Übungsaufgaben zur Vorlesung PDE Prof. Dr. G. Wang Dr. F. Dittberner

SS 2019, Serie 4 20.5.19

Aufgabe 1(Skalierung)

(4 Punkte)

Zeigen Sie durch Skalierung die Verallgemeinerung von Theorem 4.13:

Theorem 4.14. Sei B_R eine Kugel in \mathbb{R}^n mit Radius R, $f \in C^{\alpha}(B_R)$ für ein $\alpha \in (0,1)$ und $||f||_{C^{\alpha}(B_R)} < \infty$. Sei $u \in L^{\infty}(B_R) \cap C^2(B_R)$ eine Lösung von $\Delta u = f$ in B_R . Dann ist $u \in C^{2,\alpha}(B_R)$. Weiter gilt

$$R\|\nabla u\|_{L^{\infty}(B_{\frac{R}{2}})} + R^{2}\|\nabla^{2}u\|_{L^{\infty}(B_{\frac{R}{2}})} + R^{2+\alpha}[\nabla^{2}u]_{C^{\alpha}(B_{\frac{R}{2}})}$$

$$\leq C(|u|_{L^{\infty}(B_{R})} + R^{2}|f|_{L^{\infty}(B_{R})} + R^{2+\alpha}[f]_{C^{\alpha}(B_{R})}),$$

wobei C > 0 eine nur von n und α abhängten Konstante ist.

Aufgabe 2 (Interpolation der Normen)

(4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ beschränkt. Zeigen Sie, dass für alle $\epsilon > 0$ eine Konstante $C = C(\epsilon, n, \alpha, \Omega) > 0$ existiert, so dass

$$||u||_{C^2} \le \epsilon[u]_{C^{2,\alpha}} + C||u||_{L^{\infty}(\Omega)}, \quad \forall u \in C^{2,\alpha}(\overline{\Omega})$$

gilt. Hinweis. Widerspruchsargument und Arzelá-Ascoli.

Aufgabe 3 (Eigenschaften der gleichmäßigen Konvergenz) (4 Punkte) Sei $w_{\varepsilon}: \Omega \to \mathbb{R}$ eine Folge von C^1 -Funktionen, die gegen w gleichmäßig konvergiert. Weiter konvergiere $\partial_j w_{\varepsilon}$ gegen v_j gleichmäßig für ein $1 \leq j \leq n$. Dann folgt die Existenz von $\partial_j w$ mit $\partial_j w = v_j$.

Aufgabe 4 (Stetigkeitsmodul)

(4 Punkte)

Es sei $f:\Omega\to\mathbb{R}$ stetig. Das Stetigkeitsmodul ω_f von f auf Ω ist definiert durch

$$\omega_f:(0,\infty)\to\mathbb{R},\quad \omega_f(\delta):=\sup\{|f(x)-f(y)|:x,y\in\Omega,|x-y|<\delta.\}$$

Zeigen Sie:

- 1. ω_f ist monoton wachsend.
- 2. ω_f ist subadditiv, d.h. für alle $\delta, \delta' \in (0, \infty)$ gilt $\omega_f(\delta + \delta') \leq \omega_f(\delta) + \omega_f(\delta')$.
- 3. f ist auf Ω genau dann gleichmäßig stetig, falls $\lim_{\delta \to 0, \delta > 0} \omega_f(\delta) = 0$.

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 27.5, vor der Vorlesung.