Aufgabe 1 (Total geodätische Immersionen)

Eine isometrische Immersion $f:(M,g)\to (\widetilde{M},\widetilde{g})$ heißt total geodätisch, wenn gilt:

$$\gamma: I \to (M,g)$$
 Geodätische $\Rightarrow f \circ \gamma: I \to (\widetilde{M},\widetilde{g})$ Geodätische.

Zeigen Sie, dass f genau dann total geodätisch ist, wenn die zweite Fundamentalform A verschwindet.

Aufgabe 2 (Liegruppen mit biinvarianter Metrik)

Sei $\langle \cdot, \cdot \rangle$ biinvariante Riemannsche Metrik auf der Liegruppe G, das heißt die Linksbzw. Rechtstranslationen l_g bzw. r_g sind Isometrien. Die linksinvarianten Vektorfelder werden durch die Identifikation $LG \cong T_eG$ zu einem Skalarproduktraum. Zeigen Sie für $X, Y, Z, W \in LG$ folgende Aussagen:

(a) Die adjungierte Darstellung Ad : $G \to Aut(LG)$ ist orthogonal:

$$\langle \operatorname{Ad}(g)X, \operatorname{Ad}(g)Y \rangle = \langle X, Y \rangle.$$

(b) Die adjungierte Darstellung ad : $LG \to \operatorname{End}(LG)$ ist schiefsymmetrisch:

$$\langle \operatorname{ad}(X)Y, Z \rangle + \langle Y, \operatorname{ad}(X)Z \rangle = 0.$$

- (c) $\langle X(g), Y(g) \rangle \equiv \langle X(e), Y(e) \rangle$ für alle $g \in G$.
- (d) $D_XY = \frac{1}{2}[X,Y]$ (verwenden Sie Formel (1.2) für den Levi-Civita Zusammenhang sowie die Gleichung $[X,Y] = \operatorname{ad}(X)Y$, siehe Liegruppen, Aufgaben 11).
- (e) $R(X, Y, Z, W) = -\frac{1}{4} \langle [X, Y], [Z, W] \rangle$ (insbesondere $R(X, Y, Y, X) \ge 0$).

Bemerkung. Eine biinvariante Metrik existiert zum Beispiel auf jeder kompakten Liegruppe G.

Aufgabe 3 (Clifford-Torus)

Berechnen Sie zweite Fundamentalform und Krümmung der induzierten Metrik für

$$f: \mathbb{R}^2/(2\pi\mathbb{Z})^2 \to \mathbb{S}^3 \subset \mathbb{R}^4, \ f(x,y) = \frac{1}{\sqrt{2}} (e^{ix}, e^{iy}).$$

Überlegen Sie, dass f eine Minimalfläche in \mathbb{S}^3 ist, das heißt $\vec{H} \equiv 0$.

Aufgabe 4 (Minimale Untermannigfaltigkeiten in \mathbb{R}^n)

Sei $f: M \to \mathbb{R}^n$ eine Immersion mit induzierter Metrik $g = f^*\langle \cdot, \cdot \rangle$ und mittlerem Krümmungsvektor $\vec{H}: M \to \mathbb{R}^n$. Zeigen Sie:

$$\vec{H} = \Delta_g f.$$

Folgern Sie, dass M nicht kompakt sein kann, wenn f minimale Immersion ist. Anleitung: Betrachten Sie die Funktion $u=\frac{1}{2}\,|f|^2$.

Bitte schreiben Sie Ihre(n) Namen auf jedes Lösungsblatt. Abgabe am Dienstag, 06.07.2004 bis 9:15.