Lösungen der Präsenzaufgabe 4

Aufgabe 1

(a) Angenommen es gäbe unendlich viele t_j , dann würde ein Grenzwert $\lim_{j\to\infty} t_j = \tilde{t}$ existieren und in I liegen, da I kompakt ist. Wegen der Stetigkeit von ω wäre

$$\tilde{t} = \lim_{j \to \infty} t_{2j} = 1 = -1 = \lim_{j \to \infty} t_{2j+1},$$

was nicht sein darf.

- (b) Auf I_{2j} sind jeweils die $\log_{k,-}$ definiert, auf I_{2j+1} die $\log_{k,+}$
- (c) Wähle $\log_{I_0} = \log_{0,-}$. Dann jeweils so, dass

$$\log_{I_{i-1}}(\omega(s_j)) = \log_{I_i}(\omega(s_j)). \tag{1}$$

(d) θ ist stetig, da es auf den Teilintervallen eine Verknüpfung stetiger Funktionen ist. Wegen (1) ist θ auch stetig auf den Intervallrändern. Außerdem gilt

$$e^{i\theta} = e^{i\log_{k,\pm}\omega} = \omega.$$

Beachte, dass die Definition von \log_{\pm} um -i von der gewohnten Definition abweicht.

Aufgabe 2

(a) Da der Definitionsbereich kompakt ist, ist θ gleichmäßig stetig. Wähle für gegebenes $\varepsilon > 0$ ein k, so dass

$$|\theta(t) - \theta(t')| < \frac{\varepsilon}{2}$$
 für $|t - t'| \le \frac{1}{k}$.

$$\begin{split} \|\theta_k - \theta\|_{\infty} &= \sup_{t \in I} |\theta_k(t) - \theta(t)| \\ &= \sup_{\substack{0 \le t \le 1/k \\ j = 1, \dots, k}} |\theta(t_{j-1}) - \theta(t_{j-1} + t) + kt(\theta(t_j) - \theta(t_{j-1}))| \\ &\le \sup_{\substack{0 \le t \le 1/k \\ j = 1, \dots, k}} |\theta(t_{j-1}) - \theta(t_{j-1} + t)| + \sup_{\substack{0 \le t \le 1/k \\ j = 1, \dots, k}} |\theta(t_j) - \theta(t_{j-1})| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \end{split}$$

(b) Für gegebenes $\omega \in C^0(I, S^1)$ betrachte den Lift θ wie in Aufgabe 1 konstruiert. Die θ_k seien wie in Aufgabenteil (a). Setze dann $\omega_k = e^{i\theta_k}$. Dann ist

$$\sup_{t \in I} |\omega_k(t) - \omega(t)| = \sup_{t \in I} |e^{i\theta_k(t)} - e^{i\theta(t)}|$$
$$\leq \sup_{t \in I} |\theta_k(t) - \theta(t)|$$

Bei der Ungleichung haben wir verwendet, dass für $f(s) = e^{is}$ gilt: $||df||_{\infty} = 1$.