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Preliminary comments

These are the notes for the lecture course on Ricci flow given in the winter term 2019/2020
at the university of Freiburg. They are loosely based on Chow’s and Knopf’s book [5]
and Topping’s book [4].

The lecture will cover the following.

1. Definition of the Ricci flow

2. Short time existence of the Ricci flow (on a surface)

3. Evolution equations for the curvatures

4. Long time existence on a surface

5. Convergence of Riemannian manifolds and compactness of Ricci flows

6. Convergence of the Ricci flow on surfaces and the uniformization theorem

The reader should be familiar with smooth manifolds. More concretely, I will expect a
familiarity with smooth manifolds, tangent spaces and the tangent bundle, differentials
of functions and maps, vector fields and flows. A good introduction is [6].

It would also be desirable to have a basic understanding of tensor products and tensor
fields on manifolds and integration on manifolds, although these concepts will be briefly
discussed when they appear for the first time.

A working knowledge of Riemannian geometry would be highly advantageous to the
reader. The parts that are strictly necessary will be introduced in the following chapter
on prerequisites.
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Chapter 0

Prerequisites: Riemannian geometry

This chapter collects the bare minimum of Riemannian geometry facts required to follow
the course. Its purpose is not so much to serve as an introduction. Rather it is supposed
to be a reminder and a reference. For a gentle introduction to Riemannian geometry I
recommend [2]. For a more advanced but thorough treatment I recommend [3].

0.1 Vector bundles and multilinear algebra
We will start with the tangent bundle and related vector bundles.

Suppose M is a smooth n dimensional manifold. To every point x ∈M , there is associ-
ated an n dimensional vector space TxM . The tangent bundle TM is the collection of all
those vector spaces

TM = tx∈MTxM.

There is a canonical projection
π : TM →M

TxM 3 v 7→ x ∈M.

The space TM can be equipped with the structure of a 2n dimensional manifold and
such that π : TM →M is a smooth manifold.

Definition 0.1
A vector bundle E over a manifold M is a smooth manifold E together with a
smooth map π : E →M , so that

1. π−1(x) has a vector space structure for every x ∈M ,

2. for every x ∈M there exists a neighborhood U ⊂M and a diffeomorphism

φ : π−1(U)→ U × Rr

v 7→ (φ1(v), φ2(v)),

such that φ1(v) = π(v) and φ2|π−1(x) : π−1(x)→ {x} ×Rr is a vector space isomor-
phism for every x ∈ U
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The number r is called the rank of E.

Given x ∈M , the fiber over x is the vector space Ex = π−1(x).

Definition 0.2
Let E be a vector bundle over a manifold M . A section of E is a smooth map
s : M → E satisfying s(x) ∈ Ex for every x ∈M . (Or equivalently, π ◦ s = idM .)

The set of sections of E is denoted by Γ(E).

Definition 0.3
Let V1, . . . , Vm,W1, . . . ,Wn be R vector spaces. Then we define the tensor product

V1 ⊗ . . . Vm ⊗W ∗
1 ⊗ . . .⊗W ∗

n

to be the vector space of multilinear maps

α : V ∗1 × . . .× V ∗m ×W1 × . . .Wn → R.

Definition 0.4
Let V be a vector space. The space of symmetric, bilinear forms on V is denoted
by Sym2 V .

A form β ∈ Sym2
+ V is positive definite, if β(v, v) > 0 for all v ∈ V \{0}. The set

Sym2
+ V ⊂ Sym2 V is the subset of positive definite symmetric, bilinear forms.

Definition 0.5
Let V be an R vector space. A multilinear form ω : V × . . . × V → R is called
alternating, if

ω(v1, . . . , vi, . . . , vj, . . . , vn) = −ω(v1, . . . , vj, . . . , vi, . . . , vn)

for all v1, . . . , vn ∈ V .

The vector space of alternating multilinear k-forms on V is denoted by ΛkV ∗.

Definition 0.6
Suppose E is a vector bundle over M . Then we denote by E∗ the vector bundle
over M , which is defined to be

tx∈ME∗x

together with the obvious projection.

Definition 0.7
Suppose E1, . . . , En are vector bundles over M . Then we denote by

E1 ⊗ . . .⊗ En
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the vector bundle over M , which is defined to be

tx∈M(E1)x ⊗ . . .⊗ (En)x

together with the obvious projection.

Remark 0.8. This definition is incomplete in the sense that a vector bundle has the
structure of a smooth manifold. This structure can be chosen so that trivialisations of
the vector bundles E1, . . . , En induce a trivialisation of the tensor product bundle. Doing
this properly involves some work. However, to use tensor products the above definition
is sufficient in most cases. The same applies to the definition before.

Proposition 0.9
There is a one to one correspondence between C∞-multilinear maps

Γ(E∗1)× . . .× Γ(E∗m)× Γ(F1)× . . .× Γ(Fn)→ C∞(M)

and sections of E1 ⊗ . . .⊗ Em ⊗ F ∗1 ⊗ . . .⊗ F ∗n .

In one direction, this correspondence is given as follows: let s ∈ Γ(E1⊗ . . .⊗Em⊗F ∗1 ⊗
. . . ⊗ F ∗n). Note that s(x) ∈ (E1)x ⊗ . . . ⊗ (Em)x ⊗ (F ∗1 )x ⊗ . . . ⊗ (F ∗n)x, i.e. s(x) is a
multilinear map

s(x) : (E1)∗x × . . .× (Em)∗x × (F1)∗x × . . .× (Fn)∗x → R.

Hence we can define a multilinear map

F : Γ(E∗1)× . . .× Γ(E∗m)× Γ(F1)× . . .× Γ(Fn)→ C∞(M)

via
F (α1, . . . , αm, s1, . . . , sn)(x) = F (α1(x), . . . , αm(x), s1(x), . . . , sn(x)).

It is easy to check that F is C∞ multilinear.

0.2 Riemannian metrics, connections and curvature

Definition 0.10
Let M be a manifold. A Riemannian metric g is a section of Sym2 TM , such that

g(x) ∈ Sym2
+TMx

for every x ∈M .

Remark 0.11. Thus for every x ∈ M , g(x) : TMx × TMx → R defines an inner product.
In other words, a Riemannian metric is a tool to measure lengths of tangent vectors and
angles between them.
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Example 0.12. 1. (Rn, gEucl) with gEucl(x)(v, w) = 〈v, w〉, where we identified TxRn

and Rn. The sharp brackets denote the standard inner product on Rn

〈v, w〉 =
n∑
i=1

viwi.

The Riemannian manifold (Rn, gEucl) is usually called Euclidean space.

2. Let N ⊂ Rn be a smooth submanifold. Then for every point x ∈ N the tangent
space TxN is a vector subspace of TxRn. We can define a Riemannian metric on N
by restricting the metric on Rn to N in the following way:

gx : TxN × TxN → R

gx(v, w) = gEucl,x(v, w).

This works more generally for any submanifold N ⊂ M of a Riemannian manifold
(M, g).

3. A specific example of the previous construction is the standard sphere Sn = {x ∈
Rn+1 : |x|2 = 1} ⊂ Rn+1. The metric obtained this way is called the round metric
and we denote it by gSph.

4. Denote by Hn = {x ∈ Rn : xn > 0} the upper halfspace. Then

gHyp(x)(v, w) =
1

xn
〈v, w〉

is a metric on Hn. The manifold (Hn, gHyp) is called hyperbolic n-space.

Definition 0.13
A covariant derivative or connection is a R-linear operator

∇ : Γ(TM)× Γ(TM)→ Γ(TM),

(X, Y ) 7→ ∇XY

which is tensorial in the first component,

∇fXY = f∇XY for all f ∈ C∞(M), X, Y ∈ Γ(TM)

and satisfies the Leibniz rule

∇X(fY ) = (Xf)Y + f∇XY for all f ∈ C∞(M), X, Y ∈ Γ(TM).

Remark 0.14 (Induced connection). A given connection on TM induces a connection on
any tensor bundle TM⊗. . .⊗TM⊗T ∗M⊗. . .⊗T ∗M . By abuse of notation, this induced
connection is also called ∇. Recall that a section µ of this bundle can be consideres a
multilinear map

µ : T ∗M × . . .× T ∗M × TM × . . .× TM → R.

6



The induced connection is then defined by the following equation

X [µ(α1, . . . , αr, V1, . . . , Vs)] = (∇Xµ)(α1, . . . , αr, V1, . . . , Vs)

+
r∑
i=1

µ(α1, . . . ,∇Xαi, . . . , αr, V1, . . . , Vs)

+
s∑
j=1

µ(α1, . . . , αr, V1, . . . ,∇XVi, . . . , Vr)

In particular, for α ∈ Γ(T ∗M), we have

Xα(V ) = (∇Xα)(V ) + α(∇XV ).

Definition 0.15
A connection ∇ is called torsion free, if

∇XY −∇YX = [X, Y ]

for all X, Y ∈ Γ(TM).

Definition 0.16
Let (M, g) be a Riemannian manifold. A connection ∇ is called metric, if

Xg(V,W ) = g(∇XV,W ) + g(V,∇XW )

for all X, V,W ∈ Γ(TM).

Theorem 0.17 [Fundamental theorem of Riemannian geometry]
Let (M, g) be a Riemannian manifold. There exists a unique torsion free connection,
which is metric with respect to g.

Definition 0.18
Let (M, g) be a Riemannian manifold. The Levi–Civita connection ∇g is the unique
torsion free connection on (M, g).

The next proposition gives an explicit formula for the Levi–Civita connection of a Rie-
mannian manifold.

Proposition 0.19 (Koszul formula)
Let (M, g) be a Riemannian manifold and let ∇g be the Levi–Civita connection.
Then

2g(∇g
XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )

+ g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X)

for any three vector fields X, Y, Z ∈ Γ(TM).
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Definition 0.20
The curvature of a connection ∇ is the operator

R : Γ(TM)× Γ(TM)× Γ(TM)→ Γ(TM)

(X, Y, Z) 7→ R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

Proposition 0.21
The curvature is tensorial in each component, i.e.

R(fX, Y )Z = R(X, fY )Z = R(X, Y )(fZ) = fR(X, Y )Z

and antisymmetric in the first two components, i.e.

R(X, Y )Z = −R(Y,X)Z

for all X, Y, Z ∈ Γ(TM) and f ∈ C∞(M).

Definition 0.22
Let (M, g) be a Riemannian manifold.

The Riemannian curvature tensor is the section

Rmg ∈ Γ(T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ TM)

determined by the C∞ multilinear map

Γ(TM)× Γ(TM)× Γ(TM)× Γ(T ∗M)→ C∞(M)

(X, Y, Z, α) 7→ α(R(X, Y )Z),

where R is the curvature of the Levi–Civita connection ∇g.

The Ricci curvature tensor is the symmetric bilinear form Ricg ∈ Γ(Sym2 T ∗M)
defined by

Ricg(x)(v, w) = tr(u 7→ Rg(x)(u, v)w)

for x ∈M and v, w ∈ TxM
The scalar curvature is the function Rg ∈ C∞(M) defined by

Rg(x) = trg Ricg(x)

for x ∈M .

Remark 0.23. The trace trg β ∈ C∞(M) of a symmetric bilinear form β ∈ Γ(Sym2 T ∗M)
is defined as

(trg β)(x) =
n∑
i=1

β(ei, ei)

for x ∈M and an orthonormal basis e1, . . . , en of TxM . One can check that this definition
is independent of the choice of the orthonormal basis.
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In Riemannian geometry, the tangent bundle TM is often identifited implicitly with the
cotangent bundle T ∗M . This is done using the musical isomorphisms.

Definition 0.24
Let V be a real vector space and let 〈·, ·〉 be an inner product on V .

The flat map is given by
(·)[ : V → V ∗

v 7→ v[ = (w 7→ 〈v, w〉) .
The sharp map

(·)] : V ∗ → V

is defined to be the inverse of the flat map.

Collectively, these maps are known as the musical isomorphisms.

Remark 0.25. Given a Riemannian metric, the musical isomorphisms can be used to
identify TM with T ∗M fibrewise and consequently we will write

(·)[ : TM → T ∗M

and
(·)] : T ∗M → TM.

Notice that these maps depend on the Riemannian metric, although it is suppressed in
the notation.

A very important instance of the implicit identification of TM with T ∗M is the Riemann
curvature tensor. Using the flat map, we will quite often treat Rm as a section of TM ⊗
TM ⊗ TM ⊗ TM . More explicitly:

Rm(X, Y, Y,W ) = Rm(X, Y, Z,W [) = g(R(X, Y )Z,W )

for X, Y, Z,W ∈ TM .

Proposition 0.26 (Symmetries of the Riemann tensor)
The Riemann tensor satisfies

1. Rm(X, Y, Z,W ) = −Rm(Y,X,Z,W )

2. Rm(X, Y, Z,W ) = −Rm(X, Y,W,Z)

3. Rm(X, Y, Z,W ) = Rm(Z,W,X, Y )

4. Rm(W,X, Y, Z) + Rm(X, Y,W,Z) + Rm(Y,W,X,Z) = 0

Proposition 0.27 (Differential Bianchi identity)
The Riemann tensor satisfies

(∇U Rm)(X, Y, V,W ) + (∇V Rm)(X, Y,W,U) + (∇W Rm)(X, Y, U, V ) = 0.
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Corollary 0.28 (Contracted Bianchi identity for the Ricci tensor)
The Ricci curvature Ricg and the scalar curvature Rg of a Riemannian metric satisfy

δg Ricg =
1

2
dRg.

(The operator δg will be defined below, see definition 0.51.)

Proposition 0.29
Let M be a manifold, g a Riemannian metric, f : M → M a diffeomorphism,
λ ∈ R. Then

1. Ricf∗g = f ∗Ricg

2. Ricλ2g = Ricg

0.3 Geodesics and the distance function

Let (M, g) be a Riemannian manifold. A Riemannian metric allows us to measure the
length of paths in M , at least if they are sufficiently smooth. Let γ : [a, b] → M be a
differentiable curve. Then we define the length of γ to be

L(γ) =

ˆ b

a

√
g(γ′(t), γ′(t))dt.

If we can measure the lengths of paths, there is also a natural definition for the distance
between two points: the length of the shortest path between them. This idea leads to
the definition of the Riemannian distance function

dg(x, y) = inf {L(γ) : γ : [0, 1]→M is a differentiable path, γ(0) = x, γ(1) = y} .

It can be shown that (M,dg) is a metric space, i.e. the distance function satisfies

1. dg(x, y) = dg(y, x),

2. dg(x, y) = 0 if and only if x = y,

3. dg(x, z) ≤ dg(x, y) + dg(y, z).

These three properties are known as symmetry, definiteness and triangle inequality re-
spectively.

Definition 0.30
A Riemannian manifold (M, g) is called complete, if the metric space (M,dg) is
complete.
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0.4 Integration on Riemannian manifolds

Definition 0.31
Let M be a n-dimensional manifold. A volume form is a nowhere vanishing section
of ΛnT ∗M .

Remark 0.32.

i) Volume forms bear their name, because they can be used to define a notion of
volume for subsets of the manifold M . To see this, recall that on Rn an n-form ω
is given by

ω = fdx1 ∧ . . . ∧ dxn ∈ Γ(ΛnT ∗Rn)

for f ∈ C∞(Rn). If dλn denotes the Lebesgue measure, we may define
ˆ
Rn
ω =

ˆ
Rn
fdλn.

