Übungsaufgaben zur Vorlesung Elementare DG Prof. Dr. G. Wang

SS 2015, Serie 09 22.6.2015

Aufgabe 1 (Der Graph)

Dr. J. Scheuer

(4 Punkte)

Sei S der Graph der Funktion $\phi: U \to \mathbb{R}, U \subset \mathbb{R}^2$.

a) Zeigen Sie, dass S genau dann eine Minimalfläche ist, wenn ϕ folgende partielle Differentialgleichung erfüllt:

$$(1 + \phi_y^2)\phi_{xx} - 2\phi_x\phi_y\phi_{xy} + (1 + \phi_x^2)\phi_{yy} = 0.$$

(Die Gleichung heißt die Gleichung der Minimalflächen.)

b) Leiten Sie eine Formel für die Gauß-Krümmung von S her und zeigen Sie, dass die Gauß-Krümmung genau dann positiv ist, wenn die Hesse-Matrix von ϕ definit ist.

Aufgabe 2 (Isometrie)

(4 Punkte)

- a) Zeigen Sie: Ist $f: S_1 \to S_2$ eine Isometrie, so ist auch $f^{-1}: S_2 \to S_1$ eine Isometrie.
- b) Sei $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ eine euklidische Bewegung, d.h, $\Phi(x) = Ax + b$, wobei $A \in O(3)$ und $b \in \mathbb{R}^3$. Sei $S \subset \mathbb{R}^3$ eine reguläre Fläche. Zeigen Sie, dass $f := \Phi_{|S}: S \to \Phi(S)$ eine Isometrie ist.
- c) Seien E_1 und $E_2 \subset \mathbb{R}^3$ affine Ebenen. Zeigen Sie, dass E_1 und E_2 isometrisch sind.

Aufgabe 3 (Richtungsableitung und kovariante Ableitung) (4 Punkte)

- a) Sei $S = \mathbb{S}^1 \times \mathbb{R} \subset \mathbb{R}^3$ der Zylinder mit den Vektorfeldern X(x,y,z) = (-y,x,0) unf Y(x,y,z) = (0,0,1). Berechnen Sie für die Funktionen $f_1(x,y,z) = x$, $f_2(x,y,z) = y$ und $f_3(x,y,z) = z$ auf S die Richtungsableitung nach X und Y.
- b) Sei $S = \mathbb{S}^2$ die Sphäre und

$$c: \mathbb{R} \to S$$
, $c(t) = (\cos t \cos \theta, \sin t \cos \theta, \sin \theta)$

mit $\theta \in (-\pi/2, \pi/2)$ fest. Die Kurve beschreibt einen Breitenkreis. Zeigen Sie: Die kovariante Ableitung von c' verschwindet genau dann, wenn $\theta = 0$.

Bitte wenden

(4 Punkte)

Seien X und Y Vektorfelder auf S und Z = [X, Y] die Lie-Klammer. Zeigen Sie, dass falls X und Y bzgl. einer lokalen Parametrisierung (U, F, V) durch

$$X = \sum_{i=1}^{2} \xi^{i} \frac{\partial F}{\partial u^{i}} \quad Y = \sum_{i=1}^{2} \eta^{i} \frac{\partial F}{\partial u^{i}}$$

gegeben sind, Z dann

$$Z = \sum_{i,j=1}^{2} \left(\xi^{i} \frac{\partial \eta^{j}}{\partial u^{i}} - \eta^{i} \frac{\partial \xi^{j}}{\partial u^{i}} \right) \frac{\partial F}{\partial u^{j}}$$

erfüllt.

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 29.6.15, vor der Vorlesung.