http://home.mathematik.uni-freiburg.de/analysis/AnaIII/

Aufgabe 1 (Unendliche Reihen integrierbarer Funktionen)

Es sei $f_n: X \to \mathbb{R}$ eine Folge integrierbarer Funktionen mit $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$. Dann konvergiert die Reihe $\sum_{n=1}^{\infty} f_n$ punktweise μ -fast-überall gegen eine integrierbare Funktion $f: X \to \mathbb{R}$ und es gilt:

$$\int f \, d\mu = \sum_{n=1}^{\infty} \int f_n \, d\mu.$$

Aufgabe 2 (Zur Integrierbarkeit)

Sind $f: X \to \overline{\mathbb{R}}$ messbar und $\mu(X) < \infty$, so ist f genau dann integrierbar, wenn

$$\sum_{n=1}^{\infty} \mu(\{|f| > n\}) < \infty.$$

Aufgabe 3 (Konvergenz im Maß/Stochastische Konvergenz 1)

Sei μ ein Maß auf X mit $\mu(X) < \infty$. Die Folge messbarer Funktionen $f_n : X \to \overline{\mathbb{R}}$ konvergiere punktweise μ -fast-überall gegen eine messbare Funktion $f : X \to \mathbb{R}$. Zeigen Sie, dass gilt:

$$\lim_{n\to\infty} \mu(\{x\in X: |f_n(x)-f(x)|\geq \varepsilon\}) = 0 \quad \text{für jedes } \varepsilon > 0.$$

Aufgabe 4 (Konvergenz im Maß/Stochastische Konvergenz 2)

Die Umkehrung der Aussage von Aufgabe 3 ist im Allgemeinen falsch, d.h. Konvergenz im Maß impliziert nicht Konvergenz punktweise μ -fast-überall. Finden Sie ein Beispiel.

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Freitag, dem 07.12.2007, bis 10.15 Uhr.