TA. If TA eliminates imaginaries then Fix(M,σφ) is
conservatively embedded in (M,σ).

As we will see in the next section, the converse in the above proposition
is also true for countable T and sufficiently saturated models (M,σ) of TA,
and for totally transcendental T and any model (M,σ) of TA: namely in
either case, if Fix(M,σφ) is conservatively embedded over K, then

dclT( aclT(K),Fix(M,σφ) ) = aclT(Fix(M,σφ)) .

5.6. Prescribed Fixed Structures

In this section we prove the main theorems of this chapter, theorems
(5.65) and (5.68) and then discuss some first variants.

Theorem 5.65. Let T be a countable complete stable L-theory with quan-
tifier elimination and elimination of imaginaries and φ be an L-automorphism
of T which is L-definable without parameters. Assume that TA exists and
has elimination of imaginaries.

Let (M,σ) be a model of TA and K 4L Fix(M,σφ) be an L-elementary
substructure. If Fix(M,σφ) is conservatively embedded over K in (M,σ),
then there is some model (N, σ) ≡ (M,σ) with Fix(N, σφ) = K.

Proof. In view of lemma (5.58) we may assume that (M,σ) is sufficiently
saturated.12 We construct (N, σ) with the aid of the following (standard)
chain argument. Starting with N0 = aclσ(K), whose set of elements fixed
by σφ is precisely K by (5.60), we build an ascending chain (Nν)ν<ω of
aclσ-closed L-substructures of (M,σ) with the property that

• if ϕ(x̄) is a quantifier-free consistent Lσ(Nν)-formula then ϕ has a
realisation in Nν+1 and

• Fix(Nν , (σφ)|Nν ) = K for all ν < ω.

Then we let N =
⋃
Nν . By model completeness of TA, any Lσ-formula

is equivalent modulo TA to an existential formula. So by Tarski’s Test
(N, σ|N ) will be an elementary substructure of (M,σ), with Fix(N, σφ) = K
by construction.

The only delicate point is to ensure Fix(Nν , σφ) = K for all ν < ω. We
handle this using the following proposition.

Proposition 5.66. Let T be a countable stable L-theory with quanti-
fier elimination and elimination of imaginaries. Suppose that TA exists
and has elimination of imaginaries. Let (M,σ) |= TA and A be an aclσ-
closed subset of (M,σ) such that Fix(A, σφ) 4L Fix(M,σφ), where φ is an

12Passing to a sufficiently saturated elementary extension is not necessary if T is
totally transcendental, see theorem (5.69) below.
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L-automorphism of M which is L-definable over ∅. If Fix(M,σφ) is conser-
vatively embedded over Fix(A, σφ) in (M,σ), then

aclσ(A, ā) ∩ Fix(M,σφ) = Fix(A, σφ)

for any tuple ā ∈ M whose quantifier-free Lσ-type qftpσ(ā/A) over A is
locally isolated.

Proof of 5.66. In view of lemma (5.58) we may assume that (M,σ) is
sufficiently saturated. Let ā be a tuple in M whose quantifier-free Lσ-type
is locally isolated. We abbreviate Fix(A, σφ) by K and show first that

dclT(clσ(A, ā)) ∩ Fix(M,σφ) = K .

Let b ∈ dclT(clσ(A, ā)) be fixed by σφ. Then b is L-definable over
A, σ−n(ā), . . . , σ−1(ā), ā, σ(ā), . . . , σn(ā) for some n ∈ N, and, as σφ(b) = b,
applying (σφ)n we see that b is already L-definable over A, ā, . . . , σn(ā) for
some n ∈ N since σφ is an Lσ-isomorphism. So there is some L-formula

ψ(x̄0, x̄1, . . . , x̄n; z, ȳ)

and ē ∈ A such that ψ(ā, σ(ā), . . . , σn(ā); z, ē) defines b in M . As T elimi-
nates quantifiers, we may assume that ψ is quantifier-free. Let

∆ = {ψ(x̄, σ(x̄), . . . , σn(x̄); z, ȳ) , σφ(z) = z }
and choose an Lσ(A)-formula δ(x̄) ∈ qftpσ(ā/A) isolating qftpσ(ā/A)|∆.

