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Introduction

0.1. Motivation. Geometric Measure Theory is a branch of Geometric
Analysis which was born around the middle of the 20th century, out of the de-
sire to find a mathematical framework in which one can prove the existence of
solutions to the Plateau’s problem.

0.2. Plateau’s problem (Lagrange, 1760). Among all surfaces with a prescribed boundary,
find one which minimizes the area.

The problem was raised by Joseph Louis Lagrange in 1760. Nevertheless it takes
its name from the Belgian physicist Joseph Plateau, due to his extensive experi-
ments on soap films in the middle of 19th century. Plateau also formulated some
laws describing the structure of soap films:

(1) soap films are pieces of smooth surfaces;
(2) the pieces have constant mean curvature;
(3) when some pieces meet they do it in groups of three (Plateau’s borders) and they

meet with angles of 120◦;
(4) when Plateau’s borders meet they do it in groups of four and they form a tetrahedral

angle.

Nowadays by “solving the Plateaus’s problem we mean finding a mathematical
framework in which the existence of area-minimizing surfaces with prescribed
boundary can be proved in any dimension and codimension. The terms surface,
boundary, and area are in principle not clearly defined: providing suitable notions
for these terms is then part of the solution to the problem.

0.3. Direct method in the Calculus of Variations. As in several Vari-
ational Problems, the most robust way to prove the existence of minimizers
when the competitors vary in an infinite dimensional space is to use the “Direct
Method”. This works generally as follows.
Let X be a topological space. Let F : X → R be a sequentially lower-
semicontinuous functional, i.e.

F (x) ≤ lim inf
n→∞

F (xn), whenever xn → x.

Assume that the sublevel-sets

{x ∈ X : F (x) ≤M}
are sequentially compact. Then F admits a minimizer in X.

Proof. Let (xn)n∈N be a minimizing sequence, i.e. F (xn) converges to

m := inf{F (x) : x ∈ X}.
In particular there exists M ∈ R such that {xn}n∈N ⊂ F−1((−∞,M ]). By assumption this set
is sequentially compact, hence there exists a subsequence (xnk )k∈N which converges to a point
x ∈ X. By the sequential lower-semicontinuity it holds

−∞ < F (x) ≤ lim inf
k→∞

F (xnk ) = m,

hence x is a minimum for F . �
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0.4. Functional analytic approach. The main idea is to replace oriented
surfaces with the elements of a larger Banach space. On an m-dimensional surface
Σ ⊂ Rd, oriented by a tangent field τΣ, one can integrate a differential m-form ω.
Moreover the map

ω 7→
∫

Σ

ω :=

∫
Rd
〈ω(x); τΣ(x)〉dΣ(x)

is a linear and continuous functional (we remain vague on the notion of norm in the
space of differential forms, for the moment). This suggests that one can enlarge
the class of oriented m-surfaces considering elements of the dual of the space of
differential m-forms (generalized surfaces, or currents). A natural replacement of
the notion of area is the notion of mass M(T ) of a current T , i.e. simply its dual
norm, i.e.

M(T ) := sup
‖ω‖≤1

{〈T ;ω〉}

The sequential compactness (with respect to the weak∗ topology) of the sets {T :
M(T ) ≤ M} is an immediate consequence of Banach-Alaoglu theorem, and the
sequential lower-semicontinuity of the mass is a trivial fact (being the mass a
supremum of linear functionals). Lastly, one should define a notion of boundary.
This can be done “imposing” the validity of the Stoke’s theorem for currents. If
T is an m-dimensional current, then ∂T is an (m− 1)-dimensional current, which
is defined by

〈∂T, φ〉 := 〈T ; dφ〉, for every differential (m− 1)-form φ,

where d is the differential operator. It is easy to see that the notion of boundary
is continuous with respect to the weak∗ convergence, which allows to complete the
proof of the existence of generalized surfaces minimizing the mass among those
with a prescribed boundary.

0.5. Remark. In principle the solution to this problem might be “weird” objects. Observe
that for example any discrete or “continuous” convex combination of surfaces with the same
boundary is a generalized surface with that boundary. In particular the solutions might have
non-integer multiplicities and moreover the support of a solution might fail to be a set of the
correct dimension.

0.6. Geometric measure theory. In order to be able to guarantee better
properties of the solutions, one could require additional a priori regularity as-
sumptions to the class of generalized surfaces. This is achieved by considering
the class of integral currents. Their support is a rectifiable set (i.e. a set which is
essentially contained in a countable union of C1 submanifolds) and multiplicities
are allowed, but only with integer values.
The major difficulty is to prove that this class is closed with respect to weak∗

convergence, in order to recover compactness properties. The closure theorem for
integral currents is the main topic of this series of lectures.

0.7. Remark (Regularity of solutions). In general, area-minimizing integral currents are not
regular. In some cases, singularities are unavoidable. The regularity theory, then aims at
estimating the dimension of the set of singular points, i.e. those points for which there is no
neighbourhood in which the current is represented by a smooth submanifold.

• In Rd, for d ≤ 7, area-minimizing hypersurfaces are regular in the interior (i.e. far
from the boundary)

• for d > 7, area minimizing hypersurfaces might have a singular set of dimension at
most d− 8 (and countable in dimension d = 8)

• Higher codimension area-minimizing surfaces might have a “larger” singular set. An
m-dimensional area-minimizing surfaces in Rd (d ≥ m+ 2) might have a singular set
of dimension up to m− 2.



CHAPTER 1

Preliminaries

In this chapter we collect some basic definitions and results in measure theory and
real analysis.

1. Measure Theory

1.1. Definition. Let X be any set. An outer measure on X is a set function

µ∗ : 2X → [0,+∞]

such that

(1) µ∗(∅) = 0;
(2) µ∗ is σ-subadditive, i.e.

µ∗(E) ≤
∑
i∈N

µ∗(Ei), whenever E ⊂
⋃
i∈NEi.

1.2. Definition. Let (X, τ) be a topological space. A (Borel) measure on X is a set function

µ : B(X)→ [0,+∞],

where B(X) denotes the σ-algebra of Borel subsets of X, such that

(1) µ(∅) = 0;
(2) µ is σ-additive, i.e.

µ(E) =
∑
i∈N

µ(Ei), whenever E ⊂
⋃
i∈NEi and Ei ∩ Ej = ∅ for i 6= j.

1.3. Definition. Let µ∗ be an outer measure on a set X. A set E ⊂ X is measurable (in the
sense of Caratheodory) if

µ∗(F ) = µ∗(E ∩ F ) + µ∗(E \ F ), for every F ⊂ X.

1.4. Proposition. Let µ∗ be an outer measure on a set X. The class S of measurable sets is a
σ-algebra and µ∗ is σ-additive on S.

1.5. EXERCISE. (∗) Prove Proposition 1.4.

1.6. Theorem (Caratheodory’s Criterion, see [7], Theorem 1.2). Let (X, d) be a metric space
and let µ∗ be an outer measure on X, which is additive on distant sets, i.e.

µ∗(E1 ∪ E2) = µ∗(E1) + µ∗(E2) if dist(E1, E2) > 0.

Then the σ-algebra S of measurable sets contains the Borel σ-algebra B(X).

1.7. Definition (Hausdorff measures). Let (X, d) be a metric space, s ∈ [0,+∞], δ ∈ (0,+∞].
For every E ⊂ X, denote

H s
δ (E) := ωs inf

Ei

{∑
i∈N

(
diam(Ei)

2

)s}
,
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where {Ei}i∈N is a covering of E made by sets satisfying diam(Ei) ≤ δ and ωs is a geometric
constant, which coincides with the s-dimensional volume of the unit ball in Rs, when s is an
integer. Denote also

H s(E) := sup
δ>0

H s
δ (E).

The supremum is called the s-dimensional Hausdorff measure of the set E.

Notice that the function H s
δ (E) is trivially monotone decreasing in δ, hence the

supremum above coincides with the limit limδ→0 H s
δ (E).

1.8. EXERCISE. ciao

(1) Prove that H s is a (Borel) measure for every s.
(2) Let E ⊂ Rd be bounded; prove that for every δ > 0 it holds H s

δ (E) < +∞.
(3) Find a compact set E ⊂ R2 such that H 1(E) = +∞ but E is a countable union of

sets with finite H 1-measure.
(4) Prove that the value of H s(E) is unchanged if the sets Ei in the definition are required

to be open/closed/convex.

1.9. Remark. The value of H s(E) might change if the sets Ei are required to be balls. The
resulting measure is called spherical Hausdorff measure.

1.10. EXERCISE. Is the Hausdorff measure sequentially lower-semicontinuous with respect to
the Hausdorff distance dH ? Here we denoted

dH (E,F ) := max{sup
x∈F
{dist(x,E)}; sup

y∈E
{dist(y, F )}}.

1.11. EXERCISE. Prove that if s < t, then for every δ > 0 it holds

H s
δ (E) ≥ C(s, t)δs−tH t

δ (E),

where C(s, t) > 0 depends only on s and t. Deduce that if H s(E) < +∞ then H t(E) = 0.

The last property stated in the previous exercise motivates the following definition.

1.12. Definition (Hausdorff dimension). Let (X, d) be a metric space and let E ⊂ X be any
set. Then we define

dimH (E) := sup{s ≥ 0 : H s(E) = +∞}.

1.13. EXERCISE. ciao

(1) Prove that if E is a finite set then H 0(E) is the number of its elements and if E is
an infinite set, then H 0(E) = +∞.

(2) Prove that if E is countable, then dimH (E) = 0.

1.14. EXERCISE. (∗) Find an uncountable set E ⊂ R such that dimH (E) = 0.

1.15. EXERCISE. (∗) Prove that the Cantor middle-third set C has dimH (C) = log3(2) =: s
and H s(C) = ωs.

The (non-trivial) next result states that for smooth m-dimensional surfaces, the
m-dimensional Hausdorff measure agrees with the natural notion ofm-dimensional
area.

1.16. Theorem (see [1], Theorem 2.53). If E ⊂ Rn, then H n(E) = L n(E), where L n is the
Lebesgue measure.



2. Lipschitz Maps

2.1. Definition. Let (X, d), (X ′, d′) be metric spaces. A function f : X → X ′ is L-Lipschitz
(L ≥ 0) if

d′(f(x), f(y)) ≤ Ld(x, y), for every x, y ∈ X.
The least constant L such that the inequality holds is called Lipschitz constant of f and denoted
Lip(f).

2.2. EXERCISE. For e ∈ Rn+1 with |e| = 1, and α ∈ (0, π
2

), denote

C(e, α) := {x ∈ Rn+1 : |〈x, e〉| > cos(α)}
the open cone with axis e and angle α. Prove that a function f : Rn → R is cot(α)-Lipschitz if
and only if, for every x ∈ Rn it holds

graph(f) ∩ [C(en+1, α) + (x, f(x))] = {(x, f(x))}.

2.3. Proposition. Let f : X → X ′ be L-Lipschitz and let E ⊂ X. Then for every s ≥ 0 it
holds Hs(f(E)) ≤ LsHs(E).

2.4. EXERCISE. Prove Proposition 2.3.

2.5. EXERCISE. The “Cantor dust” is a subset C of R2 constructed as follows.

• Let C0 := [0, 1]× [0, 1].
• The set C1 is the subset of C0 obtained as the union of four disjoint squares Q1

1, . . . , Q
1
4

of edge length 1
4

. The set is identified by the condition that each square Q1
j has one

vertex coinciding with one of the vertices of C0.
• For i = 1, 2, . . . , the set Ci+1 is obtained from the set Ci replacing each of the 4i

squares Qij such that Ci = ∪4i

j=1Q
i
j with an homothetic copy of C1 contained in Qij

and with homothety ratio 4−i.
• We define C := ∩i∈NCi.

Prove that dimH (C) = 1.

2.6. Theorem (Arzelà-Ascoli). Let X be a separable metric space, Y be a compact metric space
and L ≥ 0. Let (fk : X → Y )k∈N be L-Lipschitz functions. Then there exists a subsequence
(fkh)h∈N and an L-Lipschitz function f such that fkh converges uniformly to f as h→∞.

2.7. Theorem (Mc Shane). Let X be a metric space, E ⊂ X and f : E → R be a Lip-
schitz function. Then there exists an Lipschitz extension F : X → R such that F|E = f and
Lip(F ) =Lip(f).

2.8. EXERCISE. Prove Theorem 2.7. More precisely, prove that the functions

F1(x) := sup
y∈E
{f(y)− Lip(f)d(x, y)}

F2(x) := inf
y∈E
{f(y) + Lip(f)d(x, y)}

are extensions of f with the same Lipschitz constant and that any other extension F of f with
the same Lipschitz constant satisfies

F1 ≤ F ≤ F2.

2.9. EXERCISE. Let ε > 0 and let f1, f2 : E ⊂ X → R be L-Lipschitz with |f1 − f2| ≤ ε.
Prove that if F1 : X → R is an L-Lipschitz extension of f1, then there exists an L-Lipschitz
extension F2 of f2 such that |F1 − F2| ≤ ε.

