Aufgabe 1 (Distanzfunktionen)

Eine glatte Funktion $f:M\to\mathbb{R}$ mit $\|\operatorname{grad_g} f\|_g\equiv 1$ heißt Distanzfunktion. Zeigen Sie:

- (a) Integralkurven von $\operatorname{grad}_{g} f$ sind Geodätische.
- (b) Für eine stückweise reguläre C^1 -Kurve c von p nach q gilt $L_g(c) \ge f(q) f(p)$, mit Gleichheit genau dann, wenn c Integralkurve von grad_g f ist.

Aufgabe 2 Hopf-Rinow

Sei (M,g) eine Mannigfaltigkeit, und $N\subset M$ eine Untermannigfaltigkeit mit der induzierten Riemmanschen Metrik $h=i^*g$ versehen $(i:N\to M$ die Inklusion). Zeigen Sie: Ist (M,g) vollständig und N zusammenhängend, abgeschlossen, so ist (N,h) vollständig.

Aufgabe 3 Polarkoordinaten

Sei (M,g) eine Riem. Mannigfaltikeit und $f:(0,s)\times S_p\to M$

$$f(r,\omega) = \exp_p(r\omega),$$

wohldefiniert, wobei $S_p = \{v \in T_pM : ||v||_g = 1\}$. Man Zeige:

$$f^*g|_{(r_0,\omega_0)} = dr^2|_{r_0} \oplus r_0^2 h|_{(r_0,\omega_0)},$$

wobei dr^2 die Standard Metrik auf \mathbb{R} ist, und $h|_{(r_0,\omega_0)}$ eine Riem. Metrik auf S_p ist, genauer gilt für $\psi, \eta \in T_{\omega_0}S_p$:

$$h|_{(r_0,\omega_0)}(\psi,\eta) = g(D\exp_p(r_0\omega_0)(\psi), D\exp_p(r_0\omega_0)(\eta)).$$

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer bzw. der Tag Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 26.05.2008 bis 9:15.