Aufgabe 1(Der Levi-Cevita Zussamenhang eine Riemannscher Immersion) Sei $f:(M,g)\to (\tilde{M},\tilde{g})$ eine Isometrische Immersion. Zeigen Sie: der Levi-Cevita Zussamenhang auf (M,g) ist durch

$${}^{g}\nabla_{X}Y = Df^{-1}(({}^{g}\nabla_{Df(X)}D\tilde{f(Y)})^{T})$$

gegeben, wobei $D\tilde{f}(Y)$ eine beliebige lokale Fortsetzung des Vektorfeldes Df(Y) ist.

Hinweis: zeigen Sie dass ${}^g\nabla_X Y$ ein Zusammenhang ist, der (4) und (5) von Proposition 1.11 erfüllt.

Aufgabe 2 (Darstellung der Zweite Fundamentalform)

Man Zeige, dass wenn man die Werten A(x)(Z(x), Z(x)) für alle $Z(x) \in T_xM$ kennt, dann kann man A(x)(X(x), Y(x)) für beliebige $X(x), Y(x) \in T_xM$ ausrechnen.

Aufgabe 3 (Prinzipal Richtungen der Zweite Fundamentalform)

Sei $f:(M^m,g)\to (\tilde{M}^{m+1},\tilde{g})$ eine Isometrische Immersion. Zeigen Sie, dass für alle $x\in M$ existiert eine Orthonormal Basis $\{\tau_1(x),\ldots,\tau_m(x)\}$ von T_xM und reele Werte $\kappa_1(x),\ldots,\kappa_m(x)\in\mathbb{R}$ so dass

$$A_0(x)(\tau_i(x), \tau_i(x)) = \delta_{ij}\kappa_i(x).$$

Der Wert

$$H(x) := k_1(x) + \ldots + k_m(x),$$

ist unabhängig von der Wahl der Orthonormal Basis. H(x) ist der Mittlere Krümmung in x.

Aufgabe 4 (Zweite Fundamentalform einer Rotationssymmetrische Fläche) Sei $f: \mathbb{R} \times S^1 \to \mathbb{R}^3$ die Einbettung $f(r,\alpha) := (r,\psi(r)l(\alpha))$, wobei $S^1 := \{(y,z) \in \mathbb{R}^2 | y^2 + z^2 = 1\}$, und $l: S^1 \to \mathbb{R}^2$ ist l((y,z)) := (y,z), und $\psi: \mathbb{R} \to (0,\infty)$ eine C^∞ Funktion ist.

Berechnen Sie $H((x, \alpha))$.

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer bzw. der Tag Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Dienstag, 04.07.2006 bis 9:15.