If f : E ⊂ X → Rm is Lipschitz, then application of Theorem 2.7 fo every
component of f gives a Lipschitz extension (with Lipschitz constant possibly larger
than Lip(f)). The next Theorem shows that, ifX is Hilbert, then also an extension
with the same Lipschitz constant can be found. This is not true in general if X
is not Hilbert.



2.10. Theorem (Kirszbraun, see [3] 2.10.43). Let X,Y be Hilbert spaces, E ⊂ X and f : E → Y
be a Lipschitz function. Then there exists an Lipschitz extension F : X → Y such that F|E = f
and Lip(F ) =Lip(f).

2.11. EXERCISE. (∗) Let K ⊂ Rn be compact. Let f1, f2 : K ⊂ Rn → Rm be both L-Lipschitz,
for some L > 0. Prove that for every ε > 0 there exists δ > 0 and L-Lipschitz extensions F1, F2

of f1 and f2 respectively, such that if |f1 − f2| ≤ δ then |F1 − F2| ≤ ε.
(Hint: use Theorem 2.10 where E ⊂ Rn+1 is the union of two “parallel” copies of K.)

Next we prove the main result (for our purposes) of this section.

2.12. Theorem (Rademacher). Let f : Rn → Rm be a Lipschitz function. Then f is differen-
tiable L n-almost everywhere.

Proof. We can assume m = 1, the proof for general m is obtained applying the result for
m = 1 to every component of f .

Step 1: we want to prove that the set of points x where

gradf(x) := (De1f(x), . . . , Denf(x))

does not exist has measure zero. Fix v ∈ Rn and denote

Ev :=

{
x : lim sup

t→0

f(x+ tv)− f(x)

t
6= lim inf

t→0

f(x+ tv)− f(x)

t

}
.

Since Ev is Borel, we can apply Fubini’s theorem to get

|Ev| =
∫
v⊥
|Evx |dL n−1(x),

where Evx := Ev ∩ (x+ 〈v〉). Since f is Lipschitz on each line x+ 〈v〉, the version of the theorem
for n = 1 (due to Lebesgue) implies that |Evx | = 0 for every x ∈ v⊥, hence |Ev| = 0. In particular
|Ee1 ∪ · · · ∪ Een | = 0, which completes the proof of this step.

Step 2: we want to prove that for every v ∈ Rn the set of points x for which

Dv(x) = gradf(x) · v

has full measure. Fix v ∈ Rn with |v| = 1 and a test function g ∈ C∞c (Rn). Take a sequence
(tk)k∈N of non-zero numbers, which converges to 0. By a simple change of coordinates, for every
k ∈ N, we can write∫

Rn

f(x+ tkv)− f(x)

tk
g(x)dx = −

∫
Rn

g(x− tkv)− g(x)

tk
f(x)dx.

Since f is Lipschitz, the integrands on the LHS are dominated, for every k, by Lip(f)|g|, hence
by the dominated convergence theorem we can conclude, denoting v = (v1, . . . , vn),∫

Rn
Dvf(x)g(x)dx = −

∫
Rn
Dvg(x)f(x)dx

= −
n∑
i=1

vi

∫
Rn
Deig(x)f(x)dx

=

n∑
i=1

vi

∫
Rn
Deif(x)g(x)dx

=

∫
Rn

(gradf(x) · v)g(x)dx.

Since g is arbitrary, we can conclude that the equality

gradf(x) · v = Dvf(x)

holds almost everywhere.



Step 3: conclusion. Let (vk)k∈N be a sequence which is dense in Sn−1. By the previous steps
there exist a set A ⊂ Rn such that |Rn \A| = 0 and

• gradf(x) exists for every x ∈ A;
• gradf(x) · vk = Dvkf(x), for every x ∈ A.

Fix now v ∈ Sn−1 and x ∈ A. For every t 6= 0 and for every k ∈ N we estimate:∣∣∣∣f(x+ tv)− f(x)

t
− gradf(x) · v

∣∣∣∣ ≤ ∣∣∣∣f(x+ tv)− f(x)

t
− f(x+ tvk)− f(x)

t

∣∣∣∣+
+

∣∣∣∣f(x+ tvk)− f(x)

t
− gradf(x) · vk

∣∣∣∣+ |gradf(x) · (vk − v)| .
(2.1)

Now fix ε > 0. Let K ∈ N be such that for every w ∈ Sn−1 it holds

dist(w, {v1, . . . , vK}) ≤ ε.

Let δ > 0 be such that, for every j = 1, . . . ,K it holds∣∣∣∣f(x+ tvj)− f(x)

t
− gradf(x) · vj

∣∣∣∣ ≤ ε
whenever 0 < |t| < δ. Finally choose vk ∈ {v1, . . . , vK} such that |v − vk| ≤ ε. Plugging these
in (2.1), we obtain the estimate, for 0 < |t| < δ,∣∣∣∣f(x+ tv)− f(x)

t
− gradf(x) · v

∣∣∣∣ ≤ Lip(f)ε+ ε+ nLip(f)ε = C(Lip(f), n)ε,

which proves that Dvf(x) = gradf(x) ·v. Moreover the dependence of δ in terms of ε is uniform
in v ∈ Sn−1, hence f is differentiable at x with Df(x) = gradf(x). �

The next Theorem shows that if f is a continuous function on a closed subset of
Rn which admits a fist order Taylor expansion with a continuous first order linear
term, then it can be extended to a function of class C1. Let us introduce some
preliminary notation.
Let C ⊂ Rn be a closed set, and let f : C → R, d : C → Rn. Define

R(x, y) :=
f(y)− f(x)− d(x)(y − x)

|y − x| for x, y ∈ C, x 6= y.

ρK(δ) := sup{|R(x, y)| : 0 < |x− y| < δ, x, y ∈ K},
where K ⊂ C is compact, δ > 0

2.13. Theorem (Whitney’s extension theorem, see [2] Theorem 6.10). Let f, d as above and
continuous. Assume that for every compact set K ⊂ C it holds

ρK(δ)→ 0 as δ → 0.

Then there exists a function f̄ : Rn → R of class C1 such that f̄ = f and Df̄ = d on the set C.
Moreover if f is L-Lipschitz, one can choose f̄ to be cL-Lipschitz, for some constant c > 0.

2.14. Theorem (Lusin type approximation of Lipschitz functions with C1 functions). Let f :
Rn → R be Lipschitz. Then for every ε > 0 there exist an open set A with L n(A) < ε and a
function g : Rn → R of class C1 such that g = f on Rn \A.

Proof. Let E ⊂ Rn the set

E := {x ∈ Rn : f is not differentiable at x}.

By Theorem 2.12 it holds L n(E) = 0, moreover the function Df is measurable on Rn \E. Now
fix ε > 0. By Lusin’s theorem there exists an open set A ⊃ E such that L (A) < ε and Df
is continuous on C := Rn \ A. Hence Df is uniformly continuous on any compact set K ⊂ C,
which implies that ρk(δ)→ 0 as δ → 0. The conclusion follows from Theorem 2.13. �

2.15. EXERCISE. ciao



(1) Prove that Lipschitz functions are weakly differentiable i.e. for every f : Rn → R
Lipschitz, there exist functions g1, . . . , gn ∈ L1

loc(Rn) such that∫
Rn
f
∂φ

∂xi
dL n = −

∫
Rn
giφdL

n, for every i = 1, . . . , n.

(2) Exhibit a function f : R→ R which is differentiable almost everywhere but not weakly
differentiable.

3. Area Formula

The aim of this section is to recall the area formula for Lipschitz maps, which
allows to compute the n dimensional Hausdorff measure of the image of a mea-
surable set E ⊂ Rn through a Lipschitz map f : Rn → Rm (m ≥ n). We need to
recall some further notions and results from measure theory and some facts from
linear algebra.

A Radon measure µ is a locally finite measure which is inner regular, i.e. for every
measurable set E with finite measure and for every ε > 0, there exists a compact
set K ⊂ E such that µ(E \K) < ε. Remember that on Rn every finite measure
is a Radon measure. If λ and µ are Radon measures, we say that λ is absolutely
continuous with respect to µ, and we write λ� µ if λ(E) = 0 whenever µ(E) = 0.
We say that λ is supported on E if λ(Ec) = 0 and we say that λ is singular with
respect to µ, and we write λ ⊥ µ, if λ is supported on a set E such that µ(E) = 0.
The support of λ is the set

supp(λ) :=
⋂
C closed: λ is supported on C.

Finally if f ∈ L1(λ) we write fλ for the measure

(fλ)(E) :=

∫
E

fdλ.

3.1. EXERCISE. Find a Radon measure µ on Rn which is singular with respect to L n but
supp(µ) = Rn.

Given two Radon measures λ, µ on Rn the function

f(x) := lim
ρ→0

λ(B(x, ρ))

µ(B(x, ρ))

is defined and it is finite µ-a.e. and it is called the Radon-Nikodym density of λ
with respect to µ.

3.2. Theorem (Besicovitch differentiation theorem, see [1] Theorem 2.22). Let λ and µ be
Radon measures. Then λ can be split in a unique way as λ = λa + λs, where λa � µ and
λs ⊥ µ. Moreover λa = fµ and λs = 1Eλ, where

E := supp(µ)c ∪ {x ∈ supp(µ) : f(x) = +∞}.

3.3. EXERCISE. A Radon measure µ on Rn is called α-uniform (α > 0) if µ(B(x, r)) = ωαr
α

for every x ∈ supp(µ) and for every r > 0. Prove that there exists no α-uniform measure on Rn
and that the only α-uniform measure on Rn for α = n is the Lebesgue measure L n.

3.4. EXERCISE. Prove the Lebesgue differentiation theorem. Let µ be a Radon measure and
f ∈ L1(µ). Then

lim
rho→0

1

µ(B(x, ρ))

∫
(B(x,ρ))

|f(y)− f(x)|dµ(y) = 0, for µ- a.e. x.

(Hint: for every q ∈ Q, apply Theorem 3.2 with λ := |f − q|µ.)

A linear map:



• O : Rn → Rm is orthogonal if 〈Ox;Oy〉 = 〈x; y〉 for every x, y ∈ Rn;
• S : Rn → Rn is symmetric if 〈x;Sy〉 = 〈Sx; y〉 for every x, y ∈ Rn.

3.5. Theorem (Polar decomposition, see [2], Theorem 3.5). Let L : Rn → Rm be linear

(i) if n ≤ m, then there exists S : Rn → Rn symmetric and O : Rn → Rm orthogonal
such that L = O ◦ S;

(ii) if n ≥ m, then there exists S : Rm → Rm symmetric and O : Rm → Rn orthogonal
such that L = S ◦O∗, where O∗ : Rn → Rm is the adjoint of O, namely

〈x;O∗y〉 = 〈Ox; y〉 for every x ∈ Rm, y ∈ Rn.

The previous theorem allow to give the following definition.

3.6. Definition. Let L : Rn → Rm be linear. Let S and O be as in Theorem 3.5. We define
the Jacobian of L to be

JL := | det(S)|.

From now on let us assume that n ≤ m. We begin with the proof of the area
formula for linear maps.

3.7. Lemma. Let L : Rn → Rm be linear. Then

H n(L(A)) = JLL n(A), for every Borel set A.

Proof. Let L = O ◦ S ans in Theorem 3.5. If JL = 0, then dim(S(Rn)) ≤ n − 1, hence
H n(L(A)) = 0. Assume now JL > 0. We can compute, for every x ∈ Rn, r > 0,

H n(L(B(x, r)))

L n(B(x, r))
=

L n(O∗ ◦ L(B(x, r)))

L n(B(x, r))
=

L n(S(B(x, r)))

L n(B(x, r))
=

L n(S(B(0, 1)))

ωn
= |detS| = JL,

where the first equality follows from the equality between L n and H n and from the fact that
O∗ is an isometry and the second inequality follows from the fact that O∗ = O−1.
Let us now define the measure ν, where

ν(A) := H n(L(A)), for every A Borel.

Clearly ν is a Radon measure, ν � L n, and by the previous computation

lim
ρ→0

ν(B(x, ρ))

L n(B(x, ρ))
= JL.

It follows from Theorem 3.2 that H n(L(A)) = JLL n(A), for every Borel set A. �

3.8. Lemma. Let D ⊂ Rn be an open set and let f : D → f(D) ⊂ Rm be a homeomorphism of
class C1 with rk(df) = n everywhere. Then for every E ⊂ D Borel it holds

H n(f(E)) =

∫
E

Jdf(x)dL
n(x).

Idea of the proof. Locally around every point f is the composition of a linear map and
an “almost-isometry”, hence the statement follows from Lemma 3.7 and the fact that isometries
preserve the measure H n. �

3.9. EXERCISE. Let f : Rn → Rm be a map of class C1. Denote

S := {x ∈ Rn : rk(df) < n}.

Prove that H n(f(S)) = 0.

Combining Theorem 2.14, Lemma 3.8 and Exercise 3.9, we obtain the main the-
orem of this section.

