Aufgabe 1 (Stetigkeit von Bilinearformen)

Seien X, Y Banachräume und $B: X \times Y \to \mathbb{R}$ eine Bilinearform. Für feste $x \in X$ bzw. $y \in Y$ seien die Abbildungen $B(x, \cdot)$ bzw. $B(\cdot, y)$ stetig. Zeigen Sie, dass B bezüglich der Norm $\|(x, y)\|_{X \times Y} = \|x\|_X + \|y\|_Y$ stetig ist.

Anleitung: Betrachten Sie für ||y|| = 1 die Familie $\beta_y : X \to \mathbb{R}, \ \beta_y(x) = B(x,y).$

Aufgabe 2 (Stützebenen konvexer Mengen)

Sei $M \subset \mathbb{R}^n$ konvex. Zeigen Sie, dass in jedem $x_0 \in \partial M$ eine Stützebene existiert, d.h. es gibt ein $\nu \in \mathbb{R}^n$ mit $|\nu| = 1$, so dass gilt:

$$M \subset \{x \in \mathbb{R}^n : \langle x - x_0, \nu \rangle \le 0\}.$$

Aufgabe 3 (Konvexe Hülle)

Sei X ein normierter \mathbb{R} -Vektorraum und $A \subset X$. Die konvexe Hülle von A ist

$$\operatorname{conv}(A) := \left\{ \sum_{i=1}^k \alpha_i \, x_i : k \in \mathbb{N}, \, x_i \in A, \, \alpha_i \ge 0, \, \sum_{i=1}^k \alpha_i = 1 \right\}.$$

Zeigen Sie folgende Aussagen:

- (a) $\operatorname{conv}(A)$ ist konvex und $\operatorname{conv}(A) = \bigcap \{K : K \text{ konvex}, A \subset K\}.$
- (b) A offen \Rightarrow conv(A) ist offen.
- (c) $A \text{ konvex} \Rightarrow \bar{A} \text{ und int}(A) \text{ sind konvex.}$
- (d) Für abgeschlossenes A ist nicht notwendig conv(A) abgeschlossen.

Aufgabe 4 (Punktweise konvergente Operatoren)

Sei X ein Banachraum, Y normierter Raum und $T_n \in L(X,Y)$, $n \in \mathbb{N}$, punktweise konvergent, d.h. für $x \in X$ existiert $Tx := \lim_{n \to \infty} T_n x$. Zeigen Sie:

- (a) $T \in L(X, Y)$ und $||T|| \le \liminf_{n \to \infty} ||T_n||$.
- (b) Finden Sie ein Beispiel mit "<" in der Ungleichung aus (a).

Abgabe am Mittwoch, 15. Dezember, in der Vorlesung.