Consider the Lσ-formula

Φ(z) = ∃x̄
(
δ(x̄) ∧ ψ(x̄, σ(x̄), . . . , σn(x̄); z, ē) ∧ σφ(z) = z

)

with parameters from A and let X be the subset of Fix(M,σφ) defined by Φ.
We claim that X is Lσ-definable in (M,σ) over A∩Fix(M,σφ). To see this,
note that both A and Fix(M,σφ) are dclσ-closed. TA eliminates imaginaries
by assumption, so on the one hand Fix(M,σφ) is stably embedded by remark
(5.28), whence the canonical parameter of X is in Fix(M,σφ). On the other
hand the canonical parameter of X is also in A. Thus X is Lσ-definable in
(M,σ) over A ∩ Fix(M,σφ) = K.

By assumption Fix(M,σφ) is conservatively embedded over K in (M,σ),
so it follows that X is L-definable over K in the L-structure Fix(M,σφ).

X is non-empty because b ∈ X, hence Fix(M,σφ) |= ∃z z ∈ X. But
K 4L Fix(M,σφ), so K |= ∃z z ∈ X, whence there is λ ∈ X(K).

We have shown that the Lσ(A)-formula

ψ(x̄, σ(x̄), . . . , σn(x̄);λ, ē)

is consistent with δ(x̄) for some λ ∈ K. Thus

ψ(x̄, σ(x̄), . . . , σn(x̄);λ, ē) ∈ qftpσ(ā/A)

and therefore b = λ ∈ K, because ψ(ā, . . . , σn(ā); z, ē) has exactly one solu-
tion in M . This shows that dclT(clσ(A, ā)) ∩ Fix(M,σφ) = K.

Finally we show that any tuple ā with dclT(clσ(A, ā))∩Fix(M,σφ) = K
has the property that

aclσ(A, ā) ∩ Fix(M,σφ) = K .
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Indeed, by corollary (5.12) we have aclσ(A, ā) = aclT(dclT(clσ(A, ā))), so
the next lemma (5.67) implies that any b ∈ aclσ(A, ā) which is fixed by σφ
is algebraic over

dclT(clσ(A, ā)) ∩ Fix(M,σφ) = K .

It follows that b ∈ aclT(K). As A is algebraically closed and contains K we
conclude that b ∈ A and thus, as σφ(b) = b, that b ∈ K. 2

Lemma 5.67. Let T be any theory with elimination of imaginaries and
B a definably-closed set. If α is an automorphism of a sufficiently saturated
model mapping B into itself and if b algebraic over B and fixed by α, then
b is algebraic over B ∩ Fix(α).

Proof. Choose an L(B)-formula ψ isolating the type of b over B. As b
is fixed by α, ψ is invariant under α and thus the canonical parameter for
ψ is in B ∩ Fix(α). 2

To complete the proof of theorem (5.65), let A be an aclσ-closed subset
of M such that Fix(A, σφ) = K and ϕ(x̄) be a consistent quantifier-free
Lσ(A)-formula. TA is quantifier-free stable by lemma (5.23) and countable
because T is. By proposition (5.24) and by saturation of (M,σ) we can
choose a tuple ā ∈ (M,σ) satisfying ϕ whose quantifier-free type qftpσ(ā/A)
over A (in the sense of (M,σ)) is locally isolated. Then proposition (5.66)
implies that aclσ(A, ā) ∩ Fix(M,σφ) = Fix(A, σφ). The proof of theorem
(5.65) is complete. 2

The next two theorems characterise the L-elementary substructures over
which Fix(M,σφ) is conservatively embedded as exactly those occurring as
fixed structures Fix(N, σφ) of elementary submodels. Needless to say that
theorem (5.68) gives a partial converse to proposition (5.63) for countable
languages, whereas theorem (5.69) gives a converse to proposition (5.63) for
totally transcendental T .

Theorem 5.68. Let T be a countable complete stable L-theory with quan-
tifier elimination and elimination of imaginaries and φ be an L-automor-
phism of T which is L-definable without parameters. Assume that TA exists
and has elimination of imaginaries.