The crucial point is that this definition is almost independent of the coordinates we
choose on Rn to represent ω. Indeed, if ϕ : Rn → Rn is a diffeomorphism, we find

ϕ∗(ω) = ϕ∗(fdx1 ∧ . . . ∧ dxn) = (f ◦ ϕ)(detdϕ)dx1 ∧ . . . dxn.

A somewhat subtle, but important point is that the determinant in the formula
above appears with a sign, whereas in the transformation formula

ˆ
F (U)

fdλn =

ˆ
U

f ◦ F | det dF |dλn,

the determinant appears as an absolute value. From this we conclude that
ˆ
Rn
fdλn =

ˆ
Rn
f ◦ ϕ| det dϕ|dλn,

and if det dϕ > 0

ˆ
Rn
ω =

ˆ
Rn
fdλn =

ˆ
Rn
f ◦ ϕ det dϕdλn =

ˆ
Rn
ϕ∗ω.

Now suppose that ω ∈ Γ(ΛnT ∗M) and suppω is contained in a subset of M , which
is diffeomorphic to Rn. Suppose that U is such a subset and ψ : U ⊂M → Rn is a
diffeomorphism.

Then ω|U = ψ∗(fdx1 ∧ . . . ∧ dxn) and we can define
ˆ
M

ω =

ˆ
Rn
fdλn.

Our previous thoughts then imply that this is actually independent of the choice of
diffeomorphism ψ. A partition of unity allows us to write any section of Γ(ΛnT ∗M)
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as a sum of sections, each supported in a subset of M diffeomorphic to Rn, ω =
ω1 + . . .+ ωN . Since we expect the integral to be linear, we may then define

ˆ
M

ω =

ˆ
M

ω1 + . . .

ˆ
M

ωN

and in this way we obtain a definition of the integral of any ω.

ii) The rank of the vector bundle ΛnT ∗M is 1, i.e. it is a line bundle. This implies that
if ω1, ω2 ∈ Γ(ΛnT ∗M) are two nowhere vanishing sections, then there is a function
f ∈ C∞(M), such that ω2 = fω1 and f is never zero.

W In particular, ifM is connected, then f is either positive on all ofM or negative.
This allows us to define an equivalence relation on the nowhere vanishing sections
of ΛnT ∗M

Definition 0.33
An oriented manifold is a pair of a n-dimensional manifoldM and a nowhere vanish-
ing form σ ∈ Γ(ΛnT ∗M). An ordered basis (v1, . . . , vn) of TxM is called orientied,
if

σ(v1, . . . , vn) > 0.

Definition 0.34
Let (M,σ). A volume form onM is a nowhere vanishing form ω ∈ Γ(ΛnT ∗M). The
volume form is called compatible with the orientation, if

ω = fσ

for a positive function f ∈ C∞(M).

Definition 0.35
Let (M,σ) be an oriented Riemannian manifold. The Riemannian volume form
volg ∈ Γ(ΛnT ∗M) is defined to be the unique volume form of unit length with
respect to g, which is also compatible with the orientation, i.e.

| volg |g = 1.

Remark 0.36. The condition | volg |g = 1 is equivalent to the condition that

volg(e1, . . . , en) = 1

for any oriented, orthonormal basis of TxM .

0.5 Diffeomorphisms, Lie derivatives and isometries

Definition 0.37
Let X, Y ∈ Γ(TM), f ∈ C∞(M). The Lie derivative of f in direction X is defined
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by

LXY =
d

dt

∣∣
t=0
f(φt(x)).

The Lie derivative of Y in direction X is defined by

LXY =
d

dt

∣∣
t=0
dφ−t(x)Y (φt(x)).

Remark 0.38 (Lie derivatives of tensor fields). As in the case of connections, the Lie
derivatives can be extended to tensor field. Suppose µ is a section of the tensor bundle
TM ⊗ . . .⊗ TM ⊗ T ∗M ⊗ . . .⊗ T ∗M . We identify µ with a multilinear map

µ : T ∗M × . . .× T ∗M × TM × . . .× TM → R.

The Lie derivative LXT is then defined by the following equation

X [µ(α1, . . . , αr, V1, . . . , Vs)] = (LXµ)(α1, . . . , αr, V1, . . . , Vs)

+
r∑
i=1

µ(α1, . . . ,LXαi, . . . , αr, V1, . . . , Vs)

+
s∑
j=1

µ(α1, . . . , αr, V1, . . . ,LXVi, . . . , Vr)

In particular, for α ∈ Γ(T ∗M), we have

Xα(V ) = (LXα)(V ) + α(LXV ).

Definition 0.39
Let (M, g) be a Riemannian manifold and let f : N → M be a diffeomorphism.
The pullback metric f ∗g is the Riemannian metric on N defined by the relation

f ∗g(v, w) = g(dfv, dfw)

for all v, w ∈ TpN .

Definition 0.40
An isometry between two Riemannian manifolds (M1, g1), (M2, g2) is a diffeomor-
phism f : M1 →M2, such that

f ∗g2 = g1.

The name is isometry stems from the fact that an isometry preserves distances. This is
stated more precisely in the following proposition.

Proposition 0.41
Let (M1, g1), (M2, g2) be two Riemannian manifolds and suppose that f : M1 →M2

is an isometry. Then the following equation holds for any two points p, q ∈M1:

dg1(p, q) = dg2(f(p), f(q)).
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The Levi–Civita connection also behaves well under pull back of the metric.

Proposition 0.42
Let (M1, g1), (M2, g2) be two Riemannian manifolds and suppose that f : M1 →M2

is an isometry. Then
f∗∇g1

XY = ∇g2
f∗X

f∗Y.

0.6 Differential operators and partial integration
Let (M, g) be a Riemannian manifold.

Definition 0.43
The gradient of a function f ∈ C∞(M) is given by

gradg : C∞(M)→ Γ(TM)

gradg f = (df)].

Remark 0.44. An equivalent definition is that gradg f(x) is the unique vector in TxM
satisfying

df(v) = g(gradg f(x), v)

for all v ∈ TxM .

Definition 0.45
The divergence of a vector field X ∈ Γ(TM) is

divg : Γ(TM)→ C∞(M)

divgX = − tr∇gX.

Remark 0.46. Here ∇gX is a C∞(M) linear map Γ(TM)→ Γ(TM). Hence, ∇gX can be
considered as a tensor field of endomorphisms, in other words for every x ∈ M there is
an endomorphism

(∇gX)(x) : TxM → TxM.

We can take the trace of this endomorphism.

Proposition 0.47
Let X ∈ Γ. Then

LX volg = (divgX) volg .

Theorem 0.48 [Divergence theorem]
Let (M, g) be a closed manifold. Thenˆ

M

divgX volg = 0.
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Definition 0.49
The Laplacian is a differential operator given by

∆g : C∞(M)→ C∞(M)

∆gf = divg gradg f.

Proposition 0.50
Let (M, g) be a closed Riemannian manifold. For any two functions f1, f2 ∈ C∞(M)
the following identity holds

ˆ
M

g(gradg f1, gradg f2) volg =

ˆ
M

(∆gf1) f2 volg .

Definition 0.51
The divergence of a symmetric two tensor h ∈ Γ(Sym2 TM) is

δg : Γ(Sym2 TM)→ Γ(T ∗M)

(δgh) (v) = −
∑
i

(∇gh)(ei, ei, v),

where v ∈ TxM and e1, . . . , en is any orthonormal basis of TxM .

Remark 0.52. One needs to check that this definition is well-defined, i.e. independent of
the choice of basis.
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Chapter 1

Introduction

This lecture is an introduction to the Ricci flow.

A banal description of the Ricci flow is that it is a process, which changes a given
Riemannian manifold (M, g) continually into a family of nicer Riemannian manifolds
(M, gt), where t varies in an interval.

To understand why this might be interesting or useful, let us consider the most famous
application of the Ricci flow: the resolution of the Poincaŕe conjecture by Perelman.

To state the Poincaré conjecture, we first need to know what it means for a space to be
simply connected. Intuitively, this means that any loop in the space can be pulled into a
point.

Definition 1.1
Let X be a topological space.

A loop is a continuous map γ : S1 → X.

The space X is called simply connected, if for every loop γ there exists continuous
map F : D2 → X, such that F |S1 = γ.

Remark 1.2. Recall that

Sn = {x ∈ Rn+1 : |x| = 1}
Dn = {x ∈ Rn : |x| ≤ 1}

Poincaré conjecture
Every connected, simply connected and compact manifold is homeomorphic to S3.

A stronger version of this conjecture was stated as a fact by Poincaré in 1900. In 1905
he found a counterexample and instead posed as a question the statement we now know
as the Poincaré conjecture. There were many attempts to answer this question, but it
remained open for almost a century until 2002/2003, when it was finally resolved by
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Perelman.

It is not immediately obvious that Riemannian geometry should play any role in this
question.

Let us first recall some very basic definitions in Riemannian geometry.

Let (M, g) be a Riemannian manifold, i.e. a smooth manifold M together with a Rie-
mannian metric g on M .

Definition 1.3
A Riemannian metric on a manifold M is a smooth family g of inner products on
the tangent spaces of M , i.e.

1. For every point x ∈M there is an inner product gx : TxM × TxM → R,

2. If X1, X2 ∈ Γ(TM) are smooth vector fields, the function x 7→ gx(X1(x), X2(x)) is
also smooth.

Definition 1.4
For a vector space V , denote by Sym2 V the space of bilinear forms on V and by
Sym2

+ V ⊂ Sym2 V the space of inner products on V .

A Riemannian metric g on M is a section of the vector bundle Sym2 TM , such
that g(x) ∈ Sym2

+ V for every x ∈M .

Given a Riemannian manifold, there is one and only one metric, torsion-free connection
∇g. This connection is known as the Levi–Civita connection.

As to any connection, we may associate to ∇g a curvature operator. Let X, Y, Z ∈
Γ(TM). The curvature operator of ∇g is defined by

R(X, Y )Z = ∇g
X∇

g
YZ −∇

g
Y∇

g
XZ −∇

g
[X,Y ]Z.

It can be shown that the value [R(X, Y )Z](x) ∈ TxM only depends on the values of
X, Y, Z at x.

Traditionally, the sectional curvature a two-plane E = span{v, w} ⊂ TxM is defined to
be

sec(v, w) =
g(R(w, v)v, w)

g(v, v)g(w,w)− g(v, w)2
.

Clearly, by definition, if one knowsR and g, then one can compute the sectional curvatures
of every two-plane. Conversely, it can be shown that if one knows the sectional curvature
of every two-plane E, then one can recover the curvature operator R.

Definition 1.5
(M, g) has constant sectional curvature κ ∈ R, if for every point x ∈ M and every
two-plane E = span{v, w} the sectional curvature sec(v, w) is κ.
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If all sectional curvatures are the same, then the following classical theorem tells you
exactly which Riemannian manifolds can appear.

Classification of spaces of constant sectional curvature
Suppose (M, g) is a complete, simply connected Riemannian manifold.

If (M, g) has constant sectional curvature 1, then (M, g) is isometric to (Sn, gsph).

If (M, g) has constant sectional curvature 0, then (M, g) is isometric to (Rn, geucl).

If (M, g) has constant sectional curvature −1, then (M, g) is isometric to (Hn, ghyp).

Recalling that an isometry is a homeomorphism, this theorem suggests a possible avenue
to prove the Poincaŕe conjecture. Let M be a connected, simply connected and compact
manifold. Then show that you can find a Riemannian metric g, such that all the sectional
curvatures of (M, g) are equal to 1.

Unfortunately, this does not make the problem easy. Nevertheless, it can be done, as
Perelman proved.

How might one go about finding such a metric? Of course, using the Ricci flow!

The idea here is quite simple. Suppose you are given any metric g on your manifold
M . Then you define a process, which changes your Riemannian metric g in a predicatble
manner. Ideally, it should only stop changing your metric once the sectional curvatures
are all equal to 1.

Our goal is to associate to a given metric g a family (gt)t∈[0,T ], such that g0 = g and so
that in a quantifiable way our metric becomes closer to a sphere. One way to define such
a family is to specify an equation, which is satisfied by the family:

∂tgt(p) = Q(gt)(p).

Ideally, Q(g) = 0 if and only if g has all sectional curvatures equal to 1. A three-
dimensional accident aids us in this case. We first recall the definitions of the Ricci
curvature and the scalar curvature.

Definition 1.6
The Ricci curvature tensor is the symmetric bilinear form Ricg ∈ Γ(Sym2 T ∗M)
defined by

Ricg(p)(v, w) = tr(u 7→ R(v, u)w)

for p ∈M and v, w ∈ TpM
The scalar curvature is the function Rg ∈ C∞(M) defined by

Rg(p) = trg Ricg(p)

for p ∈M .

18



Remark 1.7. The trace trg β ∈ C∞(M) of a symmetric bilinear form β ∈ Γ(Sym2 T ∗M)
is defined as

(trg β)(p) =
n∑
i=1

β(ei, ei)

for p ∈M and an orthonormal basis e1, . . . , en of TpM . One can check that this definition
is independent of the choice of the orthonormal basis.

IfM is two-dimensional, there is precisely one two-plane contained in TpM , namely TpM .
Let e1, e2 ∈ TpM be an orthonormal basis (with respect to g(p)). By the definition of the
scalar curvature, we have

Rg(p) = Ricg(p)(e1, e1) + Ricg(p)(e2, e2).

Now we compute

Ricg(p)(e1, e1) = g(R(e1, e1)e1, e1) + g(R(e1, e2)e2, e1) = K(e1, e2),

where R(e1, e1) = 0 because of antisymmetry. Analogously Ricg(p)(e2, e2) = K(e1, e2).
Thus

Rg(p) = 2K(e1, e2).

Since the sectional curvatures determine the curvature tensor, we have that in dimension
two the scalar curvature Rg determines all curvatures of the manifold.

In dimension 3 this is no longer true. However, the Ricci tensor still determines all
curvatures. (This will be shown in an exercise.) This lets us rephrase the condition that
all sectional curvatures are equal, using the following proposition.

Proposition 1.8
Let (M, g) be a 2 or 3-dimensional Riemannian manifold. Then all sectional cur-
vatures are equal to κ ∈ R, if and only if Ricg = κ(n− 1)g.

In higher dimensions, this fails. Nevertheless, the class of metrics satisfying this equation
are very interesting.

Definition 1.9
A Riemannian metric g satisfying

Ricg = λg

is called an Einstein metric.

The proposition before suggests we should define

Q(g) = Ricg−(n− 1)g

or perhaps
Q(g) = −(Ricg−(n− 1)g).
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Note that if gt satisfies
∂tgt = µgt

for some µ ∈ R, then
gt = exp(µt)g.

Hence the term (n − 1)g only changes gt by rescaling. This means that the qualitative
behavior does not depend on this term and thus we drop it. (At the cost that we may
have to rescale the family gt at some point.)

So we are left with two choices Q(g) = Ricg or Q(g) = −Ricg. It is not exactly obvious,
which one we should choose, but it turns out that only if we choose Q(g) = −Ricg, the
family will be well defined for an arbitrary smooth initial metric g.

Definition 1.10
A family (gt)t∈[0,T ) is a solution of the Ricci flow with initial condition g, if g0 = g
and

∂tgt = −2 Ricgt .

If g is an Einstein metric with Einstein constant λ, then

g(t) = (1− 2λt)g

is a solution of the Ricci flow with initial condition g.

The study of Ricci flow began with the following theorem.

