http://home.mathematik.uni-freiburg.de/analysis/Analysis3WS1617

Aufgabe 1 (quadrierbare Mengen)

- (a) Für $A, B \subset \mathbb{R}^n$ quadrierbar gilt $\operatorname{vol}^n(A) + \operatorname{vol}^n(B) = \operatorname{vol}^n(A \cup B) + \operatorname{vol}^n(A \cap B)$.
- (b) Ist $f: \mathbb{R}^n \to \mathbb{R}^n$ Lipschitzstetig und $\operatorname{vol}^n(E) = 0$, so folgt $\operatorname{vol}^n(f(E)) = 0$.

Aufgabe 2 (Kartesische Produkte)

Seien $M \subset \mathbb{R}^m$, $N \subset \mathbb{R}^n$ quadrierbar. Zeigen Sie, dass $M \times N \subset \mathbb{R}^{m+n}$ quadrierbar ist und dass gilt:

$$\operatorname{vol}^{m+n}(M \times N) = \operatorname{vol}^{m}(M) \cdot \operatorname{vol}^{n}(N).$$

Aufgabe 3 (Hausdorffmaß)

Sei (X,d) ein metrischer Raum und s>0. Betrachten Sie für $A\subset X$

$$\mathcal{H}^{s}_{\delta}(A) = \inf \Big\{ \sum_{j=1}^{\infty} \alpha_{s} \Big(\frac{\operatorname{diam} C_{j}}{2} \Big)^{s} : A \subset \bigcup_{j=1}^{\infty} C_{j}, \operatorname{diam} C_{j} < \delta \Big\}.$$

Dabei ist $\alpha_s > 0$ eine Normierungskonstante. Zeigen Sie:

- (a) $\mathcal{H}_{\delta}^{s}(A)$ ist ein äußeres Maß.
- (b) $\mathcal{H}^s = \lim_{\delta \to 0} \mathcal{H}^s_{\delta}(A)$ existiert und ist ebenfalls ein äußeres Maß.

Aufgabe 4 (Ein vollständiger metrischer Raum)

Sei $\mu: 2^X \to [0, \infty]$ ein äußeres Maß und \mathcal{M} das System der μ -messbaren Mengen. Wir setzen analog zu Aufgabe 2, Übung 1,

$$d(A, B) = \mu(A \triangle B)$$
 und $A \sim B \Leftrightarrow d(A, B) = 0$.

Zeigen Sie: (\mathcal{M}, d) ist ein vollständiger metrischer Raum.

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Donnerstag, 3.11.2016.