Übungsaufgaben zur Vorlesung Komplexe Geometrie und Kähler-Einstein Metriken PD Dr. M. Simon Florian Link

WS 09/10, Serie 15 08.Februar 2010

In den folgenden Aufgaben wird immer auf den Kontext/die Notation aus der Vorlesung Bezug genommen.

Aufgabe 1 (4 Punkte) Zeigen Sie daß für die in der Vorlesung durch $\eta:=\lim_{\varepsilon\searrow 0}\rho_{\varepsilon_\omega}$ definierte (1,1)-Form $\eta>0$ und $\eta\in c_1(\widetilde{E})$ gilt (,d.h. es gälte somit $c_1(\widetilde{E})>0$).

Aufgabe 2 (4 Punkte)

Weisen Sie nach, daß für das Kählerpotential F und das holomorphe Vektorfeld X aus der Vorlesung, η wie oben,

$$\int_{\widetilde{E}} X(F)\eta^4 > 0$$

gilt.

Bem. Somit wäre also gezeigt, daß auf der Kählermannigfaltigkeit \widetilde{E} mit $c_1(\widetilde{E})>0$ keine Kähler-Einstein-Metrik existiert.

Bitte schreiben Sie Ihren Namen auf jedes Lösungsblatt. Abgabe ist am Montag, 15.02.2010 bis 15:00 Uhr.