Theorem 1.11 [Hamilton’s theorem, 1982]
Suppose M is a compact 3 dimensional manifold and g is a Riemannian metric,
such that

Ricg(v, v) > 0 for every v ∈ TpM.

Then there exists a solution gt of the Ricci flow with initial condition g on an
interval [0, T ) and after rescaling gt to unit volume gt converges to a metric ĝ as
t→ T . The limit metric satisfies Ricĝ = (n− 1)ĝ.

The theorem does not remain true without the condition on Ricg. Nevertheless, the
Poincaré conjecture was eventually revolved by Perelman using the Ricci flow.

Starting from any compact, connected and simply connected 3 dimensional manifold,
Perelman constructed a generalised Ricci flow (Mt, gt), where the underlying manifold
Mt can change its topology.

The reason to introduce changes in topologies is that the Ricci flow can run into singular-
ities, i.e. it can stop being well-defined. In the case of Hamilton, there is one singularity
at the finite time T , but it is over the whole manifold. However, a singularity may also
affect only parts of the manifold. Perelman showed how to cut apart the manifold in such
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a case and construct a Riemannian metric on the two pieces. Then the Ricci flow can be
restarted.

Crucially, the change of topology during these surgeries is very simple. This allows one
to compare the topological type of Mt before and after the surgery. In particular, in the
case of a simply connected manifold, the topology only changes in the sense that after the
surgery there is a new component, which is diffeomorphic to S3. The other piece retains
the topological type from before the surgery.

Finally, Perelman shows that the generalised Ricci flow only exists for a finite time, as
in Hamilton’s theorem, and that after the last surgery, every connected component of Mt

is diffeomorphic to S3.

Perelman’s proof is enormously complicated and would by far exceed what could be
achieved in a lecture series such as this. Instead we will focus on the two dimensional
situation.

Definition 1.12
Two metrics g, g̃ on a manifold M are conformal, if there exists a smooth function
λ : M → R+, such that

g̃ = λ2g.

A classical and difficult theorem in the theory of surfaces is the uniformization theorem,
first proven in 1907 independently by Koebe and Poincaré. In one version – the one that
we are interested in – it can be stated as follows.

Uniformization theorem
Suppose (M, g) is a compact oriented Riemannian manifold of dimension 2. Then
there exists a conformal metric ḡ, which has constant curvature.

Notice that this theorem immediately implies a “baby Poincaré conjecture”:

Theorem
Suppose M is compact, simply connected surface. Then M is diffeomorphic to S2.

Proof: Equip M with any Riemannian metric g. Then by the uniformization theorem we
can conformally change g to a constant curvature metric ḡ. Now the curvature of
(M, ḡ) is either constantly negative, zero or positive. By rescaling we may assume
it is −1, 0 or 1. In the first case, (M, ḡ) would be isometric to (H2, ghyp). In
the second case, (M, ḡ) would be isometric to (Rn, geucl). Both of these cases are
excluded, because H2 and R2 are not compact.

Thus (M, ḡ) is isometric to (S2, gsph), which proves the theorem.
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It turns out that the Ricci flow also gives a method of proof of this theorem. Indeed,
as we will see the Ricci flow preserves the conformal class of a metric, i.e. if (gt)t∈[0,T ]

is a solution of the Ricci flow on a surface, then all gt are conformal to g0. Hence, if
we can show that a solution of the Ricci flow starting from a Riemannian metric on a
compact surface converges to a metric of constant curvature, we obtain a proof of the
uniformization theorem.

This is the goal of this lecture course. It turns out that to do this we need to introduce
many techniques useful to the study of the Ricci flow in any dimension. Whenever this
is the case, we describe the technique for arbitrary dimension.

22



Chapter 2

Short time existence and uniqueness

It is very far from obvious that given an initial metric, there exists a Ricci flow starting at
that metric. Indeed, the Ricci flow equation is a quasilinear parabolic partial differential
equation. As such, one needs tools from the theory of PDE (partial differential equations)
to treat this question. It will turn out that for any smooth Riemannian metric, a Ricci
flow with this metric as initial condition exists. However, a very important feature is that
this solution does not necessarily exist on the interval [0,∞), or in the parlance of flows,
the solution may not exist for all times. Instead, at some finite time it may run into a
singularity. We have already seen such an example: the sphere contracts under the Ricci
flow into a point. At this time the Ricci flow stops.

What PDE theory enables us to prove is that there is a solution on some interval [0, T )
with T > 0. Such a result is known as short time existence. This is a foundational result
for the Ricci flow, since, if it did not hold, the program towards the Poincaré conjecture
would be in serious jeopardy.

Theorem 2.1 [Short time existence]
Let M be a closed manifold. Suppose g is a Riemannian metric. Then there exists
ε > 0 and a solution (gt)t∈[0,ε) of the Ricci flow with g0 = g.

We will not prove this theorem in this generality. We will give a proof in the two
dimensional case.

Theorem 2.2 [Uniqueness of the Ricci flow]
Let M be a closed manifold. Suppose (ĝt)t∈[0,T̂ ] and(ǧt)t∈[0,Ť ] are two solutions of
the Ricci flow.

If ĝ0 = ǧ0, then ĝt = ǧt for any t ∈ [0,min{T̂ , Ť}].

Definition 2.3
A solution (gt)t∈[0,T ) is calledmaximal, if there does not exist any solution (g̃t)t∈[0,T+ε)
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of the Ricci flow with ε > 0 and the same initial conditions g0 = g̃0.

Corollary 2.4 (Unique maximal solutions)
Let M be a closed manifold and suppose g is a Riemannian metric on M . Then
there exists a unique, maximal solution (gt)t∈[0,Tmax) of the Ricci flow with initial
value g.

Proof: Exercise!

2.1 The Ricci flow on a surface as a scalar equation
We are not going to prove these theorems for arbitrary dimensions, but we will prove
them in the two dimensional case. Fortuitiously, the Ricci flow equation reduces to a
scalar equation in this case.

If M is a surface, then the tangent space is two-dimensional. Thus on a surface at any
point there is only one sectional curvature. For historical reasons, this curvature has a
name, introduced in the next definition.

Definition 2.5
The Gauss curvature of a Riemannian surface (M, g) at the point p ∈M is Kg(p) =
secg(v, w), where v, w is any basis of TpM .

The Gauss curvature determines the full curvature tensor and consequently also the Ricci
curvature. This is the content of the following proposition.

Proposition 2.6
Let (M, g) be a two-dimensional Riemannian manifold. Then for any u, v, w ∈ TpM
the following identity holds

Rmg(X, Y, Z,W ) = Kg (g(X,W )g(Y, Z)− g(X,Z)g(Y,W ))

Consequently, the Ricci curvature is given by

Ricg = Kgg

and the scalar curvature is Rg = 2Kg.

Proof: Exercise!

The fact that the Ricci curvature has such a simple form in two dimensions allows us to
reduce the Ricci flow equation to a scalar equation. Plugging in equation 2.6 in the Ricci
flow equation yields

∂tgt = −2 Ricgt = −2Kgtgt.
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Thus, at any given point p ∈M , the scalar product gt(p) changes only by rescaling, i.e.

gt(p) = λt(p)g0(p)

for some λt(p) > 0. We may thus assume gt = λtg, where g is a Riemannian metric and
λt : M → R+ is a function. We then calculate

∂tgt = (∂tλt)g = −2Kλtgg.

It turns out that it is more convenient to compute the curvature of e2ug in terms of u,
rather than the curvature of λg in terms of λ. The next proposition provides this formula.

Proposition 2.7
Suppose (M, g) is a Riemannian manifold and u ∈ C2(M). Let g̃ = e2ug. Then for
any vector fields X, Y ∈ Γ(TM), we have

∇g̃
XY = ∇g

XY + (Xu)Y + (Y u)X − g(X, Y ) gradg u.

Proof: The Koszul formula applied to g̃ reads

2g̃(∇g̃
XY, Z) = Xg̃(Y, Z) + Y g̃(X,Z)− Zg̃(X, Y )

+ g̃([X, Y ], Z)− g̃([X,Z], Y )− g̃([Y, Z], X).

If we multiply both sides by e−2u, we get

2g(∇g̃
XY, Z) = e−2uX(e2ug(Y, Z)) + e−2uY (e2ug(X,Z))− e−2uZ(e2ug(X, Y ))

+ g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X).

Now
e−2uX(e2ug(Y, Z)) = Xg(Y, Z) + 2(Xu)g(Y, Z).

Doing the same calculations for the two other terms involving derivatives, we
obtain

2g(∇g̃
XY, Z) = 2g(∇g

XY, Z) + 2(Xu)g(Y, Z) + 2(Y u)g(X,Z)− 2(Zu)g(X, Y ).

This we may simplify to

g(∇g̃
XY, Z) = g(∇g

XY + (Xu)Y + (Y u)X,Z)− (Zu)g(X, Y ).

Using
Zu = g(gradg u, Z),

we obtain

g(∇g̃
XY, Z) = g(∇g

XY + (Xu)Y + (Y u)X − g(X, Y ) gradg u, Z).

This proves the identity.
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Proposition 2.8
Let (M, g) be a Riemannian manifold and u ∈ C2(M). Let g̃ = e2ug. Then for
any two g-orthonormal vectors v, w ∈ TpM the sectional curvature of the two plane
span{v, w} is given by

secg̃(v, w) = e−4u Rmg̃(w, v, v, w)

= e−2u
(
secg(v, w)− Hessg u(v, v)− Hessg u(w,w) + du(v)2 + du(w)2 − |du|2g

)
.

Proof: Exercise!

Corollary 2.9
Suppose (M, g) is a two-dimensional Riemannian manifold and suppose that u ∈
C2(M). Then the curvature of Kg̃ = e2ug is given by

Kg̃ = e−2u (∆gu+Kg) .

Proof: Let e1, e2 be an orthonormal frame of TpM . Then

|df |2g = du(e1)2 + du(e2)2,

∆gf = − trg Hessg f = −Hessg f(e1, e1)− Hessg f(e2, e2)

and
Kg = secg(e1, e2).

Thus, by the previous proposition

Kg̃ = secg̃(v, w) = e−2u
(
Kg + ∆gu+ du(e1)2 + du(e2)2 − |du|2g

)
= e−2u (∆gu+Kg)

The previous proposition enables a rewriting of the Ricci flow equation as a scalar partial
differential equation.

Corollary 2.10
Let M be a closed surface and fix a metric g. The family gt = e2utg solves the Ricci
flow equation, if and only if

∂tut = −Kgt = −e−2ut (∆gut +Kg) .

Proof: For the family gt, the time derivative is

∂tgt = ∂t
(
e2utg

)
= 2e2ut(∂tut)g = (2∂tut)gt.

On the other hand, the Ricci flow equation is

∂tgt = −2 Ricgt = −2Kgtgt.
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Formula 2.9 then yields the claim, i.e.

∂tut = −Kgt = −e−2ut (∆gut +Kg)

It is significantly easier to establish short time existence in the two dimensional case than
in general.

2.2 Proof of short time existence on surfaces

The Picard–Lindelöf theorem guarantees existence of solutions of initial value problems
for ordinary differential equations. Let F : Rn → Rn be a Lipschitz function and consider
the initial value problem {

∂tx(t) = F (x(t)),

x(0) = x0 ∈ Rn.

The fundamental theorem of calculus implies that

Φ : C1([0, T ],Rn)→ Rn × C0([0, T ],Rn)

x 7→ (x(0), ∂tx)

is a Banach space isomorphism. In fact, with the norm

‖x‖C1([0,T ],Rn) = |x(0)|+ max
t∈[0,T ]

|∂tx(t)|

it is an isometry.

Define a map
Ψ : C1([0, T ],Rn)→ C1([0, T ],Rn)

x 7→ Φ−1(x0, F ◦ x).

Then Ψ(x) = x if and only if x(0) = x0 and ∂tx(t) = F (x(t) for all t ∈ [0, T ].

Thus, we have converted our initial value problem into a fixed point problem. What is
left to do, is to show that the map actually posesses a fixed point. Here, the Banach fixed
point theorem is invoked.

Theorem 2.11 [Banach fixed point theorem]
Suppose (X, d) is a complete metric space and F : X → X is a contracting map,
i.e. there is a constant δ ∈ (0, 1), such that the images of any two points x1, x2 ∈ X
satisfy the inequality

d(x1, x2) < δd(x1, x2).

Then F has a unique fixed point.
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Thus, to finish the proof of the Picard–Lindelöf theorem, it suffices to prove that Ψ is a
contraction. Whether Ψ is a contraction depends on the choice of F . In the exercises, we
will see that if the Lipschitz constant of F is smaller than 1, then Ψ is a contraction. By
modifying the “speed of time”, we can convert any differential equation into an equivalent
equation, where the Lipschitz constant is smaller than 1.

We will use a similar approach to produce solutions of the Ricci flow.

As we have seen above solutions of the Ricci flow on a surface are given by functions
u : M × [0, T )→ R satisfying

∂tu(x, t) = −e−2u(x,t) (∆gu(x, t) +Kg(x))

The operator Φ above will be replaced by the map

u 7→ (u(·, 0), (∂t + ∆g)u).

Notice that to define (∂t + ∆g)u, we need u : M × [0, T )→ R to be differentiable in time
and two times differentiable in space. With the notation MT = M × [0, T ], we can define

C2,1(MT , g) = {u : MT → R : u ∈ C0(MT ), ∂t ∈ C0(MT ),Hessg(f) ∈ C0(MT )}

with the norm

‖u‖C2,1(MT ,g) = ‖u‖C0(MT ) + ‖∂tu‖C0(MT ) + ‖Hessg(u)‖C0(MT ).

This is a Banach space and the operator

C2,1(MT , g)→ C0(M)× C2,1(MT )

u 7→ (u(·, 0), (∂t + ∆g)u).

is a continuous linear map. Unfortunately, however, this map is not continuously invert-
ible! This is the point of departure for Schauder theory, which replaces the space C2,1 by
functions whose derivatives are Hölder continuous. On these spaces the operator turns
out to be continuously invertible.

Definition 2.12 (Hölder continuous functions)
Let α ∈ (0, 1). Let Ω ⊂ Rn be open and bounded.

A function f : Ω → R is α-Hölder continuous, if there exists C > 0, such that for
every x, y ∈ Ω

|f(x)− f(y)| ≤ Cd(x, y)α.

The Hölder coefficient of f is

[f ]α = sup
x,y∈Ω
x 6=y

|f(x)− f(y)|
d(x, y)α

.

The α-Hölder norm of f is

‖f‖Cα(Ω) = ‖f‖C0(Ω) + [f ]α.
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The α-Hölder space is

Cα(Ω) = {f ∈ C0(Ω) : ‖f‖Cα(Ω) <∞}.

Analogously to Ck(Ω), k ∈ N, we define the Ck,α(Ω) norm of f to be

Cα(Ω) = {f ∈ Ck(Ω) : ‖f‖Ck,α(Ω) <∞}

where
‖f‖Ck,α =

∑
|β|≤k

‖∂βf‖C0(Ω) +
∑
|β|=k

[∂βf ]α,Ω.

Remark 2.13 (Hölder spaces on manifolds). Let M be a compact manifold. Then we can
coverM by a finite number of charts (Ui, ϕi), i = 1, . . . ,m, where ϕi : Ui ⊂M → B1 ⊂ Rn

are diffeomorphisms. Choose a partition of unity ρk, k = 1, . . . , N , subordinate to the
cover (Ui)i, i.e. such that supp ρk is contained in some Ui for every k.

