Aufgabe 1 (Lie Klammer)

Für $k \geq 2$ seien X, Y, Z C^k -Vektorfelder auf einer Mannigfaltigkeit M. Zeigen Sie:

$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0.$$

Aufgabe 2 (Lipschitz-Abhängigkeit des Flusses vom Anfangswert)

Betrachte auf der offenen, beschränkten Menge $\Omega \subset \mathbb{R}^n$ Lösungen $\gamma_i : [0,T] \to \Omega$ der beiden Anfangswertprobleme

$$\gamma_i'(t) = X_i(\gamma_i(t)), \quad \gamma_i(0) = p_i \in \Omega \quad (i = 1, 2).$$

Die $X_i: \Omega \to \mathbb{R}^n$ seien Lipschitzstetig mit Konstante $1 \leq L < \infty$. Sei $f_{\epsilon}: [0,T] \to \mathbb{R}$ definiert durch

$$f_{\epsilon}(t) := e^{-Lt} \sqrt{|\gamma_1(t) - \gamma_2(t)|^2 + \epsilon} - \sqrt{|p_1 - p_2|^2 + \epsilon} - t \sup_{x \in \Omega} |X_1(x) - X_2(x)| - \epsilon.$$

Zeigen Sie: für alle $t \in [0, T]$ gilt:

- 1. $\frac{df_{\epsilon}(t)}{dt} \leq 0$.
- 2. $f_0(t) \le 0$.
- 3. $|\gamma_1(t) \gamma_2(t)| \le e^{Lt}(|p_1 p_2| + t \sup_{x \in \Omega} |X_1(x) X_2(x)|)$.

Aufgabe 3 (Irrationale Flusslinien auf dem Torus)

Betrachten Sie $M = \mathbb{R}^2/\mathbb{Z}^2$, wobei $(\mathbb{Z}^2, +)$ auf \mathbb{R}^2 durch $(n, m) \cdot (x, y) = (x + n, y + m)$ operiert. Sei $\pi : \mathbb{R}^2 \to M$ die Projektion, $\pi(x) = [x]$. Für $a \in \mathbb{R} \setminus \mathbb{Q}$ sei $X : M \to TM$ das durch $X(\pi(x, y)) = D\pi(x, y)\tilde{X}(x, y)$ gegebene Vektorfeld, wobei $\tilde{X}(x, y) = (1, a)|_{(x,y)}$. Zeigen Sie: Die Flusslinien sind injektiv und dicht in M, dass heisst, die maximale Integralkurve $c_p : I_p \to M$ für X mit Anfangswert p ist injektiv, und $c_p(I_p)$ ist eine dichte Teilmenge von M.

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer bzw. der Tag Ihrer Übungsgruppe auf jedes Lösungsblatt.