Let (M,σ) be a model of TA and K 4L Fix(M̄, σφ). Assume that (M,σ)
is |K|+-saturated. Then the following are equivalent:

(1) There is some (N, σ) 4 (M,σ) with Fix(N, σφ) = K.
(2) Fix(M,σφ) is conservatively embedded over K in (M,σ).
(3) dclT

(
aclT(K),Fix(M,σφ)

)
= acl

(
Fix(M,σφ)

)
.

Proof. (3) implies (2) is proposition (5.63) and (2) implies (1) is (the
proof of) theorem (5.65): we only needed that (M,σ) is |K|+-saturated. To
see that (1) implies (3) let (N, σ) 4 (M̄, σ) and note that then (N, σφ) 4

(M,σφ). Both (N, σφ) and (M,σφ) being models of Tσ, the assertion follows
from proposition (5.59). 2
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Let us examine once more the proof of theorem (5.65). The only place
where we use saturation of (M,σ) is where we realise a locally isolated
quantifier-free type containing the formula ϕ(x̄). As mentioned earlier in
lemma (5.23), TA is quantifier-free totally transcendental if T is totally
transcendental. So in this case proposition (5.24) allows us to choose a
tuple ā realising ϕ(x̄) whose quantifier-free type is even isolated, rather
than locally isolated only. For such ā, following the proof of (5.66) word
by word, we then obtain aclσ(Aā) ∩ Fix(M,σφ) = K. We have proved the
following theorem, in which no countability and no saturation is needed.

Theorem 5.69. Let T be a complete totally transcendental L-theory with
quantifier elimination and elimination of imaginaries and φ be an L-auto-
morphism of T which is L-definable without parameters. Assume that TA
exists and has elimination of imaginaries.

Let (M,σ) be a model of TA and K 4L Fix(M̄, σφ). Then the following
are equivalent:

(1) There is some (N, σ) 4 (M,σ) with Fix(N, σφ) = K.
(2) Fix(M,σφ) is conservatively embedded over K in (M,σ).
(3) dclT

(
aclT(K),Fix(M,σφ)

)
= acl

(
Fix(M,σφ)

)
.

We have also proved the following theorem, which in the case when T
is ACF was proved independently by Zoé Chatzidakis (unpublished). In
view of proposition (5.63), its proof is an easy consequence of the proof of
theorem (5.65).

Corollary 5.70. Let T be a countable complete stable L-theory with
quantifier elimination and elimination of imaginaries. Assume that TA ex-
ists and has elimination of imaginaries.

Let (φi)i∈I be a family of L-automorphisms of T , with each φi L-definable
over ∅, and (M,σ) be a model of TA. If A is an aclσ-closed subset of (M,σ)
such that for all i ∈ I, Fix(A, σφi) 4L Fix(M,σφi) and

dclT
(
aclT(Fix(A, σφi)),Fix(M,σφi)

)
= aclT

(
Fix(M,σφi)

)
,

then there is a model (N, σ) ≡ (M,σ) of TA such that for all i ∈ I

Fix(N, σφi) = Fix(A, σφi) .

If T is totally transcendental, we can choose (N, σ) to be an elementary
submodel of (M,σ).

We end this section noting that the countability of L in the above theo-
rems is used only to ensure that the locally isolated quantifier-free types are
dense. Newelski shows in [48] and [49] that it is consistent with ZFC that
for any stable theory T of cardinality less than 2ℵ0 with κ(T ) ≤ ℵ1 and for
any parameter set A the locally isolated types are dense in ST (A). It follows
from this that there are models of ZFC in which our theorem is true under
the assumption that |T | < 2ℵ0 and κ(T ) ≤ ℵ1 instead of countability of T .
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5.7. Applications: Fixed Fields of Generic Automorphisms

We finally come to the original motivation behind the results of the
previous sections: their application to the case of fields. Recall that abs(k)
denotes the absolute part of the field k and φp the Frobenius homomorphism
in positive characteristic.

5.7.1. Pseudo-finite fields and models of ACFA. The case of pseu-
do-finite fields was dealt with in chapter 4. We include theorem (5.71) below
and its proof out of theorem (5.65) for the sake of completeness, as well as its
variant, theorem (5.72), whose proof is somehow already present in chapter
4, but which we did not state there explicitly.

