Aufgabe 1 (Rotationsfläche) Es sei

$$F(t,\varphi) = \begin{pmatrix} r(t)\cos\varphi\\ r(t)\sin\varphi\\ z(t) \end{pmatrix},$$

wobei $r: I \to (0, \infty), z: I \to \mathbb{R}$ stetig differenzierbar ist und (r, z) eine reguläre Kurve ist.

- (a) Bestimmen Sie die Ableitung DF.
- (b) Bestimmen Sie die Matrix der ersten Fundamentalform $G = DF^TDF$.
- (c) Bestimmen Sie den Normalenvektor an F in (t, φ) .

Aufgabe 2 (Erste Fundamentalform) Zeigen Sie, dass die erste Fundamentalform in einem Punkt eine positiv definite, symmetrische Bilinearform ist.

Aufgabe 3 (Stereographische Projektion) Es sei für $x \in \mathbb{R}^2$ und $t \in \mathbb{R}$ mit $x^2 + t^2 = 1$

$$\Phi \colon (x,t) \mapsto \frac{x}{1-t}$$

eine Abbildung der Sphäre $S^2 \setminus \{n\}$ auf \mathbb{R}^2 , n := (0, 0, 1).

- (a) Es sei $p \in S^2 \setminus \{n\}$ und g die Gerade durch p und n. Zeigen Sie, dass $\Phi(p)$ der Schnittpunkt von g mit der Ebene $\{(x,0) \mid x \in \mathbb{R}^2\}$ ist. Fertigen Sie eine Skizze an.
- (b) Bestimmen Sie die Umkehrabbildung Ψ von Φ .
- (c) Bestimmen Sie die Matrix der Ersten Fundamentalform $G = D\Psi^T D\Psi$ und zeigen Sie, dass $G|_{(x,t)} = \lambda$ id mit $\lambda > 0$, also Ψ konform ist.

Aufgabe 4 (Stützhyperebene für konvexe Mengen) Sei $K \subset \mathbb{R}^n$ abgeschlossen und konvex. Zeigen Sie, dass zu jedem $p \in \partial K$ ein $\nu \in \mathbb{R}^n$ existiert mit $|\nu| = 1$, so dass

$$K \subset H = \{ x \in \mathbb{R}^n \mid \langle x - p, \nu \rangle \ge 0 \}.$$

Anleitung: Wählen Sie eine Folge $p_k \in \mathbb{R}^n \backslash K$ mit $p_k \to p$. Zeigen Sie, dass $q_k \in K$ existieren mit $|q_k - p_k| = \min_{q \in K} |q - p_k|$. Man setze nun $\nu_k := \frac{q_k - p_k}{|q_k - p_k|}$. Zeigen Sie nun $K \subset H_k = \{x \in \mathbb{R}^n \mid \langle x - q_k, \nu_k \rangle \geq 0\}$ und wählen Sie eine konvergente Teilfolge $\nu_{k_j} \to \nu$.

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Dienstag, den 12.06.2007 bis 9:15.