Aufgabe 1 Existenz des Levi-Cevita Verbindungs

Sei (M,g) eine Riemmansche Mannigfaltigkeit. Dann existiert es ein eindeutiger Zussamenhang auf M so dass

(i)
$$\nabla_X Y - \nabla_Y X = [X, Y] \forall X, Y \in \mathcal{X}(M)$$
.

(ii)
$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z) \forall X, Y, Z \in \mathcal{X}(M)$$
.

Siehe Theorem 1.12 von der Vorlesung, und die Skizze des Beweises von der Vorlesung.

Aufgabe 2 Definition eines Vektorfeldes längs einer Kurve

Sei X ein Vf. längs einer Kurve $\gamma: I \to M$. Ist es immer möglich $X(t) = Y(\gamma(t))$ zu schreiben, wobei $Y \in \mathcal{X}(M)$?

Aufgabe 3 Eingenschaften der Kovarainte-Ableitung längs einer Kurve

Sei $\frac{D}{dt}$ wie in der Vorlesung definiert. Es gilt

(a)
$$\frac{D}{dt}(X+Y) = \frac{D}{dt}(X) + \frac{D}{dt}(Y) \forall X, Y \in \mathcal{X}(I, M)$$

(b)
$$\frac{D}{dt}(fX)(t) = f'(t)X(t) + f(t)\frac{D}{dt}(X)(t)\forall X \in \mathcal{X}(I,M), f \in C^{\infty}(I,M)$$

(c) Falls
$$X(t)=Y(\gamma(t))$$
 für ein glattes Vektorfeld Y auf M , dann gilt: $\frac{D}{dt}(X)(t)=\nabla_{\gamma'(t)}Y$

Aufgabe 4 Eindeutigkeit

Sei $\frac{\hat{D}}{dt}$ ein operator die (a),(b) und (c) (von Aufgabe 3) erfüllt. Dann ist $\frac{\hat{D}}{dt} = \frac{D}{dt}$

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer bzw. der Tag Ihrer bungsgruppe auf jedes Lösungsblatt. Abgabe ist am Dienstag, 09.05.2006 bis 9:15.