Aufgabe 1 (Zahl der Urbilder)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $f \in C^1(\Omega, \mathbb{R}^n)$ und $y \in \mathbb{R}^n$. Es gelte

- (1) f ist stetig auf $\overline{\Omega}$ fortsetzbar.
- (2) Df(x) ist invertierbar für alle $x \in \Omega$.
- (3) $y \notin f(\partial \Omega)$.

Zeigen Sie, dass die Menge $f^{-1}\{y\}$ der Urbilder von y endlich ist. Illustrieren Sie, dass keine der Voraussetzungen (1), (2) oder (3) weggelassen werden kann.

Aufgabe 2 (Untermannigfaltigkeiten)

- (a) Zeigen Sie, dass die Menge $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 2xz = 4\}$ im Punkt $(2,\sqrt{3},1)$ eine Tangentialebene hat, und berechnen Sie diese.
- (b) Zeigen Sie,dass die Menge $\{(x,y,z) \in \mathbb{R}^3 : xy = 3, xz = 2\}$ eine eindimensionale Untermannigfaltigkeit ist. Bestimmen Sie mit der Multiplikatorenregel von Lagrange die Punkte auf M, die am nächsten zum Nullpunkt sind.

Aufgabe 3 (das Kreuz)

Sei $M = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$. Zeigen Sie, dass $M \setminus \{0\}$ eine eindimensionale Untermannigfaltigkeit des \mathbb{R}^2 ist, aber nicht ganz M.

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 4.7.2016 bis 12:00