3.10. Theorem (Area Formula for Lipschitz functions, see [2] Theorem 3.8). Let f : Rn → Rm
be Lipschitz.



(i) For every Borel set A ⊂ Rn, it holds∫
A

Jdf(x)dL
n(x) =

∫
Rm

N(f|A, y)dH n(y),

where N(f|A, y) := ]{x ∈ A : f(x) = y}.
(ii) For every function u ∈ L1(Rn) it holds∫

Rn
u(x)Jdf(x)dL

n(x) =

∫
Rm

∑
x∈f−1(y)

u(x)dH n(y).



CHAPTER 2

Rectifiable Sets

The aim of this chapter is to introduce and study the class of rectifiable sets, which
is the largest class of sets for which one can define a (weak) notion of tangent
bundle. Rectifiable sets are building blocks for the construction of rectifiable
currents, which is the main object of study of this course.

1. Definitions and basic properties

1.1. Definition. Let 0 ≤ k ≤ n. A Borel set E ⊂ Rn is said to be countably k-rectifiable (or
simply k-rectifiable) if E ⊂ E0 ∪ (

⋃∞
j=1 Ej), where

(i) H k(E0) = 0;
(ii) For j ≥ 1, Ej ⊂ Fj(Rk), where Fj : Rk → Rn are Lipschitz maps.

1.2. EXERCISE. Prove that the definition of k-rectifiable set does not change if (ii) is replaced
by one of the following properties.

(ii)′ For j ≥ 1, Ej ⊂ Fj(Aj) with Aj ⊂ Rk and Fj are Lipschitz;
(ii)′′ For j ≥ 1 Ej ⊂ Fj(Rk), where Fj : Rk → Rn are maps of class C1;
(ii)′′′ Ej ⊂Mj, where Mj are k-dimensional submanifolds of Rn of class C1.

1.3. EXERCISE (Why E0?). Find a set E ⊂ R2 such that H 1(E) = 0, but E0 cannot be
covered by countably many Lipschitz curves.
(Hint: it is sufficient to prove that E cannot be covered by countably many graphs of type
(x, f(x)) or (y, f(y)) (Why?). To find a set E with such property it is sufficient to take the
product of two uncountable sets.)

1.4. Remark. ciao

• The class of k-rectifiable sets is closed under countable union and set inclusion (in
the class of Borel sets);

• k-rectifiable sets have Hausdorff dimension less than or equal to k.

1.5. Definition. A Borel set E ⊂ Rn is said to be k-purely unrectifiable if H k(E ∩ F ) = 0
whenever F is k-rectifiable.

1.6. Proposition. Let E ⊂ Rn Borel, with H k(E) < +∞. Then E can be written as a disjoint
union E = Er ∪ Epu, where Er is k-rectifiable and Epu is purely k-unrectifiable. Moreover the
writing is unique, up to sets of H k measure zero.

Proof. Let {Ei}i∈N be a sequence of k-rectifiable subsets of E, maximizing the quantity
H k(Ei). Set Er :=

⋃
i∈NEi. Clearly Er is rectifiable and maximizes H k among all k-rectifiable

subsets of E. Denote Epu := E \ Er. Then Epu is k-purely unrectifiable. Indeed, assume the
contrary; then there exists a k-rectifiable set E∞ such that H k(E∞ ∩ Epu) > 0. Then the set
Er ∪ (E∞ ∩ Epu would violate the maximality property of Er.
Regarding the uniqueness, assume that E = E1

r∪E1
pu = E2

r∪E2
pu are two distinct decompositions

of E. Since E2
pu is k-purely unrectifiable, then H k(E1

r ∩ E2
pu) = 0. Then

H k(E1
r ∩ E2

r ) = H k(E1
r ∩ (E \ E2

pu)) = H k(E1
r ∩ E)−H k(E1

r ∩ E2
pu) = H k(E1

r ).
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Similarly we can prove that H k(E1
r ∩ E2

r ) = H k(E2
r ). This implies that H k(E1

r∆E2
r ) = 0,

which completes the proof. �

1.7. EXERCISE. Prove the proposition when E is σ-finite wrt H k.

1.8. EXERCISE (A bad rectifiable set with a tangent field). Let E :=
⋃

(p,q)∈Q2×Q2 Sp,q, where

Sp,q is the line segment in the plane joining p and q. Notice that E is 1-rectifiable. Define

τ(x) := span(q − p) if x ∈ Sp,q.
Prove that τ is well defined H 1-almost everywhere.

1.9. Proposition. Let f1, f2 : Rn → R be of class C1. Then Df1 = Df2, L n-a.e. on the set
{f1 = f2}. More precisely the set

I := {x ∈ Rn : f1(x) = f2(x), and Df1(x) 6= Df2(x)}
has Hausdorff dimension at most n− 1.

Proof. Let f := f1 − f2. Observe that f is of class C1, f ≡ 0 on I, and Df 6= 0 on I.
Hence by the implicit function theorem I is an hypersurface of class C1. �

In the next proposition we denote by Gr(k, n) the Grassmannian of k-dimensional
vector subspaces of Rn. This is a metric space, endowed with the distance

d(V,W ) := distH (V ∩B(0, 1),W ∩B(0, 1)).

If S is a k-dimensional surface of class C1, we denote by Tan(S, x) the classical
tangent space of S at the point x.

1.10. Proposition (Existence of the weak tangent bundle). Let E ⊂ Rn be k-rectifiable. Then
there exists a Borel map τE : E → Gr(k, n) with the following property. For every k-dimensional
surface S of class C1 it holds

Tan(S, x) = τE(x), for H ka.e. x ∈ S ∩ E.
Moreover the map τE is uniquely defined, up to sets of H k measure zero.

Idea of the proof. Write E = E0 ∪ (
⋃∞
i=1 Ei) with H k(E0) = 0 and Ei ⊂ Si for i ≥ 1,

where Si are k-dimensional surfaces of class C1. Fix any k-pane V and set

τe(x) :=

{
Tan(Si, x), if i ≥ 1 is the first index such that x ∈ Ei;
V, if x ∈ E0 \

⋃∞
i=1 Ei.

�

1.11. EXERCISE. Complete the proof.

• Use Proposition 1.9 to prove that τE has the claimed property;
• Prove the uniqueness.

2. Characterizations of rectifiability

2.1. Characterization through densities. Let E ⊂ Rn be a set with
locally finite H s measure, for some 0 ≤ s ≤ n. For every point x ∈ E we define
the s-dimensional upper density of x wrt E by

θ∗s(x,E) := lim sup
ρ↘0

H s(E ∩B(x, ρ))

ωsρs
.

Similarly we define the s-dimensional lower density of x wrt E by

θs∗(x,E) := lim inf
ρ↘0

H s(E ∩B(x, ρ))

ωsρs
.

When the two quantities coincide, we call the limit the s-dimensional density of
x wrt E and we denote it by θs(x,E).



2.2. Theorem (Preiss, see [5] Theorem 16.7). Let E ⊂ Rn and let 0 ≤ s ≤ n be such that
H s(E) < +∞ and θs(x,E) exists and belongs to (0,+∞) for H s-a.e. x ∈ E. Then s ∈ N and
moreover E is s-rectifiable.

2.3. EXERCISE. Let C ⊂ R2 be the “Cantor dust”, i.e. the set defined in Exercise 2.5. Prove
that there are two constants c1, c2 > 0 such that for every x ∈ C it holds

c1 ≤ θ1
∗(x,E) ≤ θ∗1(x,E) ≤ c2.

A measure µ on a group (G, ·) is said to be invariant if µ(A) = µ(g ·A) = µ(A · g)
for every measurable set A, where

g ·A := {g · a : a ∈ A} and A · g := {a · g : a ∈ A}.

2.4. Characterization through projections.

2.5. Theorem (Haar measure, see [4] Theorem 3.1.1). Let G be a compact topological group.
Then there exists a unique invariant Radon measure µ on G such that µ(G) = 1.

In particular there exists an invariant probability measure on the orthogonal group
On of linear isometries on Rn. This induces a probability measure on the space
Gr(k, n) which is invariant under the action of O(n). We call such measure γk,n.
Given V ∈Gr(k, n), we denote by πV the orthogonal projection from Rn onto V .

2.6. Theorem (Besicovitch-Federer projection theorem, see [5] Theorem 18.1). Let A ⊂ Rn
with H k(A) < +∞

(i) A is k-rectifiable if and only if H k(πV (B)) > 0 for γk,n-a.e. V ∈ Gr(k, n), whenever
B ⊂ A and H k(B) > 0.

(i) A is k-purely rectifiable if and only if H k(πV (A)) = 0 for γk,n-a.e. V ∈ Gr(k, n).

2.7. Remark. If k = 1 and n = 2 the expression “for γ1,2-almost every V ∈ Gr(1, 2)”, can be
replaced with “for every V ∈ Gr(1, 2) except at most one”.

2.8. EXERCISE. ciao

• Use the previous remark to prove that if A ⊂ R2 is the product of two Lebesgue null
sets, then A is 1-purely unrectifiable.

• Use the previous remark to prove that the “Cantor dust” C is 1-purely unrectifiable.

3. Local behaviour of rectifiable sets

3.1. Measure inside/outside local cones.

3.2. Definition. Let V ∈Gr(k, n), x ∈ Rn, and α > 0. We denote by C(x, V, α) the closed cone

C(x, V, α) := x+ {y ∈ Rn : dist(y, V ) ≤ α|y|}.

3.3. Theorem (Local behaviour of rectifiable sets). Let E ⊂ Rn be k-rectifiable, with H k(E) <
+∞ (locally finiteness would suffice). Let τE be the weak tangent bundle defined in Proposition
1.10. Then for any α > 0 and for H k-a.e. x ∈ E the following holds:

(i) H k[E ∩B(x, r) ∩ C(x, τE(x), α)] = ωkr
k + o(rk).

(ii) H k[E ∩ (B(x, r) \ C(x, τE(x), α))] = o(rk).

3.4. EXERCISE. ciao

(1) Prove the theorem for a set E ⊂ R2 which is a finite union of segments.
(2) (∗) Prove the theorem for a set E ⊂ R2 which is a countable union of segments Si

with
∑

H 1(Si) < +∞.



Proof of Theorem 3.3. For every i ∈ N let Si be k-dimensional surfaces of class C1 such
that H k(E \

⋃
i∈N Si) = 0. Denote Ei := Si ∩ E. By Proposition 1.10 it is sufficient to prove

that for every i ∈ N (i) and (ii) hold, for H k-a.e. x ∈ Ei, where τE(x) is replaced by Tan(Si, x).
Fix i ∈ N and define the following three measures

µ := H k Si, λ1 := H k Ei, λ2 := H k (E \ Ei),

and observe that µ ⊥ λ2, because E \ Ei = E \ Si. Since Si is a k-surface of class C1, it holds

µ(B(x, r)) = ωkr
k + o(rk), for every x ∈ Si. (3.1)

Moreover, since λ1 � µ (because Ei ⊂ Si), by Theorem 3.2 it holds

lim
ρ→0

λ1(B(x, ρ))

µ(B(x, ρ))
= 1Ei(x), for µ-a.e. x, i.e. for H k-a.e. x ∈ Si.

In particular, by (3.1) it holds

λ1(B(x, r)) = ωkr
k + o(rk), for H k-a.e. x ∈ Ei. (3.2)

Since µ� λ2, again by Theorem 3.2 it holds

lim
ρ→0

λ2(B(x, ρ))

µ(B(x, ρ))
= 0, for µ-a.e. x, i.e. for H k-a.e. x ∈ Si.

In particular, by (3.1), we have

λ2(B(x, r)) = o(rk), for H k-a.e. x ∈ Ei. (3.3)

Lastly, observe that, since Si is a k-dimensional surface of class C1, for every α > 0 and for
every x ∈ Si there exists r0 = r0(α, x) such that for every r ≤ r0 it holds

Si ∩B(x, r) ⊂ C(x,Tan(Si, x), α),

and in particular, since Ei ⊂ Si,

Ei ∩B(x, r) ⊂ C(x,Tan(Si, x), α). (3.4)

Now, to obtain (i) we can compute

H k[E ∩B(x, r) ∩ C(x,Tan(Si, x), α)]

= H k[Ei ∩B(x, r) ∩ C(x,Tan(Si, x), α)] + H k[(E \ Ei) ∩B(x, r) ∩ C(x,Tan(Si, x), α)]

= λ1[B(x, r) ∩ C(x,Tan(Si, x), α)] + λ2[B(x, r) ∩ C(x,Tan(Si, x), α)]

(3.4)
= λ1(B(x, r)) + λ2[B(x, r) ∩ C(x,Tan(Si, x), α)]

(3.2)
= ωkr

k + o(rk) + λ2[B(x, r) ∩ C(x,Tan(Si, x), α)] ≤ ωkrk + o(rk) + λ2(B(x, r))

(3.3)
= ωkr

k + o(rk).

