http://home.mathematik.uni-freiburg.de/analysis/AnaIII/

Aufgabe 1 (Urbilder von Erzeugern)

Seien $f:X\to Y$ eine Abbildung zwischen Mengen und $\mathcal{E}\subset 2^Y$ ein beliebiges Mengensystem. Zeigen Sie

$$f^{-1}(\sigma(\mathcal{E})) = \sigma(f^{-1}(\mathcal{E})).$$

Hinweis: Zum Nachweis der Inklusion " \subset " setzen Sie $\mathcal{B} := \{B \subset Y : f^{-1}(B) \in \sigma(f^{-1}(\mathcal{E}))\}$ und betrachten $f^{-1}(\mathcal{B})$ (Good Sets Principle).

Aufgabe 2 (Konstruktion von äußeren Maßen)

Seien $(\mu_i)_{i\in\mathbb{N}}$ äußere Maße auf X und $(\alpha_i)_{i\in\mathbb{N}}\subset[0,\infty]$. Zeigen Sie, dass durch

$$\mu(A) := \sum_{i=1}^{\infty} \alpha_i \, \mu_i(A), \quad A \subset X,$$

wieder ein äußeres Maß auf X definiert ist und dass Mengen, die μ_i -messbar sind für alle $i \in \mathbb{N}$, auch μ -messbar sind.

Aufgabe 3 (Cantormenge)

Die Cantormenge C ist die Menge aller $x \in [0,1]$, die eine triadische Enwicklung $x = 0, k_1 k_2 \ldots := \sum_{j=1}^{\infty} k_j \cdot 3^{-j}$ erlauben mit Ziffern $k_j \in \{0,2\}$. Zeigen Sie:

(a) Sei C_n die Menge der $x = 0, k_1 k_2 \ldots \in [0, 1]$ mit $k_j \in \{0, 2\}$ für $j = 1, \ldots, n$ und $C_0 = [0, 1]$. Dann ist C_{n+1} die disjunkte Vereinigung

$$C_{n+1} = \left\{ \frac{1}{3}x : x \in C_n \right\} \cup \left\{ \frac{2}{3} + \frac{1}{3}x : x \in C_n \right\}.$$

- (b) $C = \bigcap_{n=0}^{\infty} C_n$.
- (c) C ist abgeschlossen und überabzählbar.
- (d) C hat Jordan-Inhalt Null und ist nirgends dicht.

Aufgabe 4 (Ein vollständiger metrischer Raum)

Seien $\mu: 2^X \to [0, +\infty)$ ein äußeres Maß und \mathcal{M} das System der μ -messbaren Mengen. Wir setzen wie in Aufgabe 2, Serie 1,

$$d(A, B) := \mu(A \triangle B)$$
 und $A \sim B \Leftrightarrow d(A, B) = 0$.

Beweisen Sie: Durch die Metrik d (\cdot, \cdot) wird \mathcal{M}/\sim ein vollständiger metrischer Raum, d.h. jede Cauchyfolge konvergiert.

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Freitag, dem 09.11.2007, bis 9.15 Uhr.