Aufgabe 1 (Konvexe Mengen)

Sei $K \subset \mathbb{R}^n$ eine kompakte, konvexe Menge mit $\operatorname{int}(K) \neq \emptyset$. Zeigen Sie $\mathcal{L}^n(\partial K) = 0$.

Aufgabe 2 (Maße von Kugeln)

Sei μ ein Borelmaß auf \mathbb{R}^n . Betrachten Sie die Funktion

$$\theta: \mathbb{R}^n \times [0, \infty) \to [0, \infty), \quad \theta(x, r) := \mu(\{y \in \mathbb{R}^n : |y - x| < r\}).$$

Zeigen Sie, dass die Funktion $\theta(\cdot, r)$ unterhalbstetig ist und messbar bzgl. der Borelalgebra \mathcal{B}^n im \mathbb{R}^n .

Aufgabe 3 (Invariantes Borelmaß auf \mathbb{S}^{n-1})

Definieren Sie auf der Sphäre $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : |x| = 1\}$ ein nichttriviales Borelmaß μ , das unter der Operation der orthogonalen Gruppe $\mathbb{O}(\mathbb{R}^n)$ invariant ist.

Hinweis: Die Borelalgebra in einem metrischen Raum ist definiert als die von den offenen Mengen erzeugte σ-Algebra. Überlegen Sie: Die Borelmengen von \mathbb{S}^{n-1} sind genau von der Form $B \cap \mathbb{S}^{n-1}$ für alle Borelmengen $B \subset \mathbb{R}^n$.

Aufgabe 4 (Integration bzgl. des Bildmaßes)

Gegeben seien die σ -Algebren $\mathcal{A} \subset 2^X$ und $\mathcal{B} \subset 2^Y$. Die Abbildung $f: X \to Y$ sei messbar bzgl. \mathcal{A} und \mathcal{B} , d.h. $f^{-1}(B) \in \mathcal{A}$ für alle $B \in \mathcal{B}$. Sei weiter μ ein Maß auf \mathcal{A} .

- (a) $f(\mu)(B) := \mu(f^{-1}(B))$ ist ein Maß auf \mathcal{B} und ist eine Funktion $g: Y \to \overline{\mathbb{R}}$ messbar bzgl. \mathcal{B} , so ist $g \circ f$ messbar bzgl. \mathcal{A} .
- (b) Für eine \mathcal{B} -messbare Funktion $g: Y \to [0, \infty]$ ist

$$\int g d(f(\mu)) = \int g \circ f d\mu.$$

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Freitag, dem 30.11.2007, bis 10.15 Uhr.