�

Regarding (ii), we can compute

H k[E ∩ (B(x, r) \ C(x,Tan(Si, x), α))]

= H k[Ei ∩ (B(x, r) \ C(x,Tan(Si, x), α))] + H k[(E \ Ei) ∩ (B(x, r) \ C(x,Tan(Si, x), α))]

= λ1[B(x, r) \ C(x,Tan(Si, x), α)] + λ2[B(x, r) \ C(x,Tan(Si, x), α)]

(3.3)
= λ2[B(x, r) \ C(x,Tan(Si, x), α)] ≤ λ2(B(x, r))

(3.3)
= o(rk).



3.5. Blow-up properties of the measure. We recall some classical re-
sults about Radon measures. Given a locally compact, separable metric space
(X, d), we denote K(X) the vector space of continuous functions with compact
support, endowed with the strongest locally convex topology such that the inclu-
sions K(K) → K(X) are continuous for every compact set K ⊂ X and on K(K)
we consider the supremum distance. The space K(X) can be also endowed with

the supremum norm, and in this case we denote by K(X) its completion.

3.6. EXERCISE. Prove that u ∈ K(X) if and only if u is continuous on X and for every ε > 0
there exists a compact set K such that |u(x)| < ε for every x ∈ X \K.

3.7. Theorem (Riesz representation theorem, see [1] Theorem 1.54). Let X be a locally compact,
separable metric space and let L : K(X) → R be a linear functional which is positive (i.e.
L(f) ≥ 0 whenever f ≥ 0) and continuous, with respect to the topology described above. Then
there exists a unique Radon measure µ on X such that

L(f) =

∫
X

fdµ, for every f ∈ K(X).

3.8. EXERCISE. Prove the vice-versa: the linear functional Lµ induced by a Radon measure µ
via integration is continuous and positive. Does continuity hold also with respect to the topology
induced by the supremum distance on K(X), if X is only locally compact?

3.9. Remark. The Riesz theorem can be restated by saying that the dual of the space K(X) is
the space of (locally finite) Radon measures. A “global” version of the theorem states the dual

of the space K(X) is the space of finite Radon measures.

Application of Banach-Alaoglu theorem gives the following compactness result.
A sequence of measures {µj}j∈N on a locally compact metric space (X, d) is said
to be uniformly locally finite if for every K ⊂ X compact there exists a constant
C = C(K) such that µj(K) ≤ C for every j ∈ N.

3.10. Theorem (Compactness of Radon measures, see [1] Theorem 1.59). Let {µj}j∈N be a
uniformly locally finite sequence of measures on a locally compact, separable metric space (X, d).

Then there exists a subsequence {µjk}k∈N and a Radon measure µ such that µjk
∗
⇀ µ, where the

latter means that

lim
k→∞

∫
X

fdµjk =

∫
X

fdµ, for every f ∈ K(X).

3.11. EXERCISE. Find a sequence of probability measures on Rn which does not converge to
a probability measure.

3.12. Proposition (Useful properties of weak∗ convergence). Let {µj}j∈N and µ be measures

on a locally compact metric space (X, d), such that µj
∗
⇀ µ. Then:

(1) for every lower semicontinuous function f : X → R+ it holds

lim inf
j→∞

∫
X

fdµj ≥
∫
X

fdµ;

(2) for every upper semicontinuous function f : X → R+ with compact support it holds

lim sup
j→∞

∫
X

fdµj ≤
∫
X

fdµ;

(3) for every open set U it holds

lim inf
j→∞

µj(U) ≥ µ(U);

(4) for every compact set K it holds

lim sup
j→∞

µj(K) ≥ µ(K);

(5) µ(A) = limj→∞ µj(A) for every A s.t. µ(∂A) = 0;



(6) if X = Rn, then for every x ∈ Rn there exists Ix at most countable such that
µ(B(x, r)) = limj→∞ µj(B(x, r)) for every r 6∈ Ix.

3.13. EXERCISE. (∗) Prove Proposition 3.12.

3.14. EXERCISE. ciao

(1) Prove that if K is compact then every converging sequence µj of probability measures
on K converges to a probability measure on K.

(2) Prove that if µj is a sequence of probability measures on Rn and for every ε > 0 there
exists N ∈ N and j0 ∈ N such that µj(Rn \ B(0, N)) ≤ ε, for every j ≥ j0, then µj
converges to a probability measure, up to subsequences.

Let x ∈ Rn and r > 0. Let ψx,r be the homothety which maps B(x, r) onto
B(0, 1), i.e. ψx,r(y) = y−x

r
. Given a set E ⊂ Rn let Ex,r := B(0, 1) ∩ ψx,r(E).

Denote µx,r := H k Ex,r.

3.15. Definition. We say that V ∈ Gr(k, n) is the approximate tangent k-plane to E at x if

µx,r
∗
⇀ H k (V ∩B(0, 1)).

3.16. Theorem. Let E ⊂ Rn be such that H k(E) < ∞. Then E is k-rectifiable if and only if
the approximate tangent plane to E at x exists for H k-a.e. x ∈ E.

Proof. The proof of the “only if” part is very similar to that of Theorem 3.3. Let {Si}i∈N
be a sequence of k-dimensional submanifolds of class C1 such that H k(E \

⋃
i∈N Si) = 0. Fix

i ∈ N and denote

λx,r := H k (Si)x,r, λ′x,r := H k (Si \ E)x,r, and λ′′x,r := H k (E \ Si)x,r.
Observe that 1Ex,r = 1(Si)x,r − 1(Si\E)x,r + 1(E\Si)x,r , hence

µx,r = H k (Ex,r) = λx,r − λ′x,r + λ′′x,r.

We split the proof in the following three claims.

Claim 1: λx,r
∗
⇀ H k (Tan(Si, x) ∩B(0, 1)), as r → 0. The proof is left as an exercise.

Claim 2: λ′x,r
∗
⇀ 0, as r → 0. Actually one can prove more, namely that λ′x,r(B(0, 1)) → 0.

Indeed
λ′x,r(B(0, 1)) = H k((Si \ E)x,r) = r−kH k((Si \ E) ∩B(x, r))

=
H k(Si ∩B(x, r))

rk
− H k(Si ∩ E ∩B(x, r))

rk
→ 0 as r → 0,

because the two terms both converge to ωk (see (3.1)).

Claim 3: λ′′x,r
∗
⇀ 0, as r → 0. Again one can prove that λ′′x,r(B(0, 1))→ 0. Indeed

λ′′x,r(B(0, 1)) = H k((E \ Si)x,r) = r−kH k((E \ Si) ∩B(x, r))→ 0 as r → 0,

(see (3.3)).

Now we prove the “if” part. Denote

E1 := {x ∈ E : there exists an apporximate tangent k-plane at x, called Vx}.
By assumption, H k(E\E1) = 0, hence it suffices to prove that E1 is k-rectifiable. Let m := n−k
and let V ⊥1 , . . . , V ⊥N (where N depends on n and k) be m-dimensional vector subspaces such
that for every W ∈ Gr(m,n) there holds d(W,V ⊥j ) < 1

16
for at least one index j. Denote

E1
j := {x ∈ E1 : d(V ⊥x , V

⊥
j ) <

1

16
}.

Since E1 =
⋃
j E

1
j it suffices to prove that each E1

j is k-rectifiable. Observe that, by definition

of weak tangent k-plane, for every x ∈ E1 we have that for every ε > 0 there exists δ = δ(x, ε)
such that

H k(E1 ∩B(x, ρ))

ωkρk
≥ 1− ε, for every ρ < δ (3.5)



and
H k(E1 ∩B(x, ρ) ∩ C(x, V ⊥x ,

1
2
))

ωkρk
≤ ε, for every ρ < δ. (3.6)

Moreover, by Egorov’s theorem, there exists E2 ⊂ E1 such that H k(E1 \E2) ≤ 1
2
H k(E1) and

(3.5) and (3.6) hold uniformly on E2, i.e. δ can be chosen depending only on ε (and independent
of x ∈ E2). Let E2

j := E2 ∩ E1
j . The proof boils down to the following claim.

Claim 4: There exists ε0 > 0 such that if δ0 := δ(ε0) is as above, i.e. (3.5) and (3.6) hold for
every x ∈ E2, then

B(x,
δ0
2

) ∩ E2
j ∩ C(x, V ⊥j ,

1

4
) = {x}, for every x ∈ E2

j , for every j = 1, . . . , N.

We leave the proof of the claim as an exercises (guided). Now, by a straightforward modification

of Exercise 2.2, we conclude that for every j = 1, . . . , N and for every x ∈ E2
j , the set B(x, δ0

4
)∩

E2
j is contained in the graph of a Lipschitz function on Vj . The prove can be completed via a

standard iteration argument. �

3.17. EXERCISE. Prove Claim 1 in the proof of Theorem 3.16.
(Hint: To prove it it is sufficient to write, for r small enough, Si ∩ B(x, r) as the intersection
between B(x, r) and the graph of a C1-function fi : Tan(S − i, x)→ Rn−k with small Lipschitz
constant. The action of λx,r on a test function can be computed via the Area formula.)

3.18. EXERCISE. Prove Claim 4 in the proof of Theorem 3.16.

(Hint: If there was a point y 6= x in the set B(x, δ0
2

)∩E2
j ∩C(x, V ⊥j ,

1
4
), then at scale ρ := |y−x|

4

we would have, by (3.5),

H k(E1 ∩B(y, ρ)) ≥ Cωkρk, (3.7)

for some C > 0, but since

y ∈ B(x,
δ0
2

) ∩ C(x, V ⊥j ,
1

4
),

then

B(y, ρ) ⊂ B(x, 8ρ) ∩ C(x, V ⊥x ,
1

2
),

(check it!) hence (3.7) would contradict (3.6).)

3.19. EXERCISE. Complete the proof of Theorem 3.16 (why is it sufficient to prove that each
E2
j is k-rectifiable?).

3.20. Area formula for rectifiable sets. We begin with the following
proposition

3.21. Proposition (see [3] 3.2.19). Let f : Rn → R be Lipschitz and E ⊂ Rn be k-rectifiable.
Then for H k-a.e. x ∈ E there exists a linear map dτf(x) : τE(x) → Rn, called tangential
differential, such that

f(x+ h) = f(x) + 〈dτf(x);h〉+ o(|h|), , for every h ∈ τE(x).

Note that it is sufficient to prove the proposition when E is a k-dimensional
submanifold of class C1, in which case the proposition can be proved parametrizing
locally the submanifold by a function φ : Rk → Rn of class C1. A similar statement
holds for Lipschitz maps f : Rn → Rm, just applying the previous proposition to
each component of f .

3.22. EXERCISE. Prove that the tangential differential dτf depends only on the restriction
of f to E. More precisely if f1, f2 : Rn → R satisfy f1(x) = f2(x) for H k-a.e. x ∈ E, then
dτf1(x) = dτf2(x), for H k-a.e. x ∈ E.

3.23. Proposition. Let f : Rn → Rm be Lipschitz and E ⊂ Rn be k-rectifiable. Then f(E) is
k-rectifiable and for H k-a.e. x ∈ E there holds

dτf(x)(τE(x)) ⊂ τf(E)(f(x)).



3.24. Remark. Observe that if E ⊂ Rn is a Borel set and f : Rn → Rm is a Lipschitz function,
f(E) might fail in general to be Borel. Hence when we say that f(E) is k-rectifiable we just mean
that it can be covered, up to an H k-negligible subset, with countably many k-submanifolds of
class C1. Nevertheless f(E) can be written as the union of a Borel set and an H k-null set.

3.25. EXERCISE. Prove Proposition 3.23, using the following lemma.

3.26. Lemma. Let S1 ⊂ Rn, S2 ⊂ Rm be two k-dimensional surfaces of class C1 and let E ⊂ S1.
Let f : S1 → Rm be of class C1 and satisfying f(E) ⊂ S2. Then dτf(x) maps Tan(S1, x) into
Tan(S2, f(x)), for H k-a.e. x ∈ E.

3.27. EXERCISE. Prove Lemma 3.26.

We can now state the version of the area formula for rectifiable sets. The tangential
Jacobian Jdτf (x) is defined as for the smooth case.

3.28. Theorem (Area formula for rectifiable sets, see [3] 3.2.22). Let f : Rn → Rm be Lipschitz
and E ⊂ Rn be k-rectifiable.

(i) For every Borel set A ⊂ E, it holds∫
A

Jdf(x)dH
k(x) =

∫
Rm

N(f|A, y)dH k(y),

where N(f|A, y) := ]{x ∈ A : f(x) = y}.
(ii) For every Borel function u : E → [0,∞) it holds∫

E

u(x)Jdτf(x)dH
k(x) =

∫
Rm

∑
x∈f−1(y)∩E

u(x)dH k(y).



CHAPTER 3

Currents

1. Prerequisites from multilinear algebra

1.1. Vectors, covectors, and differential forms. Let us denote by
{e1, . . . , en} an orthonormal basis of Rn and by {dx1, . . . , dxn} its dual basis.

