Aufgabe 1 (Gleichungen)

Sei $c \in C^3(I, \mathbb{R}^3)$. Beweisen Sie:

- (a) $(\frac{c'}{|c'|})' = \kappa N|c'|$, wobei κ, N wie in der Vorlesung für eine C^2 Kurve definiert sind (siehe Defn. 2.15, und Lemma 2.17).
- (b) Falls $c \in C^3(I, \mathbb{R}^3)$ eine Frenetkurve ist, so gilt:

$$\tau = \frac{\det(c', c'', c''')}{|c'|^2 |c'' - \langle c'', T \rangle T|^2}.$$

Aufgabe 2 (Bewegungsinvarianz von Krümmung und Torsion)

Sei $c \in C^2(I, \mathbb{R}^3)$ eine reguläre Kurve und F(x) = Sx + a eine Euklidische Bewegung. Dann ist $\tilde{c} = F \circ c$ ebenfalls regulär und es gilt mit $\det(S) = \pm 1$

- (1) $\tilde{\kappa} = \kappa$.
- (2) $\tilde{T}, \tilde{N}, \tilde{B} = ST, SN, \pm SB$.
- (3) $\tilde{\tau} = \pm \tau$.

Aufgabe 3 (Hauptsatz für ebene Kurven II)

Beweisen Sie, dass es zu $k \in C^0(I,\mathbb{R})$ eine nach der Bogenlänge parametrisierte Kurve $c \in C^2(I,\mathbb{R}^2)$ gibt mit Krümmung $\kappa = k$. Zeigen Sie weiter: Sind c_1, c_2 zwei solche Kurven, dann gilt $c_2 = F \circ c_1$ für eine orientierungserhaltende Bewegung F. Hinweis: Machen Sie für $\gamma' = \tau$ den Ansatz $\tau(s) = \exp(i\phi(s))$.

Aufgabe 4 (Umlaufzahl)

Sei $c_1: [-1,1] \to \mathbb{R}^2$ die Parabel $c_1(t) = (t,1-t^2)$. Sei $c_2: [1,2] \to \mathbb{R}^2$ die Gerade von (1,0) bis $(\frac{1}{2},-1)$, $c_3: [2,3] \to \mathbb{R}^2$ die Gerade von $(\frac{1}{2},-1)$ bis $(-\frac{1}{2},0)$, $c_5: [4,5] \to \mathbb{R}^2$ die Gerade von $(\frac{1}{2},0)$ bis $(-\frac{1}{2},-1)$, $c_6: [5,6] \to \mathbb{R}^2$ die Gerade von $(-\frac{1}{2},-1)$ bis (-1,0) wobei die Parametrisierung so gewählt ist, dass $c_2(1) = (1,0), c_2(2) = (\frac{1}{2},-1)$, usw., und so dass $|c_2'|, |c_3'|, |c_5'|, |c_6'|$ alle konstant sind. Sei $c_4: [3,4] \to \mathbb{R}^2$ eine C^{∞} reguläre parametrisierte Kurve, die auf dem oberen Halbkreis vom Radius $\frac{1}{2}$ und Mittelpunkt (0,0) liegt, so dass $c_4(3) = (-\frac{1}{2},0), c_4(4) = (\frac{1}{2},0)$, wobei die Parametrisierung so gewählt ist, dass $|c_4'|$ konstant ist. Sei $c: [-1,6] \to \mathbb{R}^2$ die parametrisierte Kurve mit $c|_{[-1,1]} = c_1, c|_{[1,2]} = c_2, c|_{[2,3]} = c_3, c|_{[3,4]} = c_4, c|_{[4,5]} = c_5, c|_{[5,6]} = c_6$.

- (a) Skizzieren Sie c und geben Sie explizit die Parametrisierung von c an.
- (b) Bestimmen Sie eine stetige Funktion $\theta : [-1, 6] \to \mathbb{R}$ und eine stetige Funktion $r : [-1, 6] \to \mathbb{R}$ so dass $c(t) = r(t)(\cos \theta(t), \sin \theta(t))$.

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Dienstag, 15.05.2003 bis 9:15.