Aufgabe 1 (Verschiedene Integrale)

Seien $0 < a < b < \infty$ und $1 < c < d < \infty$. Berechnen Sie

(i)
$$\int_{c}^{d} \frac{1}{x \log x} dx,$$

(ii)
$$\int_{a}^{b} \frac{\log x}{x} dx,$$

und

(iii)
$$\int_{a}^{\infty} \frac{1}{x^2} dx.$$

Aufgabe 2 (Eine Variante des Hauptsatzes)

Sei $a \in \mathbb{R}$, $f \in C^0(\mathbb{R})$, und $g : \mathbb{R} \to (a, \infty)$ eine differenzierbare Funktion. Sei $\Phi : \mathbb{R} \to \mathbb{R}$ die Funktion

$$\Phi(s) = \int_{a}^{g(s)} f(t)dt.$$

Begründen Sie die Differenzierbarkeit von Φ und berechnen Sie die Ableitung.

Aufgabe 3 (Gleichmäßige Konvergenz)

Seien $f_n:[0,1]\to\mathbb{R}$,

$$f_n(x) = \frac{nx}{1 + nx^2}.$$

Beantworten Sie (mit Nachweis) folgende Fragen. Konvergiert $(f_n)_{n\in\mathbb{N}}$ punktweise gegen eine Funktion $f:[0,1]\to\mathbb{R}$? Konvergiert $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen eine Funktion $f:[0,1]\to\mathbb{R}$?

Aufgabe 4 (Gleichmäßige Konvergenz der Ableitungen)

Seien $f_n: I = [0, 100] \to \mathbb{R}$,

$$f_n(x) := n\log(1 + x/n) - x,$$

und sei $g_n = f'_n$ die Ableitung von f_n . Beantworten Sie (mit Nachweis) folgende Fragen.

- (a) Konvergiert $(f_n)_{n\in\mathbb{N}}$ punktweise gegen eine Funktion $f:I\to\mathbb{R}$?
- (b) Konvergiert $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen eine Funktion $f:I\to\mathbb{R}$?
- (c) Konvergiert $(g_n)_{n\in\mathbb{N}}$ punktweise gegen eine Funktion $g:I\to\mathbb{R}$?
- (d) Konvergiert $(g_n)_{n\in\mathbb{N}}$ gleichmäßig gegen eine Funktion $g:I\to\mathbb{R}$?

Abgabe: Montag, 18. Mai 2009 (bis 12 Uhr).