1.2. Definition (k-covectors). A k-covector on Rn is a function t : (Rn)k → R with the following
properties:

(i) t is multilinear, i.e.

t(v1, . . . , c1vi + c2wi, . . . , vk) = c1t(v1, . . . , vi, . . . , vk) + c2t(v1, . . . , wi, . . . , vk);

(ii) t is alternating. i.e.

t(v1, . . . , vi, . . . , vj , . . . , vk) = −t(v1, . . . , vj , . . . , vi, . . . , vk).

The space of k-covectors in Rn is denoted Λk(Rn), with the convention Λ0(Rn) := R.

1.3. EXERCISE. Prove that the definition of k-covector is unchanged if (ii) is replaced by

(ii)′ t(eσ(1), . . . , eσ(k)) = sign(σ)t(e1, . . . , ek), for every permutation σ ∈ Sk;

(ii)′′ t(vσ(1), . . . , vσ(k)) = sign(σ)t(v1, . . . , vk), for every permutation σ ∈ Sk;
(ii)′′′ t(v1, . . . , vk) = 0, if vi = vj for some i 6= j;
(ii)′′′′ t(v1, . . . , vk) = 0, if v1, . . . , vk are linearly dependent.

Deduce that Λk(Rn) = {0}, for every k > n.

1.4. Definition (exterior product). Given α ∈ Λh(Rn), β ∈ Λk(Rn), we define their exterior
product α ∧ β ∈ Λh+k(Rn) as

(α ∧ β)(v1, . . . , vh+k) :=
1

h!k!

∑
σ∈Sh+k

α(vσ(1), . . . , vσ(h))β(vσ(h+1), . . . , vσ(h+k)).

1.5. EXERCISE. Prove that α ∧ β is actually a covector. Prove also that

(dxi1 ∧ dxik )(ei1 , . . . , eik) = 1, whenever il 6= im, for l 6= m.

1.6. EXERCISE. Let α be the 2-covector in R2n defined by α :=
∑n
i=1 dx2i−1∧dx2i. Compute

α ∧ · · · ∧ α︸ ︷︷ ︸
n times

.

We denote by Ik,n the set of multiindices of length k in Rn, i.e. sequences of the
form

I = (i1, . . . , ik), with 1 ≤ i1 < · · · < ik ≤ n.
For every I ∈ Ik,n, we also denote dxI := dxi1∧, . . . ,∧dxik .

1.7. Theorem. The collection {dxI}I∈Ik,n is a basis for Λk(Rn). Moreover, for every α ∈
Λk(Rn) one can write α =

∑
I∈Ik,n

αIdxI , where

αI := α(ei1 , . . . , eik), for every I = (i1, . . . , ik).

23



1.8. Definition (simple k-vectors). Consider the following equivalent relation on (Rn)k. We
say that

(v1, . . . , vk) ∼ (w1, . . . , wk) if α(v1, . . . , vk) = α(w1, . . . , wk), for every α ∈ Λk(Rn).

The equivalence classes are called simple k-vectors.

1.9. Proposition. Assume (v1, . . . , vk) ∼ (w1, . . . , wk) 6∼ (0, . . . , 0). Then it holds

W := span(v1, . . . , vk) = span(w1, . . . , wk).

Moreover if M denotes the matrix of change of base between (v1, . . . , vk) and (w1, . . . , wk) on
W (i.e. wi =

∑
jMi,jvj), then det(M) = 1.

Notice that the set of simple k-vectors is not a linear space. Nonetheless we define
the following “norm” on it. We define

‖(v1, . . . , vk)‖ := JL, where L : Rk → Rn is the matrix with columns v1, . . . , vk.

With this definition, Proposition 1.9 can be read as follows.

1.10. Proposition. Simple k-vectors of unit norms are in bijection with oriented k-planes.

1.11. Definition (differential forms). Let Ω ⊂ Rn be an open set. A differential k-form on Ω is
a map ω : Rn → Λk(Rn). We can write the form omega “in coordinates” as

ω(x) =
∑
I∈Ik,n

ωI(x)dxI .

We say that the form ω is of class Cj (or smooth) if all ωI ’s are so.

1.12. Definition (exterior derivative). Let ω(x) =
∑
I∈Ik,n

ωI(x)dxI . be a differential k-form

of class C1. We denote dω the differential (k + 1)-form

dω(x) :=
∑
I∈Ik,n

dωI(x) ∧ dxI , where dωI(x) :=
∑n
i=1

∂ωI
∂xi

(x)dxi.

1.13. Stokes’ theorem. Let S be a k-dimensional surface in Rn of class C1.
An orientation of S is a continuous map which Associates with every point x ∈ S
a simple k-vector which “spans” the tangent k-plane Tan(S, x).

If S is has boundary ∂S which is of class C1, the orientation of the boundary
is defined as follows. Let (v1, . . . , vk) be an orientation of S and let η be the
exterior normal to S at ∂S. The induced orientation on the boundary is a simple
(k − 1)-vector (w1, . . . , wk−1), satisfying

(η, w1, . . . , wk−1) ∼ (v1, . . . , vk).

Let S be a k-dimensional surface in Rn of class C1, oriented by a simple vectorfield
τ , and let ω be a differential k-form, defined in a neighbourhood of S. Then we
define ∫

S

ω :=

∫
S

ω(x)(τ(x))dH k(x).

1.14. Theorem (Stokes, see [4] Theorem 6.2.11). S be a compact, oriented, k-dimensional
surface in Rn of class C1, and let φ be a differential (k − 1)-form of class C1, defined in a
neighbourhood of S. Assume that ∂S is of class C1. Then we have∫

∂S

φ =

∫
S

dφ,

where the orientation on ∂S is that induced by the orientation of S.



1.15. Mass and comass. Observe that up to now we never defined general
k-vectors, but only simple k-vectors. This can be done analogously to what we
did for k-covectors, via the identification between (Rn)∗ and Rn. In particular a
basis for the space Λk(Rn) of k-vectors is the collection

{eI := ei1 ∧ · · · ∧ eik}I∈Ik,n

and its dual basis is {dxI}I∈Ik,n .

1.16. Proposition. The space Λk(Rn) can be identified with the dual of Λk(Rn), via the pairing

〈α, ei1 ∧ · · · ∧ eik〉 := α(ei1 , . . . , eik),

which extends to every k-vector by linearity.

1.17. EXERCISE. ciao

(1) Prove that a k-vector v is simple if and only if it can be written in the form v =
v1 ∧ · · · ∧ vk for some v1, . . . , vk ∈ Rn;

(2) Prove that v = e1 ∧ e2 + e3 ∧ e4 ∈ Λ2(R4) is not simple.

1.18. Definition. Given α ∈ Λk(Rn), we define its comass norm as

‖α‖ := sup{〈α; v〉 : v is a simple vector with ‖v‖ ≤ 1}.

Denote by |w| the Euclidean norm of a k-vector w ∈ Λk(Rn). We define the mass norm of a
k-vector v as

‖v‖ := inf

{
N∑
i=1

ti|vi| : v =

N∑
i=1

tivi is a convex combination

}
.

1.19. EXERCISE. ciao

(1) Prove that ‖v‖ ≥ |v| for every v ∈ Λk(Rn), and equality holds if v is simple;
(2) Prove that ‖α‖ ≤ |α| for every α ∈ Λk(Rn) and equality holds if and only if α is

simple (i.e. α = φ1 ∧ · · · ∧ φk, for some φ1, . . . , φk ∈ (Rn)∗).

2. Currents

2.1. Convergence on the space of k-forms. Let D(Rn) be the space of
smooth, compactly supported (test) functions on Rn. We consider the following
notion of convergence on D(Rn). We say that a sequence {φi}i∈N converges to φ,
and we write φi → φ if

(i) there exists a compact set K ⊂ Rn such that every φi has support contained in K;
(ii) for every multiindex α it holds

∂αφi →i→∞ ∂αφ, uniformly.

By writing a form in components, we can identify the space Dk(Rn) of smooth
and compactly supported differential k-forms on Rn with the product [D(Rn)]Ik,n .
Hence we can extend the previous notion of convergence to the space Dk(Rn). A
functional T on that space is continuous if and only if 〈T ;ωi〉 → 〈T ;ω〉, whenever
ωi → ω in Dk.

2.2. Definition (k-current). The elements of the dual space Dk(Rn) of Dk(Rn) are called k-
dimensional currents (or simply k-currents). The action of a current T on a form ω is denoted
〈T ;ω〉. We say that a sequence of currents Ti weakly∗ converges to a current T , and we write
Ti → T , if

〈Ti;ω〉 →i→∞ 〈T ;ω〉, for every ω ∈ Dk(Rn).



The basic example of k-current (and the reason why currents are also called gen-
eralized surfaces) is the following. Let S be a closed, oriented, k-dimensional
surface in Rn of class C1, with (possibly empty) boundary. We associate with S
the current [S], defined by

〈[S];ω〉 :=

∫
S

ωdH k.

2.3. Definition (support, boundary, mass). Let T ∈ Dk(Rn). The support of T is the set

supp(T ) :=
⋂
{C closed: 〈T ;ω〉 = 0, whenever supp(ω) ⊂ Rn \ C}.

The boundary of T (defined only for k ≥ 1) is the current ∂T ∈ Dk−1(Rn) satisfying

〈∂T ;φ〉 := 〈T ; dφ〉, for every φ ∈ Dk−1(Rn).

The mass of T is the quantity

M(T ) := sup{〈T ;ω〉 : ω ∈ Dk(Rm), ‖ω(x)‖ ≤ 1 ∀x ∈ Rn}.

It is easy to observe that if S is a k-surface, oriented by a simple, unit vectorfield
τs, then S = supp([S]) and, by Stokes theorem, ∂[S] = [∂S] (with respect to the
orientation on ∂S described in §1.13).

2.4. EXERCISE. ciao

(1) Find a non-trivial k-current with infinite mass and whose support is H k-null.
(2) Prove that d(dφ) = 0, for every φ ∈ Dk(Rn). Deduce that ∂(∂T ) = 0, for every

T ∈ Dk(Rn).
(3) Prove that M([S]) = H k(S).

(Hint for (3): to prove the inequality “≥”, define a form ω on S such that ‖ω(x)‖ ≤ 1 and

〈ω(x); τS(x))〉 ≡ 1. Extend it to a continuous form on Rn and make it smooth and compactly
supported, by convolution and cutoff).

Let µ be a finite, positive measure on Rn and τ be a k-vectorfield with ‖τ‖ = 1
µ-a.e. Then we denote T = τµ the current

〈T ;ω〉 :=

∫
Rn
〈ω(x); τ(x)〉dµ. (2.1)

One can show that M(T ) = µ(Rn) (see [7, 26.7]).

2.5. EXERCISE. Prove that supp(∂T ) ⊂supp(T ).

2.6. EXERCISE. Prove that every current T with finite mass can be written as T = τµ in the
sense of (2.1). Prove that µ is unique and τ is unique up to µ-negligible sets.

2.7. Normal currents. A current T ∈ Dk is said to be normal if M(T ) +
M(∂T ) <∞. The space of normal k-currents is denoted Nk(Rn)

2.8. EXERCISE. Prove that the following currents are not normal. Let T = τµ, where

(i) τ = e1, µ = H 1 ({0} × [0, 1]);
(ii) τ = e1 ∧ e2, µ = δ0

(iii) τ = e1, µ = H 1 (Cα × {0}), where Cα is a Cantor set on R of positive Lebesgue
measure.

2.9. EXERCISE. Compute the boundary of the 2-current T = τµ on R2, where µ = L 2 B(0, 2)
and τ = e1 ∧ e2 on B(0, 1) τ = −e1 ∧ e2 on B(0, 2) \B(0, 1).

2.10. Proposition (Compactness for currents of finite mass). Let {Ti}i∈N ⊂ Dk(Rn) be such
that

sup
i
{M(Ti)} <∞.



Then there exists a current T ∈ Dk(Rn) and a subsequence {tij}j∈N such that Tij
∗
⇀ T as

j →∞. Moreover
M(T ) ≤ lim inf

j
M(Tij ).

In particular if Ti ∈ Nk(Rn) and

sup
i
{M(Ti) + M(∂Ti)} <∞,

then, up to subsequences, Ti converges weakly∗ to a normal current.

Proof. The existence of a subsequential limit is a consequence of Theorem 3.10. The
lower semicontinuity of the mass follows from the fact that the mass is a supremum of linear
functionals. The only thing which is left to show to prove the second part of the theorem is that
the boundary operator is continuous with respect to the weak∗ convergence of currents, which
is an easy exercise. �

2.11. EXERCISE. Prove that if Ti
∗
⇀ T then ∂Ti

∗
⇀ ∂T .

2.12. EXERCISE. For t ∈ [−1, 1] let γt : [0, 1]→ R2 be the curve

γt(s) = (cos s, t sin s).

Define a functional T on D1(R2) as follows:

〈T ;ω〉 :=

∫ 1

−1

〈[γt];ω〉dt.

