5. Übungsblatt zur Vorlesung "Mehrfachintegrale" im Wintersemester 2012–2013 bei Prof. Dr. S. Goette

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf Ihre Lösung. Abgabe: Donnerstag, den 14.02.2013 in der Vorlesung.

Aufgabe 1:

Es seien 0 < r < R gegeben. Betrachten Sie die Abbildung

$$F: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(\phi, \psi) \mapsto ((R - r\cos\psi)\cos\phi, (R - r\cos\phi)\sin\phi, r\sin\phi)$$

- (a) Skizzieren Sie $M = \operatorname{im} F$.
- (b) Bestimmen Sie $U \subset \mathbb{R}^2$ so, dass $F|_U$ eine Parametrisierung von M liefert und $M \setminus F(U)$ eine endliche Vereinigung höchstens eindimensionaler Untermannigfaltigkeiten ist.
- (c) Berechnen Sie $vol^2(M)$.

Aufgabe 2:

Es seien $U, V \subset \mathbb{R}^n$ offen, $F: U \to \mathbb{R}^{n+1}$ und $G: V \to \mathbb{R}^{n+1}$ Parametrisierungen einer Untermannigfaltigkeit $M \subset \mathbb{R}^{n+1}$ und $H: V \to U$ ein Diffeomorphismus mit $\det(dH(x)) > 0$ für alle $x \in V$. Zeigen Sie: Für jede stetige Abbildung $X: M \to \mathbb{R}^{n+1}$ gilt

$$\int_{V} \det(X \circ G, \frac{\partial G}{\partial x_{1}}, \dots, \frac{\partial G}{\partial x_{n}})(x) d^{n}x = \int_{U} \det(X \circ F, \frac{\partial F}{\partial y_{1}}, \dots, \frac{\partial F}{\partial y_{n}})(y) d^{n}y$$

Aufgabe 3:

Es sei $S^n \subset \mathbb{R}^{n+1}$ die Einheitssphäre und es sei $F: \mathbb{R}^n \to S^n$ die Abbildung, die einem Punkt $x \in \mathbb{R}^n$ den zweiten Schnittpunkt der Geraden durch $(0, x_1, \dots, x_n)$ und $(1, 0, \dots, 0) \in \mathbb{R} \times \mathbb{R}^n = \mathbb{R}^{n+1}$ zuordnet. Zeigen Sie, dass F eine Parametrisierung ist mit $S^n \setminus F(U) = \{(1, 0, \dots, 0)\}$ und geben Sie den Korrekturfaktor $\sqrt{g^F(x)}$ an.

Aufgabe 4:

Es sei $\gamma:[a,b]\to\mathbb{R}^n$ eine glatte regulär parametrisierte Kurve, $\varphi:[c,d]\to[a,b]$ ein Diffeomorphismus und $\delta=\gamma\circ\varphi:[c,d]\to\mathbb{R}^n$. Zeigen Sie:

(a) Falls n=2 und $\dot{\varphi}(s)\geq 0$, gilt

$$\frac{\det(\dot{\delta}, \ddot{\delta})}{||\dot{\delta}||^3}(t) = \frac{\det(\dot{\gamma}, \ddot{\gamma})}{||\dot{\gamma}||^3}(\varphi(t))$$

und falls $||\dot{\delta(t)}||=1$ stimmt dieser Ausdruck mit der gewichteten Krümmung $\bar{\kappa}(\delta(t))$ überein.

(b) Falls $n \geq 2$, gilt

$$\frac{\sqrt{||\dot{\delta}||^2||\ddot{\delta}||^2 - \langle \dot{\delta}, \ddot{\delta} \rangle^2}}{||\dot{\delta}||^3}(t) = \frac{\sqrt{||\dot{\gamma}||^2||\ddot{\gamma}||^2 - \langle \dot{\gamma}, \ddot{\gamma} \rangle^2}}{||\dot{\gamma}||^3}(\phi(t))$$

und falls $||\dot{\delta(t)}||=1$ auf ganz [c,d], stimmt dieser Ausdruck mit der Krümmung $\kappa(\delta(t))$ überein.

Leiten Sie daraus jeweils Ausdrücke für die Totalkrümmung K(C) und $\bar{K}(C)$ für beliebig parametrisierte Kurven ab.