Theorem 5.71. Any pseudo-finite field k is isomorphic to the fixed field
of some model of ACFA. Furthermore, in positive characteristic, for every
n ∈ Z there is some model (Ω, σ) of ACFA such that Fix(Ω, σφnp ) = k.

Proof. Choose a topological generator σ of the absolute Galois group
Gal(k) of k. The difference field (kalg, σ) extends to some model (Ω, σ) of
ACFA. Of course k is algebraically closed in Fix(Ω, σ), whence, as both
fields are pseudo-finite, the extension Fix(Ω, σ)/k is elementary by corollary
(4.5.3). Also, it follows that kalgFix(Ω, σ) = Fix(Ω, σ)alg. So theorem (5.69)
implies that there is some model (K,σ) |= ACFA such that Fix(K,σ) = k.

For the furthermore, let (Ω, τ) be a model of ACFA such that k =
Fix(Ω, τ) and put σ = τφ−np . Then (Ω, σ) is a model of ACFA, too, and
Fix(Ω, σφnp ) = k. 2

Note that any choice of a generator of Gal(k) in the above proof gives
non-elementarily equivalent models of ACFA having fixed field k.

As an application of corollary (5.70) we obtain in positive characteristic
the following theorem, which was shown to us by Zoé Chatzidakis (unpub-
lished).

Theorem 5.72. Let (K,σ) be an algebraically closed difference field and
Σ ⊆ Z such that for all n ∈ Σ the fixed fields Fix(K,σφnp ) are pseudo-finite.
Then there is some model (Ω, σ) of ACFA such that for all n ∈ Σ

Fix(Ω, σφnp ) = Fix(K,σφnp ) .

5.7.2. One-free pseudo-differentially closed fields and models
of DCFA. In this subsection we prove the following theorem.

Theorem 5.73. Any difference-differential field (F, d, σ) of characte-
ristic zero whose fixed differential field (k, d) is pseudo-finite and pseudo-
differentially closed embeds into some model (Ω, d, σ) of DCFA such that

Fix(Ω, d, σ) = (k, d) .

First we need a difference-differential version of lemma (4.25). Though
we need it only in characteristic zero, we state and prove it for arbitrary
characteristic.
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Lemma 5.74. Any difference-differential field (F, d, σ) whose fixed dif-
ferential field (k, d) has procyclic absolute Galois group admits an extension
(F sep, d̄, σ̄) with Fix(F sep, d̄, σ̄) = (k, d).

Proof. Let us first note that if (K, d) is a differential field and σ is
a field automorphism of K that commutes with the derivation d (so an
automorphism of the differential field (K, d)), then any lift σ̄ of σ to Ksep

will be compatible with the unique derivation d̄ onKsep extending d. Indeed,
if α ∈ Ksep and p(X) ∈ K[X] is the minimal polynomial of α, then d̄(α) =

−pd(α)
p′(α) , where p′ is the formal derivative of p and pd is the polynomial

obtained by applying d to the coefficients of p (see [75], the argument there is
also valid in positive characteristic for separably algebraic field extensions).
Using this and the assumption that σ commutes with d, one computes right
away that σ̄d̄(α) = d̄σ̄(α).

By the above consideration, any lift σ̄ of σ to F sep yields a difference-
differential field (F sep, d̄, σ̄). By lemma (4.25) there is such σ̄ such that
Fix(F sep, σ̄) = k, which proves the lemma. 2

Proof of theorem (5.73). By the previous lemma (5.74) we may assume
that F is an algebraically closed field. Embed (F, d, σ) into some model
(Ω, d, σ) of DCFA. The pure fields k and K = Fix(Ω, d, σ) are pseudo-
finite, so it follows as in the proof of theorem (5.71) that k 4 K as pure
fields, and that kalgK = Kalg. Now proposition (5.8) of [53] states that two
pseudo-differentially closed differential fields of characteristic zero are ele-
mentarily equivalent as differential fields if and only if they are elementarily
equivalent as pure fields. It follows therefrom that (k, d) 4 (K, d) as differ-
ential fields. As both are subdifferential fields of (Ω, d, σ), their algebraic
closure in the sense of DCF0 coincides with their field-theoretic algebraic
closure, so corollary (5.70), with the family of ∅-definable Ld-automorphisms
consisting of the identity only, implies there is some model of DCFA whose
fixed differential field is (k, d). 2

Corollary 5.75. Any pseudo-finite pseudo-differentially closed diffe-
rential field (k, d) of characteristic zero is the fixed differential field of some
model (Ω, d, σ) of DCFA.

