Aufgabe 1 (L^2 -Abschätzungen: Absorptionstechnik) Sei $D = \{x \in \mathbb{R}^2 : |x| < 1\}$ und $u \in W^{2,2}(D)$ erfülle die Ungleichung

$$|\Delta u| \le \Lambda |Du|^2$$
 \mathcal{L}^2 -fast-überall auf D .

Zeigen Sie die Existenz universeller Konstanten c > 0 und $C < \infty$, so dass gilt:

$$|\Lambda| \|Du\|_{L^2(D)} < c \implies \|D^2u\|_{L^2(B_{\frac{1}{2}})} \le C \|Du\|_{L^2(D)}.$$

Anleitung: Sie können annehmen dass $\int_D u = 0$. Leiten Sie mit der Vorlesung eine L^2 -Abschätzung für $D^2(\eta u)$ her, und verwenden Sie dann für den quadratischen Term die Soboleveinbettung $W^{1,1}(\mathbb{R}^2) \subset L^2(\mathbb{R}^2)$.

Aufgabe 2 (Differenzenquotienten)

Konstruieren Sie ein Beispiel einer Funktion $u: I = (-1,1) \to \mathbb{R}$ mit $u \notin W^{1,1}(I)$, aber $\|\Delta^h u\|_{L^1} \leq C$ unabhängig von $h \neq 0$.

Aufgabe 3 (L^2 a priori Abschätzungen)

Sei $\varphi \in C^1(\mathbb{R})$ mit $\|\varphi'\|_{L^{\infty}(\mathbb{R})} \leq L < \infty$, und $u \in W^{1,2}(\mathbb{R}^n)$ löse die Gleichung

$$-\Delta u + \varphi(u) = f \in L^2(\mathbb{R}^n).$$

Zeigen Sie $u \in W^{2,2}_{loc}(\mathbb{R}^n)$.

Abgabe am Montag den 20.12.2010.