We say f : M → R is α-Hölder continuous, if f ◦ ϕ−1
i is α-Hölder continuous. We define

[f ]α = max
k∈{1,...,N}

[(ρkf) ◦ ϕ−1
i ]α,α,2.

Then
Cα(M) = ‖f‖C0(M) + [f ]α.

We proceed similarly to define Ck,α(M).

Definition 2.14 (Parabolic Hölder continuous functions)
Let α ∈ (0, 1). Let Ω ⊂ Rn be open and bounded, and let T > 0.

The parabolic distance on ΩT = Ω× [0, T ] is

dp((x, s), (y, t)) =
√
d(x, y)2 + |s− t|.

Given a function f : M × [0, T ]→ R the (α, α/2)-Hölder coefficient is

[f ]α,α/2 = sup
(x,s),(y,t)∈Ω×[0,T ]

(x,s)6=(y,t)

|f(x, s)− f(y, t)|
dp((x, s), (y, t))α

.

The (α, α/2)-Hölder norm is

‖f‖Cα,α/2(ΩT ) = ‖f‖C0(ΩT ) + [f ]α,α/2.

The space of (α, α/2)-Hölder continuous functions on ΩT is

Cα,α/2(ΩT ) = {u ∈ C(ΩT ) : ‖u‖Cα,α/2(ΩT ) <∞}.

Analogously to C2,1(Ω) we define C2,α,1,α/2(ΩT ) to be

C2,α,1,α/2(ΩT ) = {u ∈ C2,1(ΩT ) : ‖u‖C2,α,1,α/2(ΩT ) <∞}

where

‖u‖C2,α,1,α/2(ΩT ) = ‖u‖C2,1(ΩT ) + [∂tu]α,α/2 +
∑
|β|=2

[∂βu]α,α/2.
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Theorem 2.15
Suppose (M, g) is a closed Riemannian manifold, D,T > 0. If ϕ ∈ C2,α(M) and
f ∈ Cα,α/2(MT ), then there exists a unique solution u ∈ C2,α,1,α/2(MT ) of the initial
value problem{

∂tu(x, t) +D∆gu(x, t) = f(x, t) for all (x, t) ∈MT

u(x, 0) = ϕ(x) for all x ∈M

This solution satisfies the following inequality

‖u‖C2,α,1,α/2(MT ) ≤ C
(
‖ϕ‖C2,α(M) + ‖f‖Cα,α/2(MT )

)
,

where C1 > 0 is a constant depending on (M, g), D and T and C2 > 0 is a constant
depending only on (M, g)

More precisely, if ϕ ≡ 0, then there exist constants C1, C2, C3 > 0 depending only
on (M, g), such that

‖u‖C0(MT ) ≤ C1T‖f‖C0(MT ),

[Hessg(u)]α,α/2 ≤ C2
1√
D

[f ]α,α/2,

[∂tu]α,α/2 ≤ C3

√
D[f ]α,α/2.

Remark 2.16. This is a deep theorem from the theory of partial differential equations.
Estimates of this kind are called Schauder estimates. This theorem will not be proven in
this class.

Corollary 2.17
Suppose (M, g) is a closed Riemannian manifold. The linear map

ηD : C2,α,1,α/2(MT )→ C2,α(M)× Cα,α/2(MT )

u 7→ (u(·, 0), (∂t +D∆g)u)

is an isomorphism of Banach spaces.

Using this isomorphism allows us to reformulate the Ricci flow equation as a fixed point
problem.

Before we do this, we need one more observation.

Proposition 2.18
Let D > 0.

A familiy (gt)t∈[0,T ] is a solution of the Ricci flow, if and only if ĝt = gDt solves the
equation

∂tĝt = −2DRicĝt

on the interval [0, T/D].
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Let M be a closed surface and suppose g is any Riemannian metric. We established
above that (gt)t∈[0,T ) is a solution of the Ricci flow equation, if and only if gt = e2utg and
ut : M × [0, T )→ R satisfies{

∂tut = −e−2ut (∆gut +Kg)

u0 = 0

By the proposition above, ût = uDt then satisfies

∂tut = −De−2ut (∆gut +Kg) . (2.1)

This equation may be rewritten as

∂tut +D∆gut = D(1− e−2ut)∆gut −DKge
−2ut .

Define
N : C2,α,1α/2(MT )→ Cα,α/2(MT )

u 7→ (1− e−2u)∆gu+Kge
−2u.

Using N and ηD, we can rewrite the above equation as

ηD(u) = (0, DN(u)).

From now on we fix T = 1. Since η is an isomorphism, we can define the map

ΨD : C2,α,1,α/2(M1)→ C2,α,1,α/2(M1)

u 7→ η−1
D (0, DN(u)).

Finally, we have arrived at a reformulation of the problem as a fixed point problem,
because u solves the equation if and only if

ΨD(u) = u.

We sum up the discussion above in the following proposition

Proposition 2.19
Suppose u ∈ C2,α,1,α/2(M1) is a fixed point of ΨD. Then

v(x, t) = u(x, t/D)

solves {
∂tvt = −e−2vt (∆gvt +Kg)

u0 = 0

on M × [0, D]. Consequently, g̃t = e2vtg is a solution of the Ricci flow on [0, D].
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Proposition 2.20
For any M > 0, 0 < δ < 1, there exists D > 0, such that for u, v ∈ C2,α,1,α/2(M1)
with

‖u‖C2,α,1,α/2(M1), ‖v‖C2,α,1,α/2(M1) ≤M,

we have
‖ΨD(u)‖C2,α,1,α/2(M1) ≤M

and
‖ΨD(u)−ΨD(v)‖C2,α,1,α/2(M1) ≤ δ‖u− v‖C2,α,1,α/2(M1).

Proof: In the exercises, we will prove the following two properties of N :

1. ‖N(u)‖Cα,α/2(M1) ≤ C exp(‖u‖C0(M1))
(
1 + ‖u‖Cα(M1)

)
(1 + ‖u‖C2,α,1,α/2),

2. ‖N(u)−N(v)‖Cα,α/2(M1) ≤ CF (‖u‖Cα,α/2 + ‖v‖Cα,α/2)‖u− v‖C2,α,1,α/2

for some C > 0 and a continuous function F : R≥0 → R≥0.

On the other hand we have the estimate

‖η−1
D (0, f)‖C2,α,1,α/2(MT ) ≤ Ĉ max{

√
D,
√
D
−1
}‖f‖Cα,α/2(M1).

Thus

‖ΨD(u)‖C2,α,1,α/2(M1) = ‖η−1
D (0, DN(u))‖C2,α,1,α/2(M1)

≤ Ĉ max{
√
D,
√
D
−1
}D‖N(u)‖Cα,α/2(MT )

≤ ĈDmax{
√
D,
√
D
−1
}C exp(‖u‖C0)

(
1 + ‖u‖Cα(M1)

)
(1 + ‖u‖C2,α,1,α/2)

In particular, if ‖u‖C2,α,1,α/2(MT ) ≤ M , by choosing D > 0 to be small, we can
arrange that ‖ΨD(u)‖C2,α,1,α/2(M1) ≤M .

In the same vein, we can show that

‖ΨD(u)−ΨD(v)‖C2,α,1,α/2(M1) ≤ C̃Dmax{
√
D,
√
D
−1
}‖u− v‖C2,α,1,α/2(MT ).

Again, by choosing D > 0 small, we can arrange

C̃Dmax{
√
D,
√
D
−1
} < δ

and so
‖ΨD(u)−ΨD(v)‖C2,α,1,α/2(M1) < δ‖u− v‖C2,α,1,α/2(MT ).

Corollary 2.21
Let M be a compact surface. Let g be a Riemannian metric on M . Then there
exists T > 0 and a solution of the Ricci flow (gt)t∈[0,T ] with initial condition g.
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Proof: Choose some M > 0 and δ < 1. Then let D > 0 such that the conditions of the
previous proposition are met. The map ΨD restricted to the set

{u ∈ C2,α,1,α/2(M1) : ‖u‖C2,α,1,α/2(M1) ≤M}

then satisfies the condition of the Banach fixed point theorem. Thus there exists
u ∈ C2,α,1,α/2(Ω1) satisfying ΨD(u) = u. Proposition 2.19 says that such a fixed
point corresponds to a solution of the Ricci flow with initial value g on the interval
[0, D].

Corollary 2.22
Let M be a compact surface. Let g be a Riemannian metric on M . Suppose
(gt)t∈[0,T ], (ĝt)t∈[0,T ] are solutions of the Ricci flow with initial condition g. Then
gt = ĝt for t ∈ [0, T ].

Proof: This follows from the uniqueness in the Banach fixed point problem. By proposi-
tion 2.19, we know that both gt and ĝt correspond to fixed points of ΨD for some
appropiate D > 0. By decreasing D if necessary, we may assume that both fixed
pointds are in the range where ΨD is a contraction. Because of the uniqueness of
fixed points, this implies gt = ĝt for t ∈ [0, D].

To prove it for every t ∈ T , note that we can “restart” the Ricci flow at time D
with initial condition gD = ĝD. Then by the same argument gD+t = ĝD+t for all
t ∈ [0, D′] for some D′ > 0. This shows that the set I = {t ∈ [0, T ] : gt = ĝt} is
open in [0, T ]. It is also closed, because the solution is continuous in time. Thus
I = [0, T ].

Remark 2.23. There is a gap in the above proof. We have shown that for a C∞ Riemannian
metric g we can find solutions of the Ricci flow. At this time, we only know that the
metric gD is in C2,α. So we either need to show the short time existence for C2,α metrics
or we need to check that gD is indeed C∞.
In fact, the solution is C∞ both in time and space. This can be proven by the “boot-
strapping method” using regularity theory of partial differential equations.
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Chapter 3

Evolution of the curvature and
extension criteria

In the previous chapter we established that for any smooth metric g on a compact surface,
we can find a solution of the Ricci flow with initial condition g on some time interval [0, T ).
By an abstract argument we can extend this solution to a unique, maximal solution on an
interval [0, Tmax). Our existence proof yielded no information on the size of Tmax, neither
a lower nor an upper bound. It turns out that a very useful tool to get information on
the size of Tmax is to consider how certain quantities associated to gt change in time. The
first quantity we consider is the Gaussian curvature.

Proposition 3.1
Let M be a surface and suppose (gt)t∈[0,T ) is a solution of the Ricci flow. Then the
Gaussian curvature Kgt satisfies the partial differential equation

∂tKgt + ∆gtKgt = 2K2
gt .

Proof: Let g = g0. With gt = e2utg0 we have

∂tut = −Kgt = −e−2ut (∆gut +Kg) .

Moreover,
∆gtf = e−2ut∆gf.

Thus, we compute

∂tKgt = −2(∂tut)Kgt − e−2ut∆g∂tut

= 2K2
gt −∆gtKgt .

This equation is very useful, because for equations of this type the maximum principle
allows us to compute bounds by solving an ordinary differential equation. This is made
precise in the next proposition.
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Theorem 3.2 [Parabolic maximum principle]
Suppose M is a compact manifold, (gt)t∈[0,T ] is a smooth family of Riemannian
metrics onM , (Xt)t∈[0,T ] is a smooth family of vector fields onM , F : R×[0, T ]→ R
is a smooth function. Suppose further that φ : [0, T ]→ R is a solution of the ODE

d

dt
φ(t) = F (φ(t), t).

Any u ∈ C∞(M × [0, T ]) satisfying{
∂tu(x, t) + ∆gtu(x, t) + gt

(
Xt(x), gradgt u(x, t)

)
≤ F (u(x, t), t)

maxM u0 ≤ φ(0)

is bounded by φ on the whole interval, i.e.

max
x∈M

u(x, t) ≤ φ(t) for all t ∈ [0, T ].

Proof: The idea for the proof is that if x is a maximum of a smooth function, then its
gradient vanishes at x, its Hessian at x is negative semi-definite and consequently
the Laplacian is non-negative.

Let t ∈ [0, T ]. BecauseM is compact, then u(·, t) assumes its maximum at a point
x ∈M . At this point we have

∆gtu(x, t) + gt(Xt(x), gradgt u(x, t)) ≥ 0.

On the other hand, by assumption

∂tu(x, t) + ∆gtu(x, t) + gt
(
X(t), gradgt ut

)
≤ F (u(x, t), t).

Substracting the first inequality from the second, we obtain

∂tu(x, t) ≤ F (u(x, t), t).

To show that u lies below the solution of the comparison ODE, we first apply a
trick to make the inequality strict. For ε > 0, let φε be the solution of the ODE{

d
dt
φε(t) = F (φε(t), t) + ε,

φε(0) = φ(0) + ε

From the theory of ODEs, we know that for every ε a unique solution exists and
moreover, φε converges uniformly to φ on [0, T ].

We will now argue that
u(x, t) < φε(t)

for every ε > 0 and (x, t) ∈M × [0, T ]. Letting ε go to 0, we obtain

u(x, t) ≤ φ(t).
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To see this, we argue by contradiction: if this was false, then for every ε > 0, we
could choose (x0, t0) ∈M × [0, T ], such that

u(x0, t0) = φε(u(x0, t0), t0).

Moreover, we may assume that t0 is the first time, such that this equation holds.
This means

u(x, t) < φε(u(x, t), t)

for every x ∈M , t < t0. In particular u(x0, t)−φε(u(x0, t), t) is negative for t < t0
and zero at t0. This implies

∂t(u(x0, t0)− φε(u(x0, t0), t0)) ≥ 0.

By definition of φε, this implies

∂tu(x0, t0) ≥ ∂tφε(u(x0, t0), t0) = F (u(x0, t0), t0) + ε

and consequently, because u(x0, t0) is a maximum of u(·, t0),

∂tu(x0, t0) + ∆gt0
u(x0, t0) + gt0(Xt0(x), gradgt0 u(x0, t0)) ≥ F (u(x0, t0), t0) + ε.

This is clearly a contradiction to the assumption.

Remark 3.3. By considering −u, the maximum principle turns into a minimum principle,
i.e. we can replace ≤ by ≥ and max by min in the theorem above.

Theorem 3.4
Suppose M is a compact surface and (gt)t∈[0,Tmax) is the maximal solution of the
Ricci flow. With

κ− = min
M

Kg0 ≤ maxKg0 = κ+,

it follows that
κ−

1− 2κ−t
≤ Kgt ≤

κ+

1− 2κ+t

for every t ∈ [0, Tmax).

Proof: The evolution equation for Kgt is

∂tKgt + ∆gtKgt = 2K2
gt .

We apply the maximum principle with F (x, t) = 2x2. Thus we need to solve the
ODE

d

dt
φ(t) = 2φ(t)2

with inital condition φ(0) = κ. The solution is given by

φ(t) =
κ

1− 2κt

and thus
min
x∈M

Kgt(x) ≥ φ(t) =
κ

1− 2κt
.
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Corollary 3.5
If |Kg0| ≤M , then if 1

4M
< Tmax, it follows that

|Kg1/(4M)
| ≤ 2M.

Remark 3.6. Soon, we will see that max |Kgt | → ∞ as t approaches the maximal time of
existence. This implies 1

4M
< Tmax. In particular, there is a lower bound for the maximal

time of existence in terms of the maximum of the curvature of the initial metric.

Corollary 3.7
For any κ ∈ R, the condition Kg ≥ κ is preserved along the Ricci flow, i.e. if
(gt)t∈[0,Tmax) is a solution of the Ricci flow, then Kgt ≥ κ for all t ∈ [0, Tmax).