Remark 5.76. By the argument in the proof of lemma (5.74), we may
choose any generator σ of the absolute Galois group of k and apply (5.73)
to the difference-differential field (kalg, d, σ). As in the case of pseudo-finite
fields, this shows that there are in fact many non-elementarily equivalent
models of DCFA having (k, d) as fixed field.

5.7.3. One-free PAC fields and models of SCFA. Last but not
least we come to discuss the case of one-free PAC fields of finite Ershov
invariant and separably closed fields with a generic automorphism.

Theorem 5.77. Any difference field (F, σ) whose fixed field k is one-
free PAC and of finite Ershov invariant e embeds into some model (Ω, σ) of
SCFAe,b such that Fix(Ω, σ) = k.

Proof. First we may assume that F is separably closed by lemma (4.25).
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Second, note that the field extension F/k is separable. Indeed, this is
true for any difference field (F, σ): let c̄ ∈ k = Fix(F, σ) be a finite tuple,
and assume that c̄ is p-independent in k but p-dependent in F . Then there
is a minimal number r such that the p-monomials

mi0(c̄), . . . ,mir(c̄)

are linearly dependent over F p, for some i0, . . . , ir. So we can write say
mi0(c̄) as a sum

mi0(c̄) =
∑

apjmij (c̄)

for some unique aj ∈ F . Applying σ to this equation we obtain

mi0(c̄) =
∑

σ(aj)
pmij (c̄)

because mi(c̄) ∈ k, whence σ(aj) = aj for all j by minimality of r. But this
contradicts the choice of c̄.

Now we choose a p-basis b̄ = b1, . . . , be of k. Of course b̄ is also a p-
basis of ksep. We expand ksep to an L(b̄)-structure, where L(b̄) is the ring
language augmented by constant symbols b̄ = b1, . . . , be. By the above, b̄ is
p-independent in F .

Now lemma (2.2) of [12] states that if (K,σ) is a difference field with
finite p-basis B and K(ā)σ is a finitely generated separable difference field
extension of (K,σ), then K(ā)σ embeds into some difference field with p-
basis B. So for any finite tuple ā ∈ F , the difference field ksep(ā)σ embeds
into some separably closed difference field with p-basis b̄, or in other words
(as b̄ is fixed by σ), ksep(ā)σ embeds into some model of (SCFe,b)σ. Thus by
compactness (F, σ) embeds into some model of (SCFe,b)σ, and consequently
into some model (Ω, σ) of SCFAe,b by model completeness.

b̄ is a p-basis of Ω and is fixed by σ, whence b̄ is a p-basis of Fix(Ω, σ).
It follows that the extension Fix(Ω, σ)/k is separable, and that k is alge-
braically closed in Fix(Ω, σ). So Fix(Ω, σ)/k is a regular extension, and
hence elementary by theorem (5.47), as both k and Fix(Ω, σ) are PAC for
SCFe,b.

13 Clearly ksepFix(Ω, σ) = Fix(Ω, σ)sep, so theorem (5.65) shows
that there is some model (K,σ) of SCFAe,b having fixed field k. 2

Corollary 5.78. Any one-free PAC field k of finite degree of imper-
fection e is the fixed field of some model (Ω, σ) of SCFAe,b.

Proof. Choose a topological generator σ of Gal(k) and apply the previous
theorem to the difference field (ksep, σ). 2

Remark 5.79. Again the above proof shows with theorem (5.10) that
there are many non-elementarily equivalent models of SCFAe,b having fixed
field k.