Prove that T ∈ N1(R2) and supp(T ) = B(0, 1).

2.13. Rectifiable currents. A rectifiable k-current on Rn is a current T
whose action on forms is given by

〈T ;ω〉 :=

∫
E

〈ω(x); τ(x)〉θ(x)dH k,

where:

(i) E ⊂ Rn is a rectifiable set;
(ii) τ : E → Λk(Rn) is called the orientation of T and it is a simple, k-vector field which

at H k-a.e. x ∈ E spans the weak tangent field τE (see Proposition 1.10) and satisfies
‖τ(x)‖ = 1;

(iii) θ ∈ L1
loc(H

k E,R) is called the multiplicity of T .

Such current is also denoted by [E, τ, θ]. The class of rectifiable k-currents on Rn
is denoted Rk(Rn). When the multiplicity takes only integer values T is called
integer rectifiable current. An integral current is an integer rectifiable current with
finite mass whose boundary is also an integer rectifiable current with finite mass.
The class of integral k-currents on Rn is denoted Ik(Rn).

2.14. Remark. A rectifiable current T = [E, τ, θ] with finite mass can be written, in the sense
of (2.1), as T = (sign(θ)τ)(θH k E), hence its mass is the quantity M (T ) =

∫
E
|θ|dH k.

The aim of the rest of this series of lectures is to prove the following theorem.

2.15. Theorem (Closure theorem for integral currents). Let {Ti}i∈N ⊂ Ik(Rn) be such that

sup
i
{M(Ti) + M(∂Ti)} <∞.

Then, up to subsequences, Ti converges weakly∗ to an integral current.

2.16. Remark (Non-counterexamples to the closure theorem). ciao

(i) For every i ∈ N, let Ti be the integer rectifiable 1-current associated to the sum of i2

segments of length i−2 “equi-distributed” on the unit square Q = [0, 1]× [0, 1] in R2

and with direction (and orientation) e1. One can check that the sequence of currents
converge to the normal current T = τµ, where τ = e1 and µ = L 2 Q (which is not
rectifiable). Note that M(Ti) = 1 for every i, but M(∂Ti) = 2i2.



(ii) For every i ∈ N, let Ti be the rectifiable 1-current associated to the sum of i segments
of length 1 which are “vertically equi-distributed” on the unit square Q and with
direction (and orientation) e1. Moreover take multiplicity i−1 on each segment. One
can check that the sequence of currents converge to the same normal current T of
point (i). Note that M(Ti) = 1, and M(∂Ti) = 1, for every i but Ti are not integer
rectifiable.

(iii) For every i ∈ N, let Si be the integer rectifiable 2-current associated to the sum of
i2 squares Qij of side-length i−2 “equi-distributed” on the unit square Q and with
orientation e1∧ e2. Let Ti be the integral 1-current ∂Si. Observe that M(Ti) = 4 and
∂Ti = 0, for every i, hence the closure theorem applies. Note also that the measure
H 1 (

⋃
j ∂Q

i
j) converges (as i → ∞) to 4L 2 Q (which is not 1-rectifiable). What

is the limit of Ti?

2.17. EXERCISE. Answer the question in point (iii) of the previous remark.

An important ingredient for the proof of Theorem 2.15 is the following result,
which we will prove later.

2.18. Theorem (Boundary rectifiability theorem). Let T ∈ Rk(Rn) be an integer rectifiable
current with M(∂T ) <∞. Then ∂T is also integer rectifiable.

2.19. Remark (integer is needed). Let f ∈ C1([0, 1]). Let T := [[0, 1], e1, f ] be a rectifiable
1-current on R. Then we have, for every 0-form φ ∈ D(R)

〈∂T, φ〉 = 〈T, dφ〉 = 〈T, φ′dx〉 =

∫ 1

0

φ′fdx = φ(1)f1 − φ(0)f(0)−
∫ 1

0

φf ′dx.

Hence we can represent

∂T = f(1)δ1 − f(0)δ0 − f ′L 1 [0, 1].

Observe that ∂T 6∈ R0(R), unless f is constant.

3. Polyhedral approximation

3.1. Definition (Polyhedral current). A current T ∈ Dk(Rn) is called polyhedral if it can be
written as

T =
∑
i∈I

[Si, τi, θi],

where

(i) I is finite and Si are k-dimensional simplexes in Rn, i.e. the convex envelopes of
(k + 1) affinely independent points;

(ii) τi is a constant orientation of Si;
(iii) θi is constant on Si.

The vector space of polyhedral k-currents in Rn is denoted Pk(Rn). If the multiplicity θi is
integer-valued for all i, then T is called integer polyhedral.

3.2. EXERCISE. Verify that if T is polyhedral, then ∂T is also polyhedral and that an integer
polyhedral current is an integral current.

This section is devoted to prove the following result

3.3. Theorem (Polyhedral approximation theorem). Let T ∈ Nk(Rn). Then there exists a
constant C = C(n, k) and a sequence {Pi}i∈N ⊂ Pk(Rn) such that

Pi
∗
⇀ T ; M(Pi) ≤ CM(T ); M(∂Pi) ≤ CM(∂P ).

Moreover, if T ∈ Ik(Rn), then Pi can be chosen integral polyhedral.

3.4. Remark. ciao



(i) The constant C can be chosen equal to 1, but the proof of this result is not part of
this lectures. It can be found in [3, 4.2.20].

(ii) The convolution technique which in many function spaces is used to approximate
general functions with smooth functions, is available also in our context. Nevertheless
the convolution of a k-current does not produce a k-dimensional smooth surface, but
an object whose support is n-dimensional.

3.5. Product of currents.

3.6. Definition (Product of currents). Let T ∈ Dk(Rn) and S ∈ Dh(Rd). Then there is a
unique current T × S ∈ Dk+h(Rn+d), satisfying

(i) 〈T × S;φ(x)ψ(y)dxI ∧ dyJ〉 = 〈T ;φ(x)dxI〉〈S;ψ(y)dyJ〉,
whenever φ ∈ D(Rn), ψ ∈ D(Rd), I ∈ Ik,n, J ∈ Ih,d;

(ii) 〈T × S; ρ(x, y)dxI ∧ dyJ〉 = 0, whenever I 6∈ Ik,n or J 6∈ Ih,d.

3.7. EXERCISE. Prove that (i) and (ii) define the action of T×S on all forms in Dk+h(Rn+d).
(Hint: You can assume that forms which are finite sum of forms of the type φ(x)ψ(y)dxI ∧ dyJ
are dense in Dk+h(Rn+d).)

3.8. EXERCISE. (∗) Prove that supp(T × S) ⊂supp(T )×supp(S).

3.9. EXERCISE. Let ω ∈ Dk(Rn), σ ∈ Dh(Rn) be of class C1. Prove that

d(ω ∧ σ) = dω ∧ σ + (−1)kω ∧ dσ. (3.1)

3.10. Proposition. Let T, S be as in Definition 3.6, then

∂(T × S) = ∂T × S + (−1)kT × ∂S. (3.2)

Part 1 of the proof. Let ω ∈ Dk+h−1(Rn+d) be of the form ω := φ(x)ψ(y)dxI ∧ dyj ,
where I ∈ Ik−1,n, J ∈ Ih,d. Then we compute

〈∂(T×S);ω〉 = 〈T×S; dω〉 (3.1)
= 〈T×S; d(φ(x)dxI)∧ψ(y)dyJ〉+(−1)k〈T×S;φ(x)dxI∧d(ψ(y)dyJ)〉

(ii)
= 〈T × S; d(φ(x)dxI) ∧ ψ(y)dyJ〉

(i)
= 〈T ; d(φ(x)dxI)〉〈S;ψ(y)dyJ〉

= 〈∂T ;φ(x)dxI〉〈S;ψ(y)dyJ〉 = 〈∂T × S;ω〉.
�

3.11. EXERCISE. (∗) Complete the proof: prove the formula firstly for the remaining inter-
esting case in which ω := φ(x)ψ(y)dxI ∧ dyj, where I ∈ Ik,n, J ∈ Ih−1,d and then extend it to
the general case.

3.12. Remark (Product of currents with finite mass). Let T, S be as in Definition 3.6, with
T = τµ, and S = τ ′µ′ currents with finite mass. Then one can prove that

T × S = (τ ∧ τ ′)(µ× µ′).

Notice that there is a small abuse of notation, since in the expression τ ∧ τ ′, the two vectors
are in Rn+d. Since the norm of τ ∧ τ ′ splits in the product of the corresponding norms, we have
that M(T × S) = M(T )M(S). Moreover, if T and S are integer rectifiable, so is T × S.

3.13. Remark (Product of rectifiable currents). Let T := [Eτθ], S := [E′τ ′θ′]. Then

T × S = [E × E′, τ ∧ τ ′, θθ′].

3.14. EXERCISE. Prove that if E and E′ are rectifiable, then E × E′ is rectifiable and that
τ ∧ τ ′ is an orientation. Prove that H k+h (E × E′) = (H k E)× (H h E′).

3.15. Push-forward of currents. We want to define the “image” of a cur-
rent T ∈ Dk(Rn) according to a map f : Rn → Rd with nice properties. We begin
with the following definitions.



3.15.1. Pull-back of covectors. Let L : Rn → Rd be a linear map. Let α ∈
Λk(Rd) be a k-covector. We define the pull-back L]α of α according to L to be
the k-covector in Rn satisfying

L]α(v1, . . . , vk) := α(Lv1, . . . , Lvk),

for every k-tuple of vectors (v1, . . . , vn) in Rn.

3.16. EXERCISE. Let |L| be the operator norm (i.e. the Lipschitz constant) of L. Prove that

‖L]α‖ ≤ |L|k‖α‖,

where we denoted by ‖ · ‖ the comass norm (see Definition 1.18).

3.16.1. Push-forward of vectors. Let L be as above and v ∈ Λk(Rn) be a
k-vector. We define the push-forward L]v of v according to L to be the k-vector
in Rd satisfying

〈α,L]v〉 := 〈L]α, v〉,

for every α ∈ Λk(Rd).

3.17. EXERCISE. Prove that

‖L]v‖ ≤ |L|k‖v‖,

where we denoted by ‖ · ‖ the mass norm (see Definition 1.18).

3.17.1. Pull-back of a form. Let f : Rn → Rd be of class C1. Let ω ∈ Dk(Rd)
be a differential k-form. We define the pull-back f ]ω of ω according to f , to be
the differential k-form on Rn satisfying

(f ]ω)(x) := (df(x))]ω(f(x)),

for every x ∈ Rn
3.17.2. Push-forward of a current. Let f : Rn → Rd be smooth and proper

(i.e. the preimage of a compact set is compact). Let T ∈ Dk(Rn) be a k-current.
We define the push-forward f]T of T according to f , to be the k-current on Rd
satisfying

〈f]T, ω〉 := 〈T, f ]ω〉,

for every ω ∈ Dk(Rd).

3.18. Remark. ciao

(i) If supp(T ) is compact, then f does not need to be proper: properness is required to
ensure that f ]ω has compact support, but if supp(T ) is compact, then the action of
T is well defined also on forms with non-compact support (by a cut-off outside the
support of the current).

(ii) If supp(T ) is compact and M(T ) <∞, then it is sufficient to require that f is of class
C1, because the action of T on all forms is determined by the action on continuous
ones by the Riesz Theorem.

3.19. EXERCISE. Prove that if M(T ) <∞ and therefore T = τµ, there holds

M(f]T ) ≤
∫
|df |k‖τ‖dµ ≤ ( sup

x∈supp(T )

{|df |})kM(T ).

3.19.1. Boundary of the push forward. From the identity d(f ]ω) = f ](dω) it
follows that

∂f ]T = f]∂T.



3.19.2. Push-forward of rectifiable currents. Let T = [E, τ, θ] be a rectifiable
k-current in Rn with compact support. Let f : Rn → Rd be of class C1. Then the
rectifiable current f]T has the form f]T = [Ẽ, τ̃ , θ̃], where

(i) Ẽ = f(E) (which is rectifiable);

(ii) τ̃ is any fixed orientation of Ẽ;

(iii) θ̃ is given by the formula

θ̃(y) =
∑

x∈f−1(y)

±θ(x),

where the sign is positive if the map df(x) preserves the orientation (with respect to
the fixed orientations τ(x) and τ̃(y)) and negative otherwise.

This formula can be proved via the area formula of Theorem 3.28, and a similar
formula holds when f is just Lipschitz (replacing df with dτf).

3.20. Flat norm, homotopy formula, and constancy lemma.

3.21. Definition. For every T ∈ Dk(Rn) we define its flat norm by

F(T ) := inf{M(R) + M(S) : T = R+ ∂S}.