Corollary 3.8
The condition Kg ≤ 0 is preserved along the Ricci flow.

For the Ricci flow in arbitrary dimensions there is a similar equation.

Theorem 3.9
If M is a n-dimensional manifold and gt is a solution of the Ricci flow, then

∂tRgt + ∆gtRgt = 2|Ricgt |2.

Remark 3.10. This equation is not quite as useful in higher dimensions as in two dimen-
sions. The reason is that the right hand side depends on the full Ricci tensor, not only
on the scalar curvature. However, since

|Ricg |2 =
n∑
i=1

Ricg(ei, ei)
2

and

Rg =
n∑
i=1

Ricg(ei, ei),

we obtain (by Cauchy–Schwarz inequality)

R2
g ≤ n|Ricg |2

and thus
∂tRgt + ∆gtRgt ≥

2

n
R2
g.

Using the minimum principle as in theorem 3.4, this still allows us to derive the lower
bound

Rgt ≥
σ

1− 2σ
n
t
, where σ = min

M
Rg0 .
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Our goal is to understand, at what time the Ricci flow stops being well-defined. Note
that a solution (gt)t∈[0,T ) of the Ricci flow is per definition a smooth family of metrics
satisfying

∂tgt(x) = −2 Ricgt(x).

This implies, on a compact manifold, that at any fixed time t there is an upper bound on

|∂tgt(x)|2gt = 4|Ricgt(x)|2.

This is a priori only a necessary condition, not a sufficient condition, since by the same
argument we also have a bound on all the derivatives of Ricgt .

We have seen how to obtain a bound on Kgt . The obvious next step is to find bounds
for the derivatives of Kgt .

Let X, Y ∈ Γ(TM) and f ∈ C∞(M). If we consider XY f , then this expression also
depends on the derivatives of Y . For this reason, we introduced the Hessian Hessg(f) =
∇gdf . For higher derivatives we face the same problem and we define the higher deriva-
tives inductively via

∇1f = df,

∇kf = ∇g∇k−1f.

In particular, ∇2f = Hessg(f). Note that ∇g denotes the induced connection, see remark
0.14. The k-th covariant derivative of f is thus a (0, k)-tensor field, i.e. ∇kf ∈ Γ(T ∗M⊗k).

We will also need to take norms of such tensors. To do this, we define

|T |2g =
∑

i1,...,ik∈{1,...,n}

T (ei1 , . . . , Teik )2

for T ∈ Γ(T ∗M⊗k) and e1, . . . , en an orthonormal basis of TxM .

We start with the first derivative and we calculate

∂tdKgt = d∂tKgt

= d
(
−∆gtKgt + 2K2

gt

)
= −d∆gtKgt + 4KgtdKgt .

To employ the maximum principle, we need an evolution equation for a real valued
function. We can consider |dKgt|2gt . Then

∂t|dKgt|2gt = (∂tgt)(dKgt , dKgt) + 2g0(d∂tKgt , Kgt)

= (∂tgt)(dKgt , dKgt)− 2gt(d∆gtKgt , Kgt) + 2gt(4KgtdKgt , dKgt)

The maximum principle does not immediately apply, because there is no ∆gt |dKgt |2 term.
With the aid of the next two propositions, the term gt(d∆gtKgt , Kgt) can be rewritten
into a sum containing ∆gt |dKgt |2.
The connection Laplacian is defined by

∇g∗∇gα = −
n∑
i=1

(∇g∇gα)(ei, ei),

where e1, . . . , en is any orthonormal basis.
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Proposition 3.11
Let (M, g) be a Riemannian manifold and let α ∈ Γ(T ∗M). Then

1

2
∆g|α|2g = g(∇g∗∇gα, α)− |∇gα|2.

Proof: Let us first compute the Hessian of |α|2g. We have

(Hessg |α|2g)(V,W ) = VW |α|2g − (d|α|2g)(∇
g
VW )

= V (2g(∇g
Wα, α))− (d|α|2g)(∇

g
VW )

= 2g(∇g
V∇

g
Wα, α) + 2g(∇g

Wα,∇
g
V α)− 2g(∇g

∇gVW
α, α)

Let e1, . . . , en be an orthonormal frame. Then

∆g|α|2g = −
n∑
i=1

Hessg(|α|2g)(ei, ei)

= −2
n∑
i=1

(
g(∇g

ei
∇g
ei
α, α) + g(∇g

ei
α,∇g

ei
α)− g(∇g

∇geiei
α, α)

)
= −2

n∑
i=1

g
(
∇g
ei
∇g
ei
α−∇g

∇geiei
α, α

)
− 2

n∑
i=1

|∇eiα|2g

= −2
n∑
i=1

g ((∇g∇gα)(ei, ei), α)− 2|∇gα|2g

= 2g(∇g∗∇gα, α)− 2|∇gα|2g.

Proposition 3.12 (Bochner formula)
Let (M, g) be a Riemannian manifold and let f ∈ C∞(M). Then

d∆gf = ∇g∗∇gdf + Ricg(df),

where for α ∈ Γ(T ∗M) the one form Ricg(α) ∈ Γ(T ∗M) is defined by

[Ricg(α)](X) = Ricg(α
], X).

Lemma 3.13
Let (M, g) be a Riemannian manifold.

1. For any α ∈ Γ(T ∗M) and X, Y, Z ∈ Γ(TM), the following formula holds

[R(X, Y )α](Z) = −α(R(X, Y )Z),

where on the left hand side R is the curvature of the induced connection on T ∗M
and on the right hand side R is the curvature of the Levi–Civita connection.
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2. For X, Y ∈ Γ(TM) and α ∈ Γ(T ∗M), the following formula holds

(∇g∇gα) (X, Y, Z)− (∇g∇gα) (Y,X,Z) = [R(X, Y )α](Z).

Proof: We leave the first claim as an exercise. For the second, we calculate

(∇g∇gα)(X, Y, Z) = (∇g
X∇

gα)(Y, Z)

= X[(∇gα)(Y, Z)]− (∇gα)(∇g
XY, Z)− (∇gα)(Y,∇g

XZ)

= X[Y α(Z)− α(∇g
YZ)]− (∇gα)(∇g

XY, Z)− (∇gα)(Y,∇g
XZ)

= XY α(Z)− (∇gα)(X,∇g
YZ)− α(∇g

X∇
g
YZ)

− (∇gα)(∇g
XY, Z)− (∇gα)(Y,∇g

XZ).

Thus

(∇g∇gα)(X, Y, Z)− (∇g∇gα)(Y,X,Z)

=(XY − Y X)α(Z)− α(∇g
X∇

gY Z −∇g
Y∇

g
XZ)− (∇gα)(∇g

XY −∇
g
YX,Z)

=− α(∇g
X∇

gY Z −∇g
Y∇

g
XZ) + [X, Y ]α(Z)− (∇g

[X,Y ]α)(Z)

=− α(∇g
X∇

gY Z −∇g
Y∇

g
XZ) + α(∇g

[X,Y ]Z)

=− α(R(X, Y )Z)

=[R(X, Y )α](Z).

Lemma 3.14
Let e1, . . . , en be an orthonormal frame of TM , i.e. local vector fields, such that
g(ei, ej) ≡ 1. Then

n∑
i=1

Hessg(f)(∇g
Xei, ei) = 0

for any X ∈ Γ(TM).

Proof: Exercise!

Proof of the Bochner formula: Suppose e1, . . . , en is an orthonormal frame. Then we
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compute

(d∆gf)(X) = −
n∑
i=1

X ((∇gdf)(ei, ei))

= −
n∑
i=1

((∇g∇gdf)(X, ei, ei)− (∇gdf)(∇g
Xei, ei)− (∇gdf)(ei,∇g

Xei))

3.14
= −

n∑
i=1

(∇g∇gdf)(X, ei, ei)

3.13,2.
= −

n∑
i=1

((∇g∇gdf)(ei, X, ei) + (Rg(X, ei)df)(ei))

∗
= −

n∑
i=1

(∇g∇gdf)(ei, ei, X)−
n∑
i=1

(Rg(X, ei)df)(ei),

= (∇g∗∇gdf) (X) +
n∑
i=1

df(Rg(X, ei)ei),

= (∇g∗∇gdf)(X) + Ricg(X, df
])

=
[
∇g∗∇gdf + Ricg(df)

]
(X).

In the equation marked ∗, the symmetry of ∇gdf was used.

Corollary 3.15
Let M be a surface and suppose (gt)t∈[0,T ) is a solution of the Ricci flow. Then

∂tdKgt = −∇gt∗∇gtdKgt + 3KgtdKgt .

Corollary 3.16
Let (M, g) be a Riemannian surface and f ∈ C2(M). Then

1

2
∆g|df |2g = g(d∆gf, df)−Kg|df |2g − |∇gdf |2g.

Proof: Exercise!

Lemma 3.17
Suppose (gt)t∈[0,T ) is a solution of the Ricci flow on a surface and suppose α ∈
Γ(T ∗M). Then

∂t|α|2gt = 2Kgt|α|2gt .

Proof: By definition
|α(x)|2g = α(e1)2 + α(e2)2

for a g-orthonormal basis e1, e2 ∈ TxM .
Since we work on a surface, we know that

gt = e2utg0 where ∂tut = −Kgt .
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Now suppose e1, e2 is a g0-orthonormal basis. Clearly, et1 = e−ut(x)e1 and et2 =
e−ut(x)e2 form a gt orthonormal basis.

Now we calculate

∂tα(eti) = ∂tα(e−ut(x)ei) = − (∂tut(x))α(eti) = Kgtα(eti)

and the claimed formula follows.

Now we can conclude the following evolution equation for |dKg|2.

Proposition 3.18
Suppose (gt)t∈[0,T ) is a solution of the Ricci flow on a surface. Then

∂t|dKgt|2 + ∆gt |dKgt|2 = −2|∇gtdKgt |2 + 8Kgt |dKgt |2

Proof: Clearly,
∂t|dKgt |2g = (∂tgt)(dKgt , dKgt) + 2g(dKgt , d∂tKgt).

For the first term, we get by the previous lemma 2Kgt|dKgt |2 and for the second
term we compute

g(dKgt ,−d∆gtKgt + 2d(K2
gt)) = −g(dKgt , d∆gKgt) + 4Kgt |dKgt|2

= −1

2
∆gt |dKgt|2 −Kgt |dKgt |2 − |∇gdKgt |2gt + 4Kgt |dKgt|2

= −1

2
∆gt |dKgt|2 − |∇gdKgt |2gt + 3Kgt |dKgt|2.

Thus,
∂t|dKgt |2g = −∆gt |dKgt |2 − 2|∇gdKgt |2gt + 8Kgt |dKgt |2.

Proposition 3.19
Let A > 0. Suppose M is compact surface and (gt)t∈[0,T ] is a solution of the Ricci
flow. If

sup
t∈[0,T ]

|Kgt | ≤ A,

then
|dKgt|2 ≤

A2 + 2A3T + 16A4T 2

t
.

In particular, if T = 1/A, we have

|dKgt | ≤
√

19A√
t
.

Proof: Let u(x, t) = t|dKgt(x)|2 + α|Kgt |2, where α ∈ R+. Using

∆g(f
2) = 2f∆gf − 2|df |2g,
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we see that

∂t|Kgt |2 = 2Kgt∂tKgt

= 2Kgt(−∆gtKgt + 2K2
gt)

= −∆gt |Kgt |2 − 2|dKgt|2 + 4K3
gt .

Then it follows that

∂tu = |dKgt |2 + t
(
−∆gt |dKgt|2 − 2|∇gtdKgt |2 + 8Kgt |dKgt |2

)
+ α(−∆gt|Kgt |2 − 2|dKgt|2 + 4K3

gt)

= −∆gt

(
t|dKgt |2 + α|Kgt|

)2
+ (1 + 8tKgt − 2α)|dKgt|2 + 4αK3

gt − 2t|∇gtdKgt |2.

This can be rewritten as

∂tu+ ∆gtu = (1 + 8tKgt − 2α)|dKgt |2 + 4αK3
gt − 2t|∇gtdKgt |2.

Since t ∈ [0, T ] and |Kgt | ≤ A by assumption, it follows that

∂tu+ ∆gtu ≤ (1 + t8Kgt − 2α)|dKgt|2 + 4αK3
gt

≤ (1 + 8tA− 2α)|dKgt |2 + 4αA3

≤ (1 + 8TA− 2α)|dKgt |2 + 4αA3.

Thus, choosing α = 1+8TA
2

, we obtain

∂tu+ ∆gtu ≤ 2(1 + 8TA)A3.

Now we apply the maximum principle F (y, t) = 2(1+8TA)A3. Note that u(x, 0) =
|Kg0(x)|2 ≤ A2. Thus we have to solve the initial value problem

φ̇(t) = 2(1 + 8TA)A3, φ(0) = A2.

The solution is φ(t) = A2 + 2(1 + 8TA)A3t and we obtain

t|dKgt |2 + |Kgt|2 = u(x, t) ≤ A2 + 2(1 + 8TA)A3t ≤ A2 + 2A3T + 16A4T 2

and thus
|dKgt |2 ≤

A2 + 2A3T + 16A4T 2

t
.

Lemma 3.20
Let (M, g) be a Riemannian manifold and ut ∈ C∞(M) a smooth family of functions.
Let X, Y ∈ Γ(TM). Let gt = e2utg. Then

∂t∇gt
XY = (X∂tu)Y + (Y ∂tu)− gt(X, Y ) gradgt ∂tut.

Proof: Recall that

∇gt
XY = ∇g

XY + (Xu)Y + (Y u)X − g(X, Y ) gradg u.
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From this it follows that

∂t∇gt
XY = (X∂tu)Y + (Y ∂tu)− g(X, Y ) gradg ∂tut.

Now observe that

g(X, Y ) gradg ∂tu = gt(X, Y ) gradgt ∂tu,

since by an easy calculation

gradgt f = e−2ut gradg f.

Theorem 3.21
There exist smooth functions F,G : Rk−1 → R, such that for any solution (gt)t∈[0,T ]

of the Ricci flow on a surface, the following inequality holds

∂t|∇kKgt |2gt+∆gt |∇kKgt |2gt ≤ F (|Kgt |, |dKgt|, . . . , |∇k−1Kgt |)|∇kKgt |2+G(|Kgt |, |dKgt|, . . . , |∇k−1Kgt |).

Proof: Throughout the following proof, we will use the following notation: H(A1, . . . , An)
will denote some algebraic combination of the terms A1, . . . , An. The important
point is not the precise form of this combination, but the fact that H depends
smoothly on the terms A1, . . . , An. Moreover, all the terms appearing will have
the property that if A1, . . . , An are tensors, then

|H(A1, . . . , An)| ≤ F (|A1|, . . . , |An|),

for some smooth function F : Rn → R.
First note that ∇k = ∇gt . . .∇gtd depends on t.

We calculate

∂t|∇kKgt |2gt = (∂tgt)(∇kKgt ,∇kKgt) + gt(
(
∂t∇k

)
Kgt ,∇kKgt) + gt(∇k(∂tKgt),∇kKgt)

By a similar argument as in lemma 3.17, we find that

(∂tgt)(∇kKgt ,∇kKgt) = 2kKgtgt(∇kKgt ,∇kKgt) = 2kKgt |∇kKgt|2.

(Cf. exercises.) To treat the last term, first observe that

∇k∆gf = ∇g . . .∇g(d∆gf)

= ∇g . . .∇g (∇g∗∇gdf +Kgdf)

= ∇k∇g∗∇gdf +∇g . . .∇g(Kgdf).

