Aufgabe 1 (C^{∞} Lokal-Basis)

Sei (M, g) eine Riem. Mannigfaltigkeit. Zeigen Sie: zu $p \in M$, existiert es ein Othonormal Basisfeld $\mathcal{V} = \{v_1, \ldots, v_n\}$ auf M (man braucht lediglich die Definition einer Riemmanschen Mannigfaltigkeit um das Feld zu konstruieren).

Aufgabe 2 Hopf-Rinow

Sei (M,g) eine Mannigfaltigkeit, und $N \subset M$ eine Untermannigfaltigkeit mit der induzierte Riemmansche Metrik $h = i^*g$ versehen $(i : N \to M$ die Inklusion). Zeigen Sie: Ist (M,g) vollständig und N zusammenhängend, so ist (N,h) vollständig.

Aufgabe 3 Polarkoordinaten

Sei (M,g) eine Riem. Mannigfaltikeit und $f:(0,s)\times S_p\to M$

$$f(r,\omega) = exp_p(r\omega),$$

wohldefiniert, wobei $S_p = \{v \in T_pM : ||v||_g = 1. \text{ Man Zeige: }$

$$f^*g|_{(r_0,\omega_0)} = dr^2|_{r_0} \oplus r_0^2 h|_{(r_0,\omega_0)},$$

wobei dr^2 die Standard Metrik auf \mathbb{R} ist, und $h|_{(r_0,\omega_0)}$ eine Riem. Metrik auf S_p ist, genaurere gilt für $\psi, \eta \in T_{\omega_0}S_p$:

$$h|_{(r_0,\omega_0)}(\psi,\eta) = g(D\exp_p(r_0\omega_0)(\psi), D\exp_p(r_0\omega_0)(\eta)).$$

Aufgabe 4 Kompakte Mengen in Riemmansche Mannigfaltigkeiten

Sei (M,g) zusammenhängend, $B \subset M$ ein beschränktes, abgeschlossenes Gebiet, und $p_i \in B$. Ist es immer möglich ein $\epsilon > 0$ zu finden, so dass für alle $p_i \in M$, es existiert $\phi: {}^gB_{\epsilon}(p_i) \to {}^{\mathbb{R}^n}B_{\epsilon}(0)$ (bijektive Abbildung) Koordinaten ? Errinerung: ${}^gB_r(p) = \{x \in M: {}^gd(x,p) < r\}, {}^{\mathbb{R}^n}B_r(0) = \{x \in \mathbb{R}^n: |x|_{\mathbb{R}^n} < r\},$

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer bzw. der Tag Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Dienstag, 30.05.2006 bis 9:15.