3.22. EXERCISE. Let S1 = [0, 1] × {0} and S2 = [0, 1] × { 1
i
} and let T1 = [S1, e1, 1], T2 =

[S2, e1, 1]. Prove that F(T1 − T2) ≤ 3
i

3.23. Proposition. If F(Ti − T )→ 0 as i→∞, then Ti
∗
⇀ T .

Proof. Let ω ∈ Dk(Rn) and for every i let Ti = Ri + ∂Si. Then

|〈Ti − T, ω〉| = |〈Ri, ω〉+ 〈∂Si, ω〉| ≤ |〈Ri, ω〉|+ |〈Si, dω〉| ≤ (M(Ri) + M(Si))(‖ω‖∞ + ‖dω‖∞).

Since this holds for any Ri and Si, we can conclude

|〈Ti − T, ω〉| ≤ F(Ti − T )(‖ω‖∞ + ‖dω‖∞)

�

3.24. Remark. The reverse also holds in some interesting cases, e.g. if there exists K compact
such that supp(Ti) ⊂ K for every i and sup{M(Ti)+M(∂Ti)} <∞. This result is not elementary.

3.24.1. Homotopy formula. Let T ∈ Dk(Rn) be compactly supported. Let
f0, f1 : Rn → Rd be homotopic, i.e. there exists F : [0, 1] × Rn → Rd smooth
such that F (0, ·) = f0 and F (1, ·) = f1. Denote T0 = f0]T , T1 = f1]T ∈ Dk(Rd).
Denote also I := [(0, 1), e, 1] ∈ I1(R) and set S := F](I × T ) ∈ Dk+1(Rd).

3.25. Theorem. Let F, T, S be as above. Then

(i) T1 − T0 = ∂S +R, where R := F](I × ∂T );
(ii) if T is rectifiable, so are R and S, and if T is integer rectifiable, so are R and S;

(iii) F(T1 − T0) ≤ M(T ) supx∈suppT {|dtF ||dxF |k}+ M(∂T ) supx∈supp∂T {|dtF ||dxF |k−1}.

Proof. (i) We compute

∂S = ∂(F](I × T )) = F](∂(I × T ))
(3.2)
= F](∂I × T − I × ∂T )

= F](δ1 × T )− F](δ0 × T )−R = f1]T − f2]T −R = T1 − T0 −R.

(ii) The first implication follows from the fact that the product of two rectifiable cur-
rents is rectifiable and the push-forward of a rectifiable current is rectifiable. The
second implication follows from the formulas for the product and the push-forward
of rectifiable currents.



(iii) We assume that T is normal (otherwise the estimate is trivial). We write T = τµ
and ∂T = τ ′µ′ with unit τ and τ ′. By (i) we have F(T1 − T0) ≤ M(S) + M(R). We
estimate the mass of S, the estimate for M(R) is analogous. Let ω ∈ Dk+1(Rd), then

〈S, ω〉 = 〈F](I × T ), ω〉 = 〈I × T, F ]ω〉 =

∫ 1

0

∫
Rn
〈F ]ω(t, x), e ∧ τ(x)〉dµ(x)dt

=

∫ 1

0

∫
Rn
〈ω(F (t, x)), (dF (t, x))](e ∧ τ(x))〉dµ(x)dt

=

∫ 1

0

∫
Rn
〈ω(F (t, x)), (dtF (t, x))]e ∧ (dxF (t, x))]τ(x))〉dµ(x)dt

≤
∫ 1

0

∫
Rn
‖ω‖∞|dtF (t, x)||dxF (t, x)|kdµ(x)dt.

≤ sup
x∈
{|dtF ||dxF |k}M(T )

�

3.26. Remark (Linear homotopies). Often one wants to consider linear homotopies, i.e. homo-
topies of the type

F (t, x) = tf1(x) + (1− t)f0(x).

In this case we have:

|dtF (t0, x)| ≤ |f1(x)− f0(x)|;
|dxF (t, x0)| ≤ |df1(x0)|+ |df0(x0)|.

Hence the estimate (iii) of Theorem 3.25 can be replaced with

F(T1 − T0) ≤ ‖f1 − f0‖∞
∫
Rn

(|df0(x)|+ |df1(x)|)kdµ, (3.3)

and in particular

F(T1 − T0) ≤ ‖f1 − f0‖∞(LkM(T ) + Lk−1M(∂T )),

where

L := sup
x∈supp(T )

{|df0(x)|+ |df1(x)|}.

3.27. Theorem (Constancy lemma). Let T ∈ Dk(Rk) with ∂T = 0. Then T = [Rk, e,m], where
e = e1 ∧ · · · ∧ ek and m is constant.

Proof. We denote by Λ ∈ D0(Rk) the distribution defined by

〈Λ, φ〉 := 〈T, φdx〉, for every φ ∈ D0(Rk),

where dx = dx1∧ · · ·∧dxk. We claim that the distributional derivative DΛ vanishes and we will
see later that this implies the conclusion of the theorem. To prove the claim, fix i ∈ {1, . . . , k}
and let

ω := φ ˆdxi ∈ Dk−1(Rk),

where
ˆdxi := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxk.

We can compute

0
∂T=0

= 〈∂T, ω〉 = 〈T, dω〉 = 〈T,
k∑
j=1

∂φ

∂xj
dxj ∧ ˆdxi〉.

We observe that dxi ∧ ˆdxi = (−1)i−1dx, while dxj ∧ ˆdxi = 0 for i 6= j, hence we can continue
the chain of equalities with

0 = 〈T, (−1)i−1 ∂φ

∂xi
dx〉 = 〈Λ, (−1)i−1 ∂φ

∂xi
〉 = (−1)i−1〈DiΛ, φ〉.

Lastly we show that the fact that DΛ = 0 implies that Λ is (represented by) a constant function.
We prove it via convolution. Let ρ ∈ D0(Rk) be positive with

∫
Rk ρ(x)dx = 1 and let ρε(x) =



ε−kρ(ε−1x). Let Λε := Λ ∗ ρε. It is well known that Λε are (represented by) smooth functions,
converging in distribution to Λ satisfying

∇Λε = ∇(Λ ∗ ρε) = (DΛ) ∗ ρε = 0,

hence Λε are constant functions. The limit (in distribution) of constant functions is constant,
hence Λ is constant, which implies the claimed representation of T . �

With a similar argument, one can prove the following more general statement

3.28. Proposition. Let T ∈ Dk(Rk) with M(∂T ) < ∞. Then T = [Rk, e,m], where e =
e1 ∧ · · · ∧ ek and m ∈ BVloc(Rk).

3.29. EXERCISE. Prove Proposition 3.28.

3.30. EXERCISE. Prove the following statement. Let A ⊂ V be a relatively open subset of
an affine k-dimensional subspace V of Rn. Let T ∈ Nk(Rn) with (∂T ) A = 0, where T A
is the restriction of the current T to the set A (obtained simply restricting to A the measure
associated to T ). Then T A = [Rk, e,m], where e is a constant k-vector spanning TanV and
m is constant.

3.31. Proof of Theorem 3.3. Through this section we will assume ∂T = 0.
C will denote a dimensional constant, which might change in several steps of the
proof. We will use the term δ-grid to denote the union of adjacent hypercubes in
Rn of edge-length δ, where the edges are parallel to the coordinate axes and one
of the hypercubes has one vertex in the origin. The (n − 1) skeleton is obtained
as the union of the (n− 1)-dimensional simplexes supporting the boundary of the
hypercubes. Inductively, the m-skeleton of the δ-grid is obtained as the union of
the (m)-dimensional simplexes supporting the boundary of the simplexes of the
(m+ 1)-skeleton.

3.32. Lemma. Let T ∈ Dk(Rn), with ∂T = 0 and let δ > 0. There exists a current T̃ ∈ Dk(Rn),

supported on the (n− 1)-skeleton of the δ-grid, such that ∂T̃ = 0, M(T̃ ) ≤ CM(T ), T̃ −T = ∂S,

with M(S) ≤ CδM(T ), hence F(T̃ − T ) ≤ CδM(T ). Moreover, if T is rectifiable, so are T̃ and

S, and if T is integer rectifiable, so are T̃ and S.

Proof. For every hypercube Q in the grid, we pick a point xQ (which will be chosen wisely
later). Let PQ : Q \ {xQ} → ∂Q be the radial projection. Denote fδ the map

fδ : Rn \ (
⋃
Q

){xQ} →
⋃
Q

∂Q.

Note that fδ is only locally Lipschitz on Rn \ (
⋃
Q){xQ}, and more precisely

|dfδ(x)| ≤ C δ

|x− xQ|
, for every x ∈ Q \ {xQ}. (3.4)

We will continue with the proof as if fδ was a map of class C1. The correct constructions,
indeed, would replace fδ with a smoothed approximation. This construction will be described
in Remark 3.34.
Set T̃ := fδ]T . Obviously T̃ is supported on the (n− 1)-skeleton. By Exercise 3.19, we have

M(T̃ ) =

∫
Rn
|dfδ(x)|kdµ(x) ≤ C

∫
Rn
gkdµ(x), (3.5)

where we denoted g(x) the a function which coincides with δ(|x−xQ|)−1 on the interior of each
cube Q1. We claim that a suitable choice of the points xQ yields, for every cube Q∫

Q

δk

|x− xQ|k
dµ(x) ≤ Cµ(Q) (3.6)

1we can assume, possibly by translating the grid, that µ gives zero measure to the (n− 1)-
skeleton, hence the values of g on the (n− 1)-skeleton are not relevant.



which, combined with (3.5), gives M(T̃ ) ≤ CM(T ). Next we apply homotopy formula, with a
linear homotopy between f0 := Id and f1 := fδ, being Id the identity map. By (3.3), we get

M(S) ≤ sup{|f0 − f1|}
∫

(1 + |dfδ|)kdµ ≤ Cδ
∫

1 + |df |kdµ ≤ CδM(T ).

Now we prove the claim (3.6). To do so, we average the left hand side over all xQ ∈ Q

1

|Q|

∫
Q

(∫
Q

δk

|x− xQ|k
dµ(x)

)
dxQ = δk−n

∫
Q

(∫
Q

1

|x− xQ|k
dxQ

)
dµ(x)

≤ δk−n
∫
Q

(∫
B(x,

√
nδ)

1

|x− xQ|k
dxQ

)
dµ(x)

= δk−n
∫
Q

(∫ √nδ
0

1

rk
Crn−1rkdr

)
dµ(x) = Cµ(Q),

where the inequality follows from the fact that Q ⊂ B(x,
√
nδ), for every x ∈ Q. The last part

of the statement follows from the fact that both properties are stable under product and push
forward, which are the only operations which we employed to get T̃ and S. �

Analogously one can prove the following generalization of Lemma 3.32.

3.33. Lemma. Let T ∈ Dk(Rn), with ∂T = 0 be a current which is supported on the h-skeleton

(h > k) and let δ > 0. There exists a current T̃ ∈ Dk(Rn), supported on the (h − 1)-skeleton

of the δ-grid, such that ∂T̃ = 0, M(T̃ ) ≤ CM(T ), T̃ − T = ∂S, with M(S) ≤ CδM(T ), hence

F(T̃ −T ) ≤ CδM(T ). Moreover, if T is rectifiable, so are T̃ and S, and if T is integer rectifiable,

so are T̃ and S.

Using Lemma 3.33 iteratively, we easily obtain the proof of Theorem 3.3. Apply
Lemma 3.33 with T0 := T obtaining a current T1 := T̃0, and iteratively with
T1, . . . , Tn−k+1 obtaining at the end of the iteration a current Tn−k ∈ Dk(Rn)
which is supported on the k-skeleton. Clearly we have M(Tn−k) ≤ CM(T ). More-
over we have

T − Tn−k = (T − T1) + (T1 − T2) + . . . (Tn−k+1 − Tn−k) = ∂(S1 + · · ·+ Sn−k),

with M(S1 + · · ·+Sn−k) ≤ CδM(T ). It remains to show that Tn−k is polyhedral.
Let A be a face of the k-skeleton of the δ-grid. The fact that Tn−k has constant
multiplicity on A follows from Exercise 3.30.

3.34. Remark (The correct construction of fδ). As we observed, fδ does not have the min-
imal requirements which allow to define the push-forward of a current according to it. The
correct construction requires to approximate each projection PQ with a smoothing PQ,ε in an
ε-neighbourhood of the singularity xQ. More precisely we set PQ,ε(xQ) = xQ and for every
x ∈ Q \ {xQ}

PQ,ε(x) = xQ + (PQ(x)− xQ)σ(
x− xQ
ε

),

where σ : R → [0, 1] is a smooth function which is constantly equal to 0 for t ≤ 0 and to 1
for t ≥ 1. We can define, as in the proof of Lemma 3.32, the corresponding map2 fδ,ε and the

current T̃ε = fδ,ε]T . The final current T̃ is the limit as ε→ 0 of the currents T̃ε.

3.35. EXERCISE. Prove that the currents T̃ε defined in Remark 3.34 actually converge in
mass to a current T̃ .

Let us summarize the main consequence of Lemma 3.32 an Lemma 3.33 in the fol-
lowing proposition. Actually we proved only the version with ∂T = 0, nevertheless
we state it in the general case.