For the term ∇k∇g∗∇gdf , observe that

∇g∇g∗∇gdf −∇g∗∇g(∇gdf) = H1(Kg)∇gdf +H2(∇gKg)df.
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Repeated use of the Leibniz rule to the term ∇g . . .∇g(Kgdf), shows that

∇g . . .∇g(Kgdf) = Kg∇kdf + . . .+ (∇k−1Kg)⊗ df.

Thus, we obtain

gt(∇k(∂tKgt),∇kKgt) = gt(∇k(−∆gtKgt + 2K2
gt),∇

kKgt)

= −gt(∇g∗∇g(∇kdf) +∇gt . . .∇gt(KgtdKgt) +∇k(2K2
gt),∇

kKgt)

= −gt(∇gt∗∇gt∇kKgt ,∇kKgt)

+H2(Kgt , dKgt , . . . ,∇k−1Kgt)|∇kKgt |2

+ gt(H3(Kgt , dKgt , . . . ,∇k−1Kgt),∇kKgt).

For the middle term, we appeal to the lemma 3.20. As a simplification, we assume
k = 2. Then the middle term becomes

gt((∂t∇gt)dKgt ,∇gtdKgt).

We compute

∂t(∇gtdf)(X, Y ) = ∂t (XY f − df(∇gt
XY ))

= −df((X∂tu)Y + (Y ∂tu)X − gt(X, Y ) gradgt ∂tu).

With this in mind, we calculate

gt((∂t∇gt)dKgt ,∇gtdKgt) =
n∑

i,j=1

(∂t∇gtdKgt) (ei, ej) (∇gtdKgt) (ei, ej)

=
n∑

i,j=1

− (dKgt(ej)dKgt(ei) + dKgt(ei)dKgt(ej)) (∇gtdKgt) (ei, ej)

= gt(H4(dKgt),∇gtdKgt).

Similarly, we find for k ≥ 2

gt(
(
∂t∇k

)
Kgt ,∇kKgt) = gt(H5(dKgt , . . . ,∇k−1Kgt)),∇kKgt).

In conclusion, we have seen that

∂t|∇kKgt |2gt = −gt(∇gt∗∇gt∇kKgt ,∇kKgt)

+H6(Kgt , dKgt , . . . ,∇k−1Kgt)|∇kKgt |2

+ gt(H7(Kgt , dKgt , . . . ,∇k−1Kgt),∇kKgt).

Now we conclude the theorem from

∆g|∇kf |2 = g(∇g∗∇g∇kf,∇kf)− |∇g∇kf |2

and the inequality

g(µ1, µ2) ≤ |µ1|g|µ2|g ≤
1

2
|µ1|2g +

1

2
|µ2|2g

applied to the last term.
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Theorem 3.22
Let M be a compact surface. Suppose that (gt)t∈[0,T ) is a solution of the Ricci flow
and that

sup
(x,t)∈M×[0,T )

|Kgt(x)| <∞.

Then T is not the maximal time of existence, i.e. the maximal solution of the Ricci
flow with the same initial metric g0 is defined on an interval [0, Tmax) with

Tmax > T.

Lemma 3.23
Let (M, g) be a compact manifold and T > 0. Suppose that f : M × [0, T ) → R is
a smooth function and suppose that

sup
t∈[0,T )

‖∂kt∇lf‖C0(M) <∞

for every k, l ∈ N. Then f can be extended to a smooth function on M × [0, T ].

Remark 3.24. A function f : M × [a, b]→ R is smooth, if there exists a smooth extension
of f to M × (ã, b̃) with ã < a < b < b̃.

Sketch of the proof: First, one observes that if we choose a coordinate system ϕ : U ⊂
M → V ⊂ Rn, then

sup
x∈M
t∈[0,T )

|∂kt ∂αx f(ϕ−1(x), t)| <∞

for every k ∈ N and every multi-index α. Thus we may as well assume our function
is defined on Rn to begin with.

For simplicity, we treat only the case f : [0, T ) → R. The function and its first
derivative are bounded. Hence there exists C > 0, such that

|f(t1)− f(t2)|
|t1 − t2|

< C

for all t1, t2 ∈ [0, T ).

Now consider a sequence tn → T . Then

|f(tm)− f(tn)| < C|tm − tn|.

This implies that f(tn) is a Cauchy sequence and thus the limit

lim
n→∞

f(tn)

exists. The inequality also implies that the limit does not depend on the sequence.
Thus we can extend f to a function on [0, T ]. Applying the inequality once more
shows that the extension is continuous.
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Arguing the same way, we see that all the derivatives ∂kt f also extend continously
to [0, T ]. We can then define a smooth extension f̃ : [0, T + ε,→)R{

f(t), t ∈ [0, T ]∑∞
k=0(∂kt f)(T )ψk(t)(t− T )k, t > T.

Here ψk : [0, T +ε)→ R is a bump function, such that ψk(t) ≡ 1 in a neighborhoos
of T and

max
t∈[0,T+ε)

|(∂kt f)(T )ψk(t)(t− T )k| ≤ 2−k.

The proof generalizes to the case f : M × [0, T )→ R by considering the uniform
convergence of the functions f(·, t).

Proof of the theorem: We have seen that for any smooth metric g on a compact surface,
there exists a unique maximal solution of the Ricci flow onM with initial condition
g.

Now suppose that (gt)t∈[0,T ) is a solution of the Ricci flow with

sup
(x,t)∈M×[0,T )

|Kgt(x)| <∞.

Recall that the Ricci flow is equivalent to the scalar equation

∂tut = −Kgt , u0 ≡ 0

for the conformal metrics e2utg0.

If we manage to show that

sup
t∈[0,T )

‖∂kt∇lu‖C0(M,g0) <∞ (?)

for every k, l ∈ N, then according to the lemma, we can extend u smoothly to
M× [0, T ]. Then we can consider the Ricci flow with initial condition gT = e2uT g0.
By our short time existence result, we know that this flow ĝt exists on an interval
[0, ε), ε > 0.

We can then define a new solution of the Ricci flow with initial condition g0 via

g̃t =

{
gt, t ∈ [0, T ]

ĝt−T , t ∈ [T, T + ε).

This shows that Tmax ≥ T + ε, proving the theorem.

To show that all the derivatives of the conformal factor remain bounded, i.e. that
(?) holds, we first observe that

ut(x) =

ˆ t

0

Kgs(x)ds.
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Thus it is sufficient to show that all derivatives of Kgt remain bounded.

By proposition 3.18, we know that

|dKgt|2 ≤
K2 + 2K3T + 16K4T 2

t

for t ∈ [0, T ). Moreover, because gt is smooth on [0, T ), we know apriori that
there is a bound on any subinterval [0, T0]. Hence there exists a constant C1 > 0,
such that

|dKgt |2gt < C1.

Starting with this estimate, we can show inductively that there exists Ck > 0,
such that

|∇kKgt |2gt < Ck (??)

on [0, T ). Indeed, suppose that k ∈ N and inequality (??) holds for all j ≤ k.
Then by theorem 3.21, there exists a smooth function F : Rk → R, such that

∂t|∇k+1Kgt |2gt + ∆gt |∇kKgt |2gt ≤ F (|Kgt |, |dKgt |, . . . , |∇kKgt|)|∇k+1Kgt|2.

Since inequality (??) holds for all j ≤ k and F and G are continuous, it follows
that there exists A,B > 0, such that

F (|Kgt |, |dKgt |, . . . , |∇kKgt |) ≤ A

and
G(|Kgt|, |dKgt |, . . . , |∇kKgt|) ≤ B

on M × [0, T ].

Thus
∂t|∇k+1Kgt|2gt + ∆gt |∇kKgt |2gt ≤ A|∇k+1Kgt |2 +B.

To this equation we can apply the maximum principle using the comparison ODE

φ′(t) = Aφ(t) +B,

φ(0) = D := max |∇k+1Kg0|2g0 .

This ODE has the solution

φ(t) = D exp(At) +Bt

and we conclude that

|∇k+1Kgt|2gt ≤ B exp(AT ) +BT =: Ck+1

on M × [0, T ].

This does not yet show inequality (?), because the metric depends on t. The next
lemma shows that (?) follows from this.
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Lemma 3.25
SupposeM is a compact manifold and suppose that gt = e2utg, t ∈ (0, T ) is a smooth
family of metrics on M .

If
sup

x∈M,t∈(0,T )

|ut(x)| <∞ and sup
x∈M,t∈(0,T )

|∇gt,k∂tut(x)| <∞

for every k, then
sup

x∈M,t∈(0,T )

|∇g0,k∂tut(x)| <∞

for every k.

For a (partial) proof we refer to the exercises.
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Chapter 4

The Ricci flow on surfaces: long time
existence

4.1 The normalized Ricci flow on a surface

It turns out to consider convergence and long time existence it is more beneficial to
consider a variant of the Ricci flow, which fixes the total area of the surface.

As we have seen in the exercises, if gt satisfies the Ricci flow equation, then

∂t volgt = −2Kgt volgt .

In particular on a surface, we have

d

dt

ˆ
M

volgt = −2

ˆ
M

Kgt volgt .

According to the following lemma, the integral on the right hand side is actually inde-
pendent of t.

Lemma 4.1
Let M be a compact surface and g, g̃ be two conformal metrics on M . Then

ˆ
M

Kg̃ volg̃ =

ˆ
M

Kg volg .

Proof: Suppose g̃ = e2ug. Then the curvature Kg̃ is given by the formula e−2u (∆gu+Kg)
and the volume form volg̃ is given by e2ug. Thus

ˆ
M

Kg̃ volg̃ =

ˆ
M

e−2u (∆gu+Kg) e
2u volg

=

ˆ
M

∆gu volg +

ˆ
M

Kg volg .

The integral of ∆gu vanishes because of the divergence theorem.
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Denoting the surface area of (M, gt) by

V (t) =

ˆ
M

volgt ,

we obtain
V (t) = V (0)−Kt,

where K =
´
M
Kg0 volg0 .

Thus, if K > 0, the total area will become zero at time V (0)/K. On the other hand, if
K < 0, the total area will increase as long as the solution exists. In either case we cannot
hope for convergence.

The normalized Ricci flow is a way to evolve a Riemannian metric by Ricci flow, but
rescaling it so that its volume is fixed.

Suppose g is any Riemannian metric on a surface. Then we define K̄ to be the average
Gaussian curvature, i.e.

K̄ =

(ˆ
M

volg

)−1 ˆ
M

Kg volg .

Definition 4.2
A family of Riemannian gt metrics is called a solution of the normalized Ricci flow
with initial condition g, if

∂tg = 2(K̄ −Kgt)gt

and g0 = g.

Proposition 4.3
If gt solves the normalized Ricci flow, then the volume V (t) =

´
M

volgt is constant.

Proof: Exercise.

Together with the previous lemma, this implies that the average scalar curvature is also
constant along the normalized Ricci flow.

Note that if K̄ = 0, the normalized Ricci flow coincides with the standard Ricci flow.
In the other cases, the following proposition describes the relationship between the two
Ricci flows.

Proposition 4.4
Let g be a Riemannian metric with K̄ 6= 0. Let (gt)t∈[0,Tmax) be the solution of the
Ricci flow with initial condition g. Then

g̃t = e2K̄tgφ(t)

with φ(t) =
(
1− e−2K̄t

)
/(2K̄) is a solution of the normalized Ricci flow on the

interval [0, T̃max), where T̃max = − log(1− 2K̄Tmax)/(2K̄).
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Conversely, if (gt)t∈[0,Tmax) is the solution of the normalized Ricci flow with initial
condition g, then

ĝt = (1− 2K̄t)gψ(t)

with ψ(t) = − log(1 − 2K̄t)/(2K̄) is a solution of the Ricci flow on the interval
[0, T̂max) where T̂max = (1− exp(−2K̄Tmax))/(2K̄).

Proof: Suppose (gt)t∈[0,Tmax) is a solution of the Ricci flow.

Let us assume g̃t = f(t)gφ(t) for some functions f, φ. Then we compute

∂tg̃t = f ′(t)gφ(t) + f(t)(∂tg)φ(t)φ
′(t)

=
f ′(t)

f(t)
g̃t + f(t)φ′(t)

(
−2Kgφ(t)gφ(t)

)
=
f ′(t)

f(t)
g̃t − 2f(t)φ′(t)Kg̃t g̃t

=

(
f ′(t)

f(t)
− 2f(t)φ′(t)Kg̃t

)
g̃t,

where we used that Ricλ2g = Ricg and Ricg = Kgg. We conclude that if f ′(t)/f(t) =
2K̄ and φ′(t)f(t) = 1, the family of metrics g̃t is a solution of the normalized Ricci
flow.

Since g0 = g̃0, we moreover have f(0) = 1 and φ(0) = 0.

Solving the ODEs yields

f(t) = e2K̄t and φ(t) =
(

1− e−2K̄t
)
/(2K̄).

Note that independent of the sign φ(t) is an increasing function and g̃t is well-
defined, whenever φ(t) < Tmax.

This is the case when

t < − log(1− 2K̄Tmax)/(2K̄).

The converse statement follows similarly and is left as an exercise.

We can restate the previous main results for the normalized Ricci flow.

Theorem 4.5
LetM be a compact surface and suppose that g is a smooth metric. Then there exists
a unique maximal solution (gt)t∈[0,Tmax) of the normalized Ricci flow with initial
condition g0 = g.

Proof: Exercise.
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Theorem 4.6
Suppose M is a compact surface and suppose that (gt)t∈[0,T ) is a solution of the
normalized Ricci flow. If

sup
M×[0,T )

|Kgt(x)| <∞,

then T is not the maximal time of existence.

Proof: The solution (gt)t corresponds to the solution

ĝt = (1− 2K̄t)gψ(t)

with ψ(t) = − log(1− 2K̄t)/(2K̄) on the interval [0, T̂ ) where

T̂ = (1− exp(−2K̄T ))/(2K̄).

Note that the factor (1− 2K̄t) is bounded away from zero on the interval [0, T̂ ).

Thus the curvature of ĝt is also bounded, i.e.

sup
x∈M,0≤t<T̂

|Kĝt(x)| <∞.

Hence the Ricci flow ĝt extends beyond the time T̂ . Translating this solution back
to a solution of the normalized Ricci flow, we see that the normalized Ricci flow
also extends beyond time T .

The goal of this chapter is to prove the following theorem.

Theorem 4.7
Let M be compact, oriented surface and suppose g is a Riemannian metric on
M . Then the normalized Ricci flow with initial condition g exists for all time, i.e.
Tmax =∞.

4.2 A lower bound on the curvature

As a very first step towards these theorems, let us consider the evolution of the scalar
curvature Rg under the Ricci flow.

Proposition 4.8
Suppose gt is a solution of the normalized Ricci flow. Then

∂tKgt + ∆gtKgt = 2Kgt(Kgt − K̄).
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Corollary 4.9
Suppose (gt)t∈[0,T ) is a solution of the normalized Ricci flow on a compact surface.
Denote by Kmin the minimum of the Gauß curvature of g0. Then depending on the
sign of the average scalar curvature, we get the following lower bounds on the Gauß
curvatures:
K̄ < 0 :

Kgt − K̄ ≥
K̄

1−
(
1− K̄/Kmin

)
e2K̄t

− K̄ ≥ (Kmin − K̄)e2K̄t

K̄ = 0 :

Kgt ≥
Kmin

1−Kmint
> −1

t

K̄ > 0, Kmin < 0 :

Kgt ≥
K̄

1−
(
1− K̄/Kmin

)
e2K̄t

≥ Kmine
−K̄t

Proof: Applying the maximum principle, we find that Kgt ≥ φ(t), where φ(t) solves{
φ(0) = Kmin = minx∈M Kg0(x),

φ′(t) = 2φ(t)(φ(t)− K̄).

