Aufgabe 1 (Geradebiegen des Randes)

Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet der Klasse C^1 , d.h. für alle $x_0 \in \partial \Omega$ existiere eine offene Umgebung U von x_0 und ein C^1 -Diffeomorphismus $\varphi : U \to B_1(0)$ mit $\psi := \varphi^{-1}$, sodass

$$\varphi(\Omega \cap U) = B_1(0)^+ = \{x = (x_1, ..., x_n) \in B_1(0) : x_n > 0\}.$$

 $u \in W_0^{1,2}(\Omega)$ sei eine schwache Lösung der elliptischen PDE

$$-\partial_{\beta}(a^{\alpha\beta}\partial_{\alpha}u) - \partial_{\beta}(b^{\beta}u) + c^{\alpha}\partial_{\alpha}u + qu = \Lambda \quad \text{in } \Omega,$$

wobei $a^{\alpha\beta}, b^{\alpha}, c^{\alpha}, q \in L^{\infty}(\Omega)$ und $\Lambda \in W_0^{1,2}(\Omega)'$ seien. Welche Gleichung erfüllt $v := u \circ \psi$ in $B_1(0)^+$?

Aufgabe 2 (Ehrling-Lemma)

Sei $K \in L(X,Y)$ ein kompakter Operator und sei $T \in L(Y,Z)$ injektiv. Zeigen Sie durch Widerspruch, dass es für alle $\varepsilon > 0$ eine Konstante $C(\varepsilon) < \infty$ gibt, sodass für alle $x \in X$ gilt:

$$||Kx||_Y \le \varepsilon ||x||_X + C(\varepsilon) ||TKx||_Z.$$

Aufgabe 3 (Hilbertraum-Adjungierte)

1. Es seien $(X, (\cdot, \cdot)_X)$ und $(Y, (\cdot, \cdot)_Y)$ Hilberträume und $T \in L(X, Y)$. Zeigen Sie die Existenz eines Operators $T^* \in L(Y, X)$, so dass für alle $x \in X$ und $y \in Y$ gilt:

$$(Tx, y)_Y = (x, T^*y)_X.$$
 (1)

Zeigen Sie zudem, dass T^* durch (1) eindeutig bestimmt ist. T^* heißt die Hilbertraum-Adjungierte zu T.

2. Sei $\Omega \subset \mathbb{R}^n$ offen. Betrachten Sie den Operator

$$D: W_0^{1,2}(\Omega) \to L^2(\Omega, \mathbb{R}^n), u \mapsto Du = (\partial_1 u, ..., \partial_n u).$$

Bestimmen Sie die Hilbertraum-Adjungierte $D^*:L^2(\Omega,\mathbb{R}^n)\to W^{1,2}_0(\Omega)$ zu D. Hierbei sind wie üblich für $u_1,u_2\in W^{1,2}_0(\Omega)$ und $v_1,v_2\in L^2(\Omega,\mathbb{R}^n)$

$$(u_1, u_2)_{W^{1,2}} = \int_{\Omega} (u_1 u_2 + \langle Du_1, Du_2 \rangle) \ d\mathcal{L}^n \quad \text{und} \quad (v_1, v_2)_{L^2} = \int_{\Omega} \langle v_1, v_2 \rangle \ d\mathcal{L}^n.$$

Abgabe am Montag den 29.11.2010 vor der Vorlesung.