Aufgabe 1 (Zum Absorbtionslemma)

Sei $B^+ := B_1(0) \cap \{x : x_n > 0\}$. Zeigen Sie, dass Lemma 8.14 (Absorbtionslemma) auch für folgendes Mengensystem gilt:

$$\mathcal{B} := \{ B_{\rho}^{+}(x) : B_{\rho}(x) \subset B, x_{n} \geq 0 \},$$

wobei $B_{\varrho}^+(x) := B_{\varrho}(x) \cap B^+.$

Aufgabe 2 (Höhere Regularität)

Sei $k \in N_0$ und $\alpha \in (0,1)$. Betrachten Sie auf $B_1 := B_1(0) \subset \mathbb{R}^n$ eine Lösung $u \in C^{k+2}(B_1)$ der Gleichung Lu = f, $Lu := a^{ij}\partial_{ij}^2 u + b^i\partial_i u + qu$ mit (a^{ij}) elliptisch und $a^{ij}, b^i, q \in C^{k,\alpha}(B_1)$. Zeigen Sie die innere Abschätzung

$$\|u\|_{C^{k+2,\alpha}(B_{\frac{1}{2}})} \leq C(\|f\|_{C^{k,\alpha}(B_1)} + \|u\|_{C^0(B_1)}).$$

Hinweis: Berechnen Sie eine Gleichung für $\partial_i u$ und verwenden Sie Induktion.

Aufgabe 3 (Elliptische $C^{1,\alpha}$ -Abschätzung)

Seien $u \in C^{1,\alpha}(\mathbb{R}^n)$, $X \in C^{0,\alpha}(\mathbb{R}^n,\mathbb{R}^n)$ und $f \in L^p(\mathbb{R}^n)$, wobei $\alpha \in (0,1)$ und $1 - \frac{n}{p} = \alpha$. Sei u schwache Lösung der Gleichung

$$\Delta u = \text{div}X + f \quad \text{in } \mathbb{R}^n.$$

Zeigen Sie die Existenz einer Konstanten $C=C(n,\alpha)$, so dass die folgende Abschätzung gilt:

$$[Du]_{\alpha} \le C([X]_{\alpha} + ||f||_{L^p}).$$

Gehen Sie dabei wie folgt vor:

- 1. Nehmen Sie (per Widerspruch) an die Aussage sei falsch. Dies liefert Ihnen eine Folge von Funktionen $(u_k, X_k, f_k)_{k \in \mathbb{N}}$
- 2. o.B.d.A. $[Du_k]_{\alpha} = 1$ für alle $k \in \mathbb{N}$
- 3. Reskalieren Sie die Folge $(u_k, X_k, f_k)_{k \in \mathbb{N}}$ zu $(v_k, Y_k, g_k)_{k \in \mathbb{N}}$ so, dass git:

$$([Du_k]_{\alpha}, [X_k]_{\alpha}, ||f_k||_{L^p})_{k \in \mathbb{N}} = ([Dv_k]_{\alpha}, [Y_k]_{\alpha}, ||g_k||_{L^p})_{k \in \mathbb{N}}$$

- 4. o.B.d.A. $Y_k(0) = 0$, $v_k(0)$ und $Dv_k(0) = 0$ (Subtrahieren Sie geeignete Polynome)
- 5. Zeigen Sie die Existenz einer Teilfolge von v_k , welche in C^1_{loc} gegen eine Funktion v konvergiert.

- 6. Leiten Sie eine Gleichung für v her.
- 7. Benutzen Sie den Satz von Liouville um einen Widerspruch zu erhalten.

Abgabe am Montag den 07.02.2011.