Aufgabe 1

Sei $u \in W^{1,p}(\Omega)$. Zeigen Sie, dass $u^+, |u| \in W^{1,p}(\Omega)$ und

$$Du^+ = \chi_{\{u>0\}}Du$$
 \mathcal{L}^n -fast überall
 $D|u| = \chi_{\{u>0\}}Du - \chi_{\{u<0\}}Du$ \mathcal{L}^n -fast überall.

Zeigen Sie außerdem, dass

$$Du = 0$$
 \mathcal{L}^n -fast überall auf $\{u = 0\}$.

Tipp: Betrachten Sie für $\varepsilon > 0$ die Funktionen

$$F_{\varepsilon}(r) := \begin{cases} \sqrt{r^2 + \varepsilon^2} - \varepsilon & ; r \ge 0 \\ 0 & ; r < 0. \end{cases}$$

Aufgabe 2

Sei $\Omega \subset \mathbb{R}^n$ ein konvexes Gebiet und sei $u:\Omega \to \mathbb{R}$ eine Funktion. Beweisen Sie, dass

$$u \in Lip(\Omega) \Leftrightarrow u \in W^{1,\infty}(\Omega).$$

Aufgabe 3

Sei $\Omega \subset \mathbb{R}^n$ ein Gebiet und sei $u \in W^{1,p}(\Omega)$. Zeigen Sie folgende Implikation:

$$Du = 0 \implies u$$
 ist fast überall konstant

Aufgabe 4

Sei $u \in W^{1,p}((0,1))$ mit $p \in (1,\infty)$. Zeigen Sie:

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p \right)^{\frac{1}{p}}$$
 für \mathcal{L}^1 -fast alle $x, y \in (0, 1)$.

Abgabe am Montag den 08.11.2010. vor der Vorlesung.