If K̄ 6= 0, we find that

φ(t) =
K̄

1−
(
1− K̄/φ(0)

)
exp(2K̄t)

.

If K̄ = 0, we find that

φ(t) =
φ(0)

1− φ(0)t
.

In either case, the statement follows.

In the cases K̄ < 0 and K̄ = 0, these estimates say that the deviation from the average K̄
from below becomes exponentially small. On the other hand, until now we know nothing
about the deviation from above.

4.3 An upper bound on the curvature

Definition 4.10
A Ricci soliton is a Riemannian manifold (M, g) and a vector field X, such that

Ricg = λg − 1

2
LXg

for some constant λ ∈ R.
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Ricci solitons with λ < 0, λ = 0 and λ > 0 are called shrinking, steady and
expanding respectively.

A gradient Ricci soliton is a Ricci soliton, such that the vector field X is a gradient
vector field, i.e. X = gradg f for some f ∈ C∞(M).

Proposition 4.11
Suppose (M, g,X) is a Ricci soliton and let φt : M → M be the family of diffeo-
morphisms satisfying

dφt(x)

dt
=

1

1− 2λt
X(φt(x)).

Then
g(t) = (1− 2λt)φ∗tg

is a solution of the Ricci flow. The interval of existence is (−1/(2λ),∞) if the
soliton is expanding, R if the soliton is steady and (−∞, 1/(2λ)) if the soliton is
shrinking.

The solution evolves by a change by diffeomorphism and rescaling.

Assume that (M, g,X) is a Ricci soliton and assume that M is a closed surface. Then
let us take the trace of the Ricci soliton equation:

2Kg = 2λ− 1

2
divgX.

Rearranging this equation and integrating over M , we obtain

λ

ˆ
M

volg =

ˆ
M

Kg volg−
1

2

ˆ
M

divgX volg .

By the divergence theorem, the last term is zero. Thus we obtain λ = K̄ and so the Ricci
soliton equation for surfaces reads

(Kg − K̄)g = −1

2
LXg.

Note that
Lgradg fg = 2 Hessg(f).

So for a gradient Ricci soliton, the equation is

(Kg − K̄)g = −Hessg(f).

Taking the trace of this equation yields

∆gf = 2(Kg − K̄).

Thus we have
Hessg(f) +

1

2
(∆gf)g = 0.
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It turns out that we obtain an interesting equation if we take the divergence ∇g∗ of this
equation. The divergence on a tensor field T is defined to be

∇g∗T = −
n∑
i=1

(∇gT )(ei, ei, ·, . . . , ·).

In particular, we have

∇g∗(fg) = −
n∑
i=1

(∇gfg)(ei, ei, ·, . . . , ·)

= −
n∑
i=1

((eif)g(ei, ·) + f(∇gg)(ei, ei))

= −
n∑
i=1

g((eif)ei, ·)

= −g(gradg f, ·)
= −df.

Together with the Bochner formula this implies

∇g∗
(

Hessg(f) +
1

2
(∆gf)g

)
= ∇g∗∇gdf − 1

2
d∆gf

=
1

2
d∆gf −Kgdf

= dKg −Kgdf = 0.

Since ∆gf = 2(Kg − K̄), we obtain

dKg −
1

2
(∆gf)df + K̄df = 0.

Since Hessg(f) + 1
2
(∆gf)g, it follows that

V |df |2 = 2g(∇g
V df, df)

= 2g(Hessg(f)(V, ·, df)

= −g((∆gf)g(V, ·), df)

= −(∆gf)g(V [, df)

= −(∆gf)V f

or
d|df |2 = −(∆gf)df.

And so
dKg + d

1

2
|df |2 + K̄df = d(Kg +

1

2
|df |2 + K̄f) = 0.

The following proposition summarizes this calculation.
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Proposition 4.12
Suppose M is a connected, compact surface and (M, g, f) is gradient soliton. Then

2Kg + |df |2 + 2K̄f

is constant on M .

Our goal remains to understand general solutions of the Ricci flow. It turns out that
even for Riemannian metrics, which are not gradient solitons, there is a useful analogue.
The foundation for our reasoning is the following theorem from analysis.

Theorem 4.13
Suppose (M, g) is a connected, compact Riemannian manifold. Let h ∈ C∞(M).

If ˆ
M

h volg = 0,

then there exists a function f ∈ C∞(M), such that

∆gf = h.

Up to an additive constant, the function f is uniquely determined by h.

From this theorem we infer that for any connected compact Riemannian manifold (M, g),
we may define a function f , such that

∆gf = 2(Kg − K̄),

since the integral of the right hand side vanishes. Now supposing that (gt)t∈[0,T ) is a
solution of the normalized Ricci flow, we also find a family f̂t, such that

∆gt f̂t = 2(Kḡt − K̄).

We expect that
Ft = 2Kgt + 2K̄f̂t + |df̂t|2

satisfies a nice evolution equation, because the function is constant on solitons.

Note that we have the choice to add a constant to f̂t at any time t. The evolution
equation depends on that choice. If we carefully choose such a constant, then we have a
nice evolution equation for this function. This is the content of the following lemma.

Lemma 4.14
Let M , (gt)t∈[0,T ) and f̂t as above. Then there exists a function c : [0, T )→ R, such
that ft = f̂t + c(t) satisfies

∂tft + ∆gtft = 2K̄ft.
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Proof: We can compute the time derivative of ∆gt f̂t in two ways. First, we compute

∂t∆gt f̂t = 2(Kgt − K̄)∆gt f̂t + ∆gt∂tf̂t,

where we used
∂t∆gth = 2(Kgt − K̄)∆gth

from the exercises.

On the other hand, ∆gtft = 2(Kgt − K̄) and we thus calculate

∂t∆gt f̂t = −2∆gt(Kgt − K̄) + 4Kgt(Kgt − K̄) = −∆gt∆gt f̂t + 2Kgt∆gt f̂t

from the evolution equation for the Gauß curvature along the normalized Ricci
flow.

Rearranging these two equations gives us

∆gt

(
∂t∆gt f̂t + ∆gt f̂t

)
= (2Kgt − 2Kgt + 2K̄)∆gtf

or
∆gt

(
∂t∆gt f̂t + ∆gt f̂t − K̄f̂t

)
= 0.

Since M is assumed connected, only constant functions are harmonic and this
implies

∂t∆gt f̂t + ∆gt f̂t − 2K̄f̂t = α(t)

for some function α : [0, T )→ R.

If we choose c(t) = −e2K̄t
´ t

0
e−K̄sα(s)ds, then it follows that

∂t∆gtft + ∆gtft = 2K̄ft,

because
∂tc(t) = −2K̄c(t)− α(t).

It is now natural to investigate the evolution of Ft = 2Kgt + 2K̄ft + |dft|2. Since we
already know how ft evolves, we may as well just study 2Kgt + |dft|2. This will lead us
to our curvature estimate.

Theorem 4.15
Let M be a compact surface and suppose (gt)t∈[0,T ) is a solution of the normalized
Ricci flow. Consider the function Ht = 2(Kgt − K̄) + |dft|2, where ft is as in the
lemma. Then

∂tHt + ∆gtHt ≤ 2K̄Ht.
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Proof: First, we calculate

∂t|dft|2 = 2(Kgt − K̄)|dft|2 + 2gt(∂tdft, dft)

= 2(Kgt − K̄)|dft|2 + 2gt(−d∆gtft, dft) + 4K̄|dft|2,

or equivalently

∂t|dft|2 + 2gt(d∆gtft, dft) = 2(Kgt + K̄)|dft|2.

Recall that
g(d∆gtft, dft) =

1

2
∆gt |dft|2 +Kgt|dft|2 + |∇gtdft|2.

Thus
∂t|dft|2 + ∆gt |dft|2 = 2K̄|dft|2 − 2|∇gtdft|2.

On the other hand,

∂t(Kgt − K̄) + ∆gt(Kgt − K̄) = 2Kgt(Kgt − K̄)

= 2(Kgt − K̄)2 + 2K̄(Kgt − K̄)

=
1

2
(∆gtft)

2 + 2K̄(Kgt − K̄).

Now by an exercise
(∆gf)2 − n|Hessg f |2 ≤ 0

for any f ∈ C∞(M), where n is the dimension of the manifold.

Thus

∂tHt + ∆gtHt = (∆gtft)
2 + 4K̄(Kgt − K̄) + 2K̄|dft|2 − 2|∇gtdft|2

≤ 2K̄(2(Kgt − K̄) + |dft|2)

= 2K̄Ht

as claimed.

Corollary 4.16
Let M be a compact surface and let (gt)t∈[0,T ) be a solution of the normalized Ricci
flow and let Ht be as in the theorem. Then

2(Kgt − K̄) ≤ Ht ≤ Ce2K̄t.

Proof: This follows immediately from the maximum principle.

Theorem 4.17
Let M be a compact surface and let g be a Riemannian metric on M . Then the
normalized Ricci flow with initial condition g exists for all time.
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Proof: Let (gt)t∈[0,T ) be a solution with initial condition g and T < ∞. By the previous
theorem, we know that

Kgt ≤ K̄ + Ce2K̄t.

Since T is finite, this implies

sup
x∈M,t∈[0,T )

Kgt <∞.

On the other hand, we have seen that in each of the three cases K̄ < 0, K̄ = 0
and K̄ > 0, there exists a lower bound, so that

inf
x∈M,t∈[0,T )

Kgt > −∞.

Thus
sup

x∈M,t∈[0,T )

|Kgt | <∞

and this implies that T can not be the maximal time. Since this holds for any
T ∈ R+, we conclude that the maximal time of existence must be infinite, proving
the theorem.
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Chapter 5

Convergence of the normalized Ricci
flow on a surface

5.1 The cases K̄ < 0 and K̄ = 0

Suppose M is a compact surface and g is a Riemannian metric on M with

K̄ =

(ˆ
M

volg

)−1 ˆ
M

Kg volg ≤ 0.

In the last chapter, we established that the normalized Ricci flow with initial condition
g exists for all times. Let (gt)t∈[0,∞) be this solution.

Our aim is to prove that the Ricci flow converges to a metric of constant curvature as
t→∞.

Recall that gt = e2utg for some function u : M × [0,∞) → R with u0 ≡ 0. Rephrasing
convergence of the Ricci flow in terms of ut, we say that the Ricci flow converges to a
metric of constant curvature, if ut converges to a function u∞ as t → ∞ and e2u∞g is a
metric of constant curvature.

We are going to see that ut converges to a smooth function u∞ in every Ck norm.

For the rest of the section we assume that

K̄ =

(ˆ
M

volg

)−1 ˆ
M

Kg volg ≤ 0.

We treat the case K̄ < 0 first.

We established the following curvature estimate for the normalized Ricci flow.

Proposition 5.1
Let (gt)t∈[0,∞) be the solution of the normalized Ricci flow with initial condition g.
If K̄ < 0, then there exists a constant C > 0 depending only on the initial metric
g, such that

|Kgt − K̄| ≤ Ce2K̄t.
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Thus, the curvature Kgt converges uniformly to K̄ with exponential rate as t → ∞.
Since

ut(x) = u0(x)−
ˆ t

0

(Kgt(x)− K̄)ds

it also follows that ut converges uniformly to some function u∞ as t→∞.

Since we want to show smooth convergence, we also need to show that the higher deriva-
tives of ut converge, or equivalently, that the higher derivatives of Kgt decay sufficiently
fast.

For this, we first adapt proposition 3.19 to the case of the volume normalized Ricci flow.

Proposition 5.2
Let (gt)t∈[0,T ) be a solution of the volume Ricci flow on a surface. Then

∂t|dKgt |2 + ∆gt |dKgt |2 = −2|∇gtdKgt|2 + (8Kgt − 2K̄)|dKgt |2.

Proof: The proof is the same as for proposition 3.19, except that now

(∂tgt)(dKgt , dKgt) = 2(Kgt − K̄)|dKgt |2.

Corollary 5.3
Suppose M is a compact surface and (gt)t∈[0,∞) is a solition of the normalized Ricci
flow with K̄ < 0.

There exists a constant C > 0, such that

|dKgt |2 ≤ Ce2K̄t.

Proof: We have the estimate
|Kgt − K̄| ≤ Ce2K̄t

for some C > 0. The previous proposition now yields

∂t|dKgt |2 + ∆gt|dKgt|2 ≤ (8Kgt − 2K̄)|dKgt |2

= [8(Kgt − K̄) + 6K̄]|dKgt |2

≤
(
Ce2K̄t + 6K̄

)
|dKgt |2.

For sufficiently large t we have

Ce2K̄t + 6K̄ < 2K̄

and so
∂t|dKgt|2 + ∆gt |dKgt|2 ≤ 2K̄|dK2

gt .

Now the result follows immediately from the maximum principle.
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Higher derivative estimates can be obtained by refining the estimates in theorem ??.
Doing this, one obtains the following result.

Theorem 5.4
Suppose M is a compact surface and (gt)t∈[0,∞) is a solition of the normalized Ricci
flow with K̄ < 0.

There exist constants Ck > 0, such that

|∇kKgt|2 ≤ Cke
2K̄t.

And we conclude the following theorem.

Theorem 5.5 [Uniformization for K̄ < 0]
Suppose (M, g) is a compact Riemannian surface with K̄ < 0. Then the normalized
Ricci flow (gt)t∈[0,∞) with initial condition g converges exponentially fast to a metric
of constant negative curvature.

More precisely, let ut be such that that gt = e2utg. Then there exists a uniform
limit u∞ = limt→∞ ut and

‖ut − u∞‖Ck(M) ≤ Cke
2K̄t.

Next we consider the case K̄ = 0. In this case, refining the analysis in theorem ?? yields
the following theorem.

Theorem 5.6
Suppose (M, g) is a compact Riemannian surface with K̄ = 0. Let (gt)t∈[0,∞) be the
solution of the Ricci flow with initial condition g. Then there exists a C > 0, such
that

|Kgt | <
C

1 + t
.

From this, one can obtain along the lines of ?? gives estimates for the higher order
derivatives of Kgt .

Proposition 5.7
Suppose (M, g) is a compact Riemannian surface with K̄ = 0. Let (gt)t∈[0,∞) be the
solution of the Ricci flow with initial condition g. Then there exists a C = C(k) > 0,
such that

|∇kKgt |2 <
C

(1 + t)k+2
.
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Arguing as in the K̄ < 0 case, these estimates imply the uniformization theorem for
K̄ = 0.

Theorem 5.8 [Uniformization for K̄ = 0]
Suppose (M, g) is a compact Riemannian surface with K̄ = 0. Then the Ricci flow
(gt)t∈[0,∞) with initial condition g converges polynomially fast to a flat metric.

More precisely, let ut be such that that gt = e2utg. Then there exists a uniform
limit u∞ = limt→∞ ut and

‖ut − u∞‖Ck(M) ≤
Ck

(1 + t)k+2
.

5.2 The case K̄ > 0

This case is significantly more difficult than the other two cases. Clearly, the upper bound
on the curvature

Kgt < Ce2K̄t

is of no use to establish convergence. We will see that in addition to analyzing the
curvature we will need to study the behavior of certain global invariants of the metric
evolving under the Ricci flow.

