Aufgabe 1 (Konvexe Kurven I)

Zeigen Sie Lemma 5.2 aus dem Vorlesungsskript.

Aufgabe 2 (Rotationsindex für stückweise C^1 -Kurven)

Sei $\gamma:[0,L] \to \mathbb{R}^2$ eine einfach geschlossene, nach der Bogenlänge parametrisierte stückweise C^1 -Kurve, das heißt es gibt eine Unterteilung $0=s_0 < s_1 < \ldots < s_N = L$ mit $\gamma|_{[s_{i-1},s_i]} \in C^1$. Für die orientierten Außenwinkel sei vorausgesetzt, dass

$$\alpha_i := \angle (\gamma'_-(s_i), \gamma'_+(s_i)) \in (-\pi, \pi)$$
 für $i = 1, ..., N$, wobei $\gamma'_+(L) := \gamma'_+(0)$.

Zeigen Sie folgende Verallgemeinerung des Umlaufsatzes:

$$\operatorname{ind}(\gamma) = \frac{1}{2\pi} \int_0^L \varkappa(s) \, ds + \frac{1}{2\pi} \sum_{i=1}^N \alpha_i.$$

Hinweis. Approximieren Sie die Kurve in einer Ecke.

Aufgabe 3 (Röhrenflächen)

Sei $\gamma:I\to\mathbb{R}^3$ eine nach der Bogenlänge parametrisierte C^2 -Kurve, und γ',v_1,v_2 ein begleitendes C^1 -Dreibein mit $v_i'=\lambda_i\gamma'$ (vgl. Aufgabe 4, Serie 2). Betrachten Sie für r>0 die Röhrenfläche

$$F \in C^1(I \times \mathbb{R}, \mathbb{R}^3), F(s, \theta) = \gamma(s) + r(\cos(\theta)v_1(s) + \sin(\theta)v_2(s)).$$

Zeigen Sie, dass F unter der Bedingung $r \max_{s \in I} \varkappa(s) < 1$ eine Immersion ist, und dass sich die Parameterlinien $s \mapsto F(s, \theta)$ und $\theta \mapsto F(s, \theta)$ senkrecht schneiden. Hinweis. Berechnen Sie die erste Fundamentalform.

Aufgabe 4 (Tangentenflächen)

Sei $\gamma \in C^2(I, \mathbb{R}^3)$ nach der Bogenlänge parametrisiert. Dann heißt $F: I \times \mathbb{R} \to \mathbb{R}^3$, $F(s,t) = \gamma(s) + t\gamma'(s)$, Tangentenfläche. Überlegen Sie, unter welchen Voraussetzungen F eine Immersion ist und berechnen Sie die erste Fundamentalform. Spezialisieren Sie auf den Fall, dass γ eine Schraubenlinie ist (siehe Beispiele 1.3 und 2.2 im Skript).

Abgabe Dienstag, 5. Juni 2018