13we could also use corollary (20.4.3) of [22].
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tp(ā/A), 1
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Free Generators Theorem, 40
Frobenius automorphism of a prime, 38
Frobenius endomorphism, 6

G-group, 10
G-module, see G-group
G-set, 10
Galois Cohomology, 10
Galois group, 1
Galois Theory, 3

Main Theorem of, 5
generic, 16, 31, 51, 52, 56

difference field, see difference, generic
difference field

generic automorphism, 51, 52, 56
model of Tσ, 56

henselian, 18
t-henselian, 18

Hilbert’s Nullstellensatz, σ-version of,
16

ideal
absolutely prime ideal, 8
difference ideal, see difference,

difference ideal
independence, 2, 33, 61
Independence Theorem, 2

over algebraically closed sets, 65, 74,
75

over Models, 2
over Models of Tσ, 33, 61

induced structure, 34
on the fixed field, 35

inverse morphism, see morphism of
types, inverse morphism

inversive
inversive difference field, 12
inversive Lσ-structure, 55

inversive closure
of Lσ-structures, 55
of difference fields, 12

invertible morphism, see morphism of
types, invertible morphism

isolated quantifier-free types, 65
isomorphism of types, see morphism of

types, isomorphism of types

K-algebra
absolutely entire K-algebra, 8
affine K-algebra, 8

Kowalsky-Dürbaum and Fleischer,
theorem of, 18

Lachlan, theorem of, 3
Lang-Weil, Theorem of, 10, 30, 37
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linearly disjoint, 6
locally isolated, 3

locally isolated quantifier-free types,
65

Macintyre, Theorem of, 17
module, 76
monster, 1
morphism of types, 22

automorphism of a type, 23
composition of, 22
inverse morphism, 23
invertible morphism, 23
isomorphism of types, 23

non-fcp, 67
normal, 4

one-free
one-free PAC fields, 75
one-free PAC structures, 76
one-free parameter set, 5

p-basis, 7
p-independent, 6
p-monomials, 6
PAC

PAC field, 8
PAC for T , 69
PAC structure, 69

PAC-Nullstellensatz, 40
PAPA, 53
perfect closure, perfect hull, 6
point

L-rational point, 8
R-valued point, 8

PRC field, see pseudo-real closed field
Prestel-Frey, Theorem of, 17
primary, 7
prime ideal, 15
Primitive Element Theorem, 5
procyclic profinite group, 4
profinite group, 4
pseudo-algebraically closed, see PAC
pseudo-differentially closed, see

differential, pseudo-differentially
closed field

pseudo-finite field, 28
pseudo-real closed field, 71

quantifier-free stable, 64
quantifier-free totally transcendental, 64

real closed field, 18
reduct, 66
regular

regular extension of L-structures, 69
regular field extension, 7
regular for T , 69

regularly closed field, 70
Ritt difference ring, see difference ring,

Ritt difference ring

SCFe,b, SCF∞,λ, 70, 75
SCFAe,b, 75
separable field extension, 7
separably closed field, 70, 75
separably generated, 6
separating transcendence basis, 6
σ-algebraic set, 33

σ-algebraic set over, 33
σ-closed set, 33
σ-topology, 33
small profinite group, 4
specialisation, see difference, difference

specialisation
stable, 3

quantifier-free stable, 3, 64
stable fields, 73
stable theory, 3

stably embedded, 34
strict order property, 3
strong amalgamation property, see

amalgamation property, strong
amalgamation property

supersimple fields, 17
superstable fields, 17

TA, 53, 56
Tarski-Vaught-property, 3
torsor of a variety, 74
transform, 12
transformally algebraic, 32

ultraproducts
of difference fields, Theorem of

Hrushovski, 35
of finite fields, Theorem of Ax, 30

universal domain, 6
unramified, 38

V -topological field, 17
valuation, 18
valuation ring, 38
vanishing difference ideal, see difference,

vanishing difference ideal
variety, 8

absolutely irreducible, 8
difference variety, see difference,

difference variety over K
differential variety, see differential,

differential variety
form of a variety, see form, of a

variety
geometrically irreducible, 8
Weil-Chatelet set of, see

Weil-Chatelet set, of a variety
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Weil-Chatelet set
of a type, 23
of a variety, 11


