Aufgabe 1 (Berechnung des Integrals mit Riemannschen Summen) Berechnen Sie für a>1 das Integral

$$\int_{1}^{a} \log x \, dx.$$

Hinweis: Verwenden Sie die Unterteilungspunkte $x_k = a^{k/N}$ für $k = 0, 1, \dots, N$.

Aufgabe 2 (Integralnorm)

Sei $I \subset \mathbb{R}$ ein kompaktes Intervall. Beweisen Sie, dass durch

$$||\cdot||_1:C^0(I)\to\mathbb{R},\,||f||_1=\int_a^b|f|$$

eine Norm definiert ist (also Positivität, Halblinearität und Dreiecksungleichung). Ist $||\cdot||_1$ auch eine Norm auf dem Raum $\mathcal{R}(I)$?

Aufgabe 3 (Flächeninhalt der Ellipse)

Berechnen Sie den von einer Ellipse mit Halbachsen a,b>0 eingeschlossenen Flächeninhalt, also den Flächeninhalt der Menge

$$E = \{(x, y) \in \mathbb{R}^2 : \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 \le 1\} \subset \mathbb{R}^2.$$

Aufgabe 4 (Substitutionsregel)

Berechnen Sie folgende Integrale:

(a)
$$\int_{\pi/3}^{2\pi/3} \frac{dt}{\sin t}$$
 (Substitution $x = \tan \frac{t}{2}$).

(b)
$$\int_{1}^{a} \cos(\log x) dx$$
 $(a > 1)$.

(c)
$$\int_{1}^{4} e^{\sqrt{x}} dx.$$

Aufgabe 5 (Integral als Funktion der oberen Grenze)

Sei
$$f \in C^0(I)$$
 mit $I = (a, b)$ offen. Wir betrachten die Funktion $\phi: (t_1, t_2) \to \mathbb{R}, \ \phi(t) = \int_{a(t)}^{b(t)} f(x) \, dx,$

wobei $a, b: (t_1, t_2) \to I$ differenzierbar sind. Begründen Sie die Differenzierbarkeit von ϕ und berechnen Sie die Ableitung.

Aufgabe 6 (Partielle Integration)

Für $u, v \in C^0([-\pi, \pi])$ definieren wir $\langle u, v \rangle = \int_{-\pi}^{\pi} uv \in \mathbb{R}$. Überlegen Sie, dass $\langle \cdot, \cdot \rangle$ die Eigenschaften eines Skalarprodukts besitzt (vgl. Lemma 5.3). Berechnen Sie $\langle u_k, u_l \rangle$, $\langle v_k, v_l \rangle$ sowie $\langle u_k, v_l \rangle$ für

$$u_k(x) = \frac{1}{\sqrt{2\pi}} \cos kx$$
 und $v_k(x) = \frac{1}{\sqrt{2\pi}} \sin kx$ $(k \in \mathbb{Z}).$

Aufgaben 3-6 zum Hauptsatz der Differential- und Integralrechnung (Vorlesung 11.2.). Besprechung der Aufgaben teilweise in der 1. Ferienwoche.