2note that the singularity at xQ is eliminated, but fδ,ε fails to be of class C1 at the boundary
of the cubes. However it is easy to see that at least fδ,ε is Lipschitz.



3.36. Theorem (Polyhedral deformation). Let T ∈ Nk(Rn) be a normal k-current with compact
support and let δ > 0. There exists a polyhedral current Pδ ∈ Dk(Rn), supported on the k-
skeleton of the δ-grid, such that

M(Pδ) ≤ CM(T ), M(∂Pδ) ≤ CM(T ),

Pδ − T = R+ ∂S, with
M(S) ≤ CδM(T ), M(R) ≤ CδM(∂T ),

hence F(Pδ − T ) ≤ Cδ(M(T ) + M(∂T )). Moreover, if T is rectifiable, so are Pδ, R and S, and
if T is integer rectifiable, so are Pδ, R and S.

A curious application of Theorem 3.36, namely with a choice of a “large” δ, gives
the following generalization of the isoperimetric inequality.

3.37. Theorem (Generalized isoperimetric inequality). Let T ∈ Ik(Rn) with compact support
and ∂T = 0. Then there exists S ∈ Ik+1(Rn) with compact support, such that ∂S = T and

M(S) ≤ C(n)[M(T )]1+ 1
k .

Proof. Let L := CM(T ), where C is the constant in Theorem 3.36. Fix δ such that
L < δk ≤ 2L and apply Theorem 3.36 to obtain a polyhedral current Pδ. We claim that Pδ = 0.
Indeed, since Pδ is an integer polyhedral k-current with constant multiplicities on each k-cell
of the δ-grid, then M(Pδ) is an integer multiple of δk. Since M(Pδ) ≤ L < δk, it follows that
M(Pδ) = 0, hence Pδ = 0. This implies that ∂S = T , where S is the integral (k + 1)-current
given by Theorem 3.36. The estimate on the mass of S easily follows:

M(S) ≤ CδM(T ) ≤ C(2L)
1
kM(T ) ≤ C[M(T )]1+ 1

k .

�

Another consequence of the Polyhedral deformation theorem is the boundary rec-
tifiability theorem in the case k = 1.

3.38. Theorem (Boundary rectifiability (k = 1)). Let T be an integer rectifiable 1-current, with
M(∂T ) <∞. Then T is integral.

Proof. Let δi ↘ 0 and Pi := Pδi be the polyhedral 1-currents (with integer coefficients!)
given by Theorem 3.36. Since M(∂Pi) ≤ CM(∂T ), then for every i, ∂Pi is supported on a set
of at most CM(T ) points (see Exercise 3.2). The class of such measures is compact, hence ∂(T )
has the same structure, which implies that T is integral. �

3.39. Remark. In general dimension k, the boundary rectifiability theorem is a consequence of
the polyhedral deformation theorem and the (k− 1)-dimensional version of the closure theorem
(Theorem 2.15), the proof being identical to that presented above. In particular, in a possible
proof by induction of the closure theorem, the boundary rectifiability theorem can be given for
granted. The proof of the closure theorem that we will present here is not by induction, but
we will reduce to a lower dimensional problem with a technique which we will introduce in the
next section.

4. Slicing

We begin recalling a classical result in Real Analysis.

4.1. Theorem (Sard). Let f : Rn → Rm be of class Ck, for some k ≥ max{n−m, 1}. Denote
by

Cf := {x ∈ Rn : rk(Df(x)) < m}
the critical set of f . Then Lm(f(Cf )) = 0.

4.2. Remark. The result holds also if Rn and Rm are replaced by smooth manifolds N and M
of dimension n and m, respectively, with the obvious necessary changes (e.g. Lm is replaced
by H m M).



4.3. Corollary. Let 0 < m ≤ k ≤ n. Let M be a smooth k-surface in Rn and f : Rn → Rm be
smooth. Denote My := M ∩ f−1(y). Then for Lm-a.e. y, My is a smooth surface of dimension
k −m (or it is empty).

We want to extend the previous corollary, when M is replaced by a rectifiable set
and f is only Lipschitz. We need the coarea formula

4.4. Theorem (Coarea formula). Let E ⊂ Rn be k-rectifiable and fRn → Rm Lipschitz. For
y ∈ Rm, denote Ey := E ∩ f−1(y). For H k-a.e. x ∈ E denote ∇τf(x) the tangential gradient
of f at x. Moreover, let

Jτf(x) := |∇τf1(x) ∧ · · · ∧ ∇τfm(x)|
denote the tangential Jacobian. Then for every Borel function g : E → [0,+∞], it holds∫

y∈Rm

(∫
x∈Ey

g(x)dH k−m(x)

)
dLm(y) =

∫
x∈E

g(x)Jτf(x)dH k(x). (4.1)

We are ready to prove the main proposition of this section.

4.5. Proposition (Slicing of rectifiable currents). Let T = [E, τ, θ] be a rectifiable k-current in
Rn, with M(T ) <∞. Let f : Rn → Rm be Lipschitz, with 0 < m ≤ k ≤ n. Denote

Ẽ := {x ∈ E : ∇τf(x) is defined and has rank m}.

For y ∈ Rm, denote Ey := E ∩ f−1(y). Then the following facts hold.

(i) H k−m(Ey \ Ẽ) = 0, for Lm-a.e. y.
(ii) Ey is (k −m) rectifiable for Lm-a.e. y.

(iii) Denoting

η(x) := ∇τf1(x) ∧ · · · ∧ ∇τfm(x),

we have that

Tan(E, x) = Tan(Ey, x)⊕ span{η(x)},
for Lm-a.e. y and for H k−m-a.e. x ∈ Ey. Hence, for Lm-a.e. y, we can define the
orientation on Ey as the (k −m)-vector τ̃ such that

η(x)

|η(x)| ∧ τ̃(x) = τ(x), for H k−m-a.e. y ∈ Ey.

(iv) we have∫
y∈Rm

(∫
x∈Ey

|θ(x)|dH k−m(x)

)
dLm(y) =

∫
x∈E
|θ(x)|Jτf(x)dH k(x).

(v) For Lm-a.e. y, it is well defined the (k −m)-rectifiable current Ty := [Ey, τ̃ , θ Ey],
which is called the slice of T at y according to f . Moreover∫

y∈Rm
M(Ty)dLm(y) =

∫
x∈E
|θ(x)|Jτf(x)dH k(x) ≤ [Lip(f)]mM(T ).

Proof. (i) By (4.1), with g := 1E\Ẽ , we get∫
y∈Rm

H k−m(Ey \ Ẽ)dLm(y) =

∫
E\Ẽ

Jτf(x)dH k(x) = 0,

where the last equality follows from the fact that Jτf = 0 H k-a.e. on E \ Ẽ. Hence

H k−m(Ey \ Ẽ) = 0 for Lm-a.e. y.
(ii) We can reduce to the case that f is of class C1 (via the Lusin type approximation

of Lipschitz functions with C1 functions) and E is contained in a unique C1-surface

S. Since ∇τf has maximal rank on Ẽ, then Ẽ ∩ f−1(y) is contained in a (k −m)-
dimensional surface of class C1, for every y. The fact that Ey is (k −m) rectifiable
for Lm-a.e. y follows from (i), writing

Ey = (Ey \ Ẽ) ∪ (Ẽ ∩ f−1(y).



(iii) The fact is trivial when E is contained in a C1 surface. The general case follows from
the properties of the weak tangent field to a rectifiable set.

(iv) This is the coarea formula (4.1) with g = |θ|.
(v) This is just a summary of points (i)-(iv).

�

In general it is not possible to reconstruct the action of a current on a form
knowing only the slices of the current according to a map f . The next proposition
shows that it is possible to reconstruct such an action, when the form is “tangent”
to the level sets of f .

4.6. Proposition (First operative definition of slicing for rectifiable currents). Let f : Rn → Rm
be Lipschitz and of class C1 and let T and {Ty}y be as in Proposition 4.5. Then for every
ω ∈ Dk−m(Rn) it holds ∫

y∈Rm
〈Ty, ω〉dLm(y) = 〈T, df1 ∧ · · · ∧ dfm ∧ ω〉.

the proof uses two simple fact of multilinear algebra, the proof of which is left as
an exercise.

4.7. Lemma. Let v and ṽ be simple m- and m̃-vectors, respectively, with v ∧ ṽ = 0. Let α and
α̃ be m- and m̃-covectors such that α = α1 ∧ · · · ∧ αm satisfies αi = 0 on span{ṽ}, for every
i = 1, . . . ,m. Then

〈α ∧ α̃, v ∧ ṽ〉 = 〈α, v〉〈α̃, ṽ〉.

4.8. Lemma. Let (V, ·) be any vector space endowed with a scalar product. Let v1, . . . , vm ∈ V ,
and for every i = 1, . . . ,m, consider the covector v0

i defined by

〈v0
i ;w〉 := vi · w.

Then we have
〈v0

1 ∧ · · · ∧ v0
m, v1 ∧ · · · ∧ vm〉 = |v1 ∧ · · · ∧ vm|2.

Proof of Proposition 4.6. Take a point x, in which

η(x) := ∇τf1(x) ∧ · · · ∧ ∇τfm(x) 6= 0.

By Proposition 4.5 (iii), we have that dfi = 0 on span({τ̃}), hence, by Lemma 4.7, for every
form ω ∈ Dk−m(Rn), we have

〈df1 ∧ · · · ∧ dfm ∧ ω, τ〉 = 〈df1 ∧ · · · ∧ dfm ∧ ω,
η

|η| ∧ τ̃〉 = 〈df1 ∧ · · · ∧ dfm,
η

|η| 〉〈ω, τ̃〉. (4.2)

On the other hand,

〈df1 ∧ · · · ∧ dfm, η〉 = 〈df1 ∧ · · · ∧ dfm,∇τf1 ∧ · · · ∧ ∇τfm〉
= 〈dτf1 ∧ · · · ∧ dτfm,∇τf1 ∧ · · · ∧ ∇τfm〉

= |∇τf1 ∧ · · · ∧ ∇τfm|2 = |η|2
(4.3)

Combining (4.2) and (4.3), we have

〈T, df1 ∧ · · · ∧ dfm ∧ ω =

∫
E

〈df1 ∧ · · · ∧ dfm ∧ ω, τ〉θdH k =

∫
E

〈ω, τ̃〉θJτfdH k.

By the coarea formula (4.1) this is equal to∫
y∈Rm

(∫
Ey

〈ω, τ〉θdH k−m

)
dLm(y) =

∫
Rm
〈Ty, ω〉dLm(y).

�

4.9. Proposition (Second operative definition of slicing for rectifiable currents). Let T be a
rectifiable k-current in Rn, with M(∂T ) < infty. Let f : Rn → R be Lipschitz and of class C1.
Let {Ty}y be as in Proposition 4.5. Then for L 1-a.e. y ∈ R it holds

Ty = ∂(T {f ≤ y})− ∂T {f ≤ y}.



Proof. Let ρ : R→ R be a positive smooth function which is supported on [0, 1] and with∫ 1

0
ρ = 1. Fix ȳ ∈ R. For ε > 0, let ρε(y) := 1

ε
ρ
(
y−ȳ
ε

)
. Let Rε : R → R be the positive and

smooth function such that Rε(ȳ + ε) = 0 and R′ε = −ρε. For ω ∈ Dk−1(Rn), we compute∫
y∈R
〈Ty, ω〉ρε(y)dy =

∫
y∈R
〈Ty, (ρε ◦ f)ω〉dy Prop.4.6

= 〈T, (ρε ◦ f)df ∧ ω〉 = −〈T, d(Rε ◦ f) ∧ ω〉

= 〈T, (Rε ◦ f)dω〉 − 〈T, d(Rε ◦ f)ω〉 = 〈T, (Rε ◦ f)dω〉 − 〈∂T, (Rε ◦ f)ω〉
= 〈(Rε ◦ f)T, dω〉 − 〈(Rε ◦ f)∂T, ω〉.

where the last equality in the first line follows from the identity

d(Rε ◦ f) = −(ρε ◦ f)df

and the first equality in the second line follows from the identity

d((Rε ◦ f)ω) = d(Rε ◦ f) ∧ ω + (Rε ◦ f)dω.

Observe that when ε→ 0, we have that

(Rε ◦ f)
∗
⇀ T {f ≤ ȳ}

and
(Rε ◦ f)∂T

∗
⇀ ∂T {f ≤ ȳ}.

Moreover, if ȳ is a point of Lebesgue continuity of the map y 7→ 〈Ty, ω〉, then∫
y∈R
〈Tyω〉ρε(y)dy → 〈Tȳ, ω〉.

Take now a countable dense set of ωj ∈ Dk−1(Rn). Then L 1-a.e. ȳ is a point of Lebesgue
continuity of every map y 7→ 〈Ty, ωj〉. To show this, we observe that all such maps are integrable,
indeed ∫

|〈Ty, ωj〉|dy ≤ ‖ωj‖∞
∫

M(Ty)dy ≤ ‖ωj‖∞[Lip(f)]kM(t) <∞.

�
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