We will discuss two different proofs. First, we will sketch an argument given by Hamilton.
This argument is a particular example of a very powerful strategy in geometric flows and
relies on many results, which we are not able to discuss in detail. The second proof, due
to Andrews and Bryan, relies on a similar idea. However, their proof gives finer control
of the global invariant of the metric. This can in turn be used to control the curvature
in a way that is sufficient to establish exponential convergence, similarly as in the case
K̄ < 0 .

Hamilton’s approach

Compactness for Ricci flows and blow up limits

The extension theorem for Ricci flows has a straightforward generalization to arbitrary
dimension.

Theorem 5.9
Suppose M is a compact manifold, T ∈ R+ and (gt)t∈[0,T ) is a solution of the Ricci
flow on M .

If
sup

x∈M,0≤t<T
|Rmgt(x)| <∞,

then T is not the maximal time of existence.
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Now suppose that M is a compact manifold and (gt)t∈[0,Tmax) is a maximal solution of
the Ricci flow. If Tmax <∞, it follows that

sup
x∈M,0≤t<Tmax

|Rmgt(x)| =∞.

Pick an increasing sequence tn → Tmax and points xn such that

|Rmgtn (xn)| = sup
x∈M,t∈[0,tn]

|Rmgt(x)|.

Evidently, |Rmgtn (xn)| diverges as n→∞.

In the exercises, we saw that if (gt)t∈[0,T ] is a solution of the Ricci flow and λ ∈ R+, then

g̃t = λ2gt/λ

is also a solution of the Ricci flow on the interval [0, λT ].

We then choose λn = |Rmgtn (xn)| and define for every n a new Ricci flow

gnt = λ2
ngλn(t+tn)

for t ∈ [−tnλn, (T − tn)λn,).

Definition 5.10
Given a compact manifold M and (gt)t∈[0,Tmax), we will call the sequence of Ricci
flows (gnt )t a blow up sequence.

Notice that while we can always construct a blow up sequence, it is in no way unique!

Pictorially speaking, we are “zooming in” to the singularity using a microscope. This can
be helpful in understanding the behavior of the Ricci flow. Ideally, we would like to take
a limit of the solutions gn. We then expect that these limits are special solutions of the
Ricci flow, for example gradient solitons. If we can also classify such solitons, we have a
rather complete understanding of the Ricci flow.

We will see how this strategy can be applied for S2.

As a first step, we will mention a result due to Hamilton, which gives a sufficient condition
for when a sequence of Ricci flow solutions has a convergent subsequence.

To state this theorem, we first need to define convergence of Ricci flows.

Definition 5.11
Let −∞ ≤ T− ≤ 0 ≤ T+ ≤ ∞ and T− < T+.

Let (Mn, (g
n
t )t∈(T−,T+)) be a sequence of solutions of the Ricci flow and let xn ∈Mn.

Suppose that all of the metrics gnt are complete.

We say that (Mn(gnt )t, xn) converges to (M, (gt)t∈(T−,T+), x), if there exists

1. a sequence of open, precompact sets Ωn ⊂M exhausting M with x ∈ Ωn,
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2. smooth diffeomorphisms ϕn : Ωn → ϕ(Ωn) ⊂Mn with ϕn(xn) = x,

such that
∂lt∇k[ϕ∗ng

n
t − gt]

converges uniformly to 0 for all k, l ∈ N0 on every compact subset of M × (T,T+).

Remark 5.12. This definition should be compared to the definition of pointed Cheeger–
Gromov convergence:

A sequence (Mn, gn, xn) of complete Riemannian manifolds converges to (M, g, x) if there
exists

1. a sequence of open, precompact sets Ωn ⊂M exhausting M with x ∈ Ωn,

2. smooth diffeomorphisms ϕn : Ωn → ϕ(Ωn) ⊂Mn with ϕn(xn) = x,

such that
∇k[ϕ∗ng

n − g]

converges uniformly to 0 for all k ∈ N0 on every compact subset of M .

Hamilton proved the following theorem.

Theorem 5.13
Let −∞ ≤ T− ≤ 0 ≤ T+ ≤ ∞ and T− < T+.

Let (Mn, (g
n
t )t∈(T−,T+)) be a sequence of solutions of the Ricci flow and let xn ∈Mn.

Suppose every gnt is complete and suppose that

sup
n

sup
x∈Mn,t∈(T−,T+)

|Rmgnt (x)| <∞,

inf
n

inj(Mn, g
n
0 , xn) > 0.

Then there exists a manifoldM , a solution of the Ricci flow (gt)t∈(T−,T+) and x ∈M ,
and a subsequence, still denoted by (Mn, (g

n
t )t, xn), such that

(Mn, (g
n
t )t, xn)→ (M, g, x)

as n→∞.

Corollary 5.14
Let M be a compact Riemannian manifold and suppose that (gt)t∈[0,Tmax) is a max-
imal solution of the Ricci flow with Tmax < ∞. Suppose (gnt )t∈(Tn−,T

n
+) is a blow up

sequence for (gt)t. Then if

inf
n

inj(Mn, g
n
0 , xn) > 0,

then there exists a subsequence converging to a Ricci flow (M∞, (gt)t∈(−∞,T ), x),
where T > 0.
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Remark 5.15.

1. Notice that while M is compact, M∞ need not be compact.

2. We have the inequality

T ≤ sup
t∈[0,Tmax)

‖Rmg
t ‖L∞(M)(Tmax − t).

Moreover, if the right hand side is infinite, then T =∞.

If T <∞, the singularity is called a type I singularity.

If T =∞, the singularity is called a type II singularity.

3. If T <∞, the solution is called ancient.

4. If T =∞, then the solution is called eternal.

A key difficulty in using this theorem is to establish a lower bound for the injectivity
radius. This is difficult, because the injectivity radius is a global invariant. In contrast,
the maximum principle only gives information about local invariants. Indeed, one of the
key steps in Hamilton’s approach is to establish an estimate on the injectivity radius and
the related isoperimetric constant.

Let g be any metric on S2. Suppose that γ : S1 → S2 is smooth, simple curve. By Jor-
dan’s theorem, the complement of the curve γ in S2 consists of two connected components
Ω1 and Ω2. We then define the isoperimetric ratio (of the curve γ) by

CS(γ) = Lg(γ)2

(
1

Volg(Ω1)
+

1

Volg(Ω)

)
.

(This is equivalent, up to a multiplicative constant, to the more standard CS(γ) =
Lg(γ)2

min{Volg(Ω1),Volg(Ω2)} .)

Definition 5.16
The isoperimetric constant of (S2, g) is

CS(g) = inf{CS(γ) : γ : S1 → S2 smooth, simple curve}.

Note that CS(g) is scale invariant, i.e.

CS(λ2g) = CS(g)

for any λ > 0.

Theorem 5.17 [Hamilton]
Let (gt)t be a solution of the Ricci flow on S2. Then CS(gt) is an increasing function.
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Proposition 5.18
Let g be a Riemannian metric on S2. Then

inj(S2, g) ≥ π√
Kmax

min

{
1,

√
CS(g)

4π

}
,

where
Kmax = max

x∈S2
Kg(x).

Suppose g is a Riemannian metric on S2 and consider the associated Ricci flow (gt)t∈[0,Tmax).
By Hamilton’s result CS(gt) ≥ CS(g) for all t ∈ [0, Tmax).

Let us now consider a blow up sequence of (gt)t. Then CS(gnt ) ≥ CS(g), because CS is a
scale invariant quantity. Moreover, at time 0, we have

max
x∈M
|Kgn0

(x)| = 1

by construction.

In particular, there is a constant ε > 0 independent of n, such that

inj(S2, gn0 ) > ε.

Thus we can extract a blow up limit (M∞, (ĝt)t∈(−∞,T ), x). We now consider the possibil-
ities T <∞ and T =∞ separately.

If T =∞, then
sup

t∈[0,Tmax)

Kmax(gt)(Tmax − t) =∞.

Note that
Vol(S2, gt) = Vol(S2, g0)− 8πt = 8π(Tmax − t).

This implies
sup

t∈[0,Tmax)

Kmax(gt) Vol(S2, gt) =∞.

In particular, the blow up limit has Vol(M∞, ĝ0) =∞ and is thus non-compact.

Moreover, since there is a lower bound Kgt ≥ κ for some κ ∈ R, the blow up sequence
has a lower bound

Kgnt
=

κ

λn
,

where λn →∞. Hence the blow up limit has Kĝt ≥ 0.

A strong version of the maximum principle implies that if Kĝt(x) = 0 for some (x, t) ∈
M∞×(−∞,∞), then in factKĝt ≡ 0. However, this is impossible, because by construction

Kmax(ĝ0) = 1.

Summing up, (M∞, (ĝt)t∈(−∞,∞)) is an eternal solution of the Ricci flow with strictly
positive curvature. For such solutions, Hamilton proved the following theorem.
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Theorem 5.19
Let M be a simply-connected manifold and let (gt)t∈(−∞,∞) be a solution of the
Ricci flow on M with uniformly bounded curvature and strictly positive curvature
operator.

Then (gt)t is a steady gradient soliton.

In our case M∞ is also simply connected, because S2 is, and the curvature is bounded
by 0 < Kgt ≤ 1. Thus the theorem applies and our blow up limit is in fact a gradient
soliton.

It turns out that this solution has to be the cigar soliton. The cigar soliton is given by
the metric

1

1 + x2 + y2
(dx2 + dy2)

on R2.

Proposition 5.20
Any two-dimensional steady gradient soliton is isometric to the cigar soliton.

This is shown by first showing that the solution must be rotationally invariant, i.e. it has
an isometric action of S1. Then the soliton equation simplifies to an ordinary differential
equation. The solution of this equation can be explicitly calculated and corresponds to
the cigar soliton.

The cigar soliton is asymptotic to a cylinder and as such the isoperimetric constant of
the cigar soliton is 0. As we saw, the isoperimetric constant of the blow up limit (ĝt)t is
bounded below by CS(g) > 0. This is a contradiction and so we are in fact dealing with
a type I singularity.

In this case, one can show that the blow up limit (ĝt)t is a compact shrinking gradient
soliton.

Proposition 5.21
If (M, g,X) is a compact, two-dimensional Ricci soliton, then X = 0 and g is a
constant curvature metric.

Thus ĝ0 is in fact a round spherical metric on S2.

Theorem 5.22
For any initial metric g on the sphere S2, any blow up limit of the Ricci flow
(gt)t∈[0,Tmax) is a shrinking round sphere.

In particular if tn → Tmax, then Vol(S2, gtn)−1gtn converges uniformly in every Ck

norm to the round sphere of volume 1.
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We also mention the following result, which gives further insight into the behavior of the
2D Ricci flow.

Theorem 5.23 [Daskalopoulos–Hamilton–Sesum, 2012]
Let (gt)t∈(−∞,T ) be a solution of the Ricci flow on a compact manifold M . Then
M = S2 (gt)t is either the shrinking round sphere or the King–Rosenau solution.

The King–Rosenau solution will play an important role in the next section and will be
given explicitly there.

Andrews’ and Bryan’s approach

We now present an alternative, more detailled proof of convergence. In a way, the main
idea is very similar in that we also establish control on the isoperimetric constant. How-
ever, the information we obtain is stronger than in Hamilton’s proof and immediately
implies very strong curvature bounds, which allow us to proceed as in the case K̄ < 0.

Indeed, rather than studying the isoperimetric constant, we are going to look at the
isoperimetric profile.

Definition 5.24
Let (M, g) be a compact surface. The isoperimetric profile of (M, g) is the function
h : (0, 1)→ R+ defined via

hg(ξ) = inf{Lg(∂Ω) : Ω ⊂M,Volg(Ω) = ξVolg(M)},

where Ω runs over all domains in M with smooth boundary.

An obvious property of the isoperimetric profile function h is symmetry around 1/2:

hg(ξ) = hg(1− ξ).

Assuming M is a sphere and using the definition CS(γ) = Lg(γ)2

min{Volg(Ω1),Volg(Ω2)} , we also
find that

CS(g) = inf{hg(ξ)2/(ξVolg(M)) : 0 < ξ ≤ 1/2}.

It is also useful to consider the isoperimetric profile for the round sphere. For this we
note that the infimum h(ξ) is for ξ ∈ (0, 1) is attained by a domain whose boundary has
constant geodesic curvature. A priori the domain need not be connected. For a sphere
however, the optimal domains are spherical caps. An elementary exercise then shows

h(ξ) = 4π
√
ξ(1− ξ).

Andrews’ and Bryan’s approach may be summarised as follows:
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1. The isoperimetric profile of a metric evolving according to the normalized Ricci flow
can be compared to a solution of a certain one-dimensional parabolic PDE.

2. A rotationally invariant solution of the normalized Ricci flow gives rise to a solution
of this PDE.

3. There is an explicit ancient rotationally invariant solution of the normalized Ricci
flow, called the King–Rosenau solution or Sausage model. The solution of the
comparison PDE can also be explicitly determined and this yields a bound for the
isoperimetric profile of any solution of the normalized Ricci flow.

4. There is an approximation of the isoperimetric profile for small ξ in terms of the
maximum of the curvature and the volume of the surface. Feeding the lower bound
for the isoperimetric profile back into the approximation, we obtain an upper bound
on the curvature of the solution. This upper bound is sufficiently tight to imply
convergence.

We begin with the comparison principle for the isoperimetric profile.

Theorem 5.25
Let ϕ : (0, 1)× [0,∞)→ R+ be a smooth function, which satisfies

1. ξ 7→ ϕ(ξ, t) is strictly concave for every t ∈ [0,∞),

2. lim supξ↘0
ϕ(ξ,t)

4π
√
ξ
< 1 for every t ∈ [0,∞),

3. ∂tϕ < 1
(4π)2

(ϕ2∂ξ∂ξϕ− ϕ(∂ξϕ)2) + ϕ+ (∂ξϕ)(1− 2ξ) on (0, 1)× [0,∞).

Suppose (gt)t∈[0,∞) is a solution of the normalized Ricci flow on S2 with Vol(S2, gt) =
4π. If

hg0(ξ) > ϕ(ξ, 0) for every ξ ∈ (0, 1),

then
hgt(ξ) > ϕ(ξ, t) for every (ξ, t) ∈ (0, 1)× [0,∞).

The proof is somewhat lengthy, as may be expected from the definition of the isoperimet-
ric profile. To manipulate this quantity, we need to understand how areas of domains and
lengths of curves change under variation of the domain or curve and also under variation
of the Riemannian metric. This is contained in the following two lemmas.

Lemma 5.26
Let M be a surface and let (gt)t∈(−ε,ε) be a smooth family of Riemannian metrics.

If Ω is a domain in M , then

d

dt

∣∣∣
t=0

Volgt(Ω) =
1

2

ˆ
Ω

trg0(∂t|t=0gt) volg0 .
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In particular, if gt is a solution of the normalized Ricci flow

d

dt

∣∣∣
t=0

Volgt(Ω) = −
ˆ

Ω

(Kg0 − K̄) volg0 .

If γ : [a, b]→M is a smooth curve, then

d

dt

∣∣∣
t=0
Lgt(γ) =

ˆ b

a

∂t|t=0gt(γ̇(s), γ̇(s))

2
√
g0(γ̇(s), γ̇(s))

ds.

In particular, if gt is a solution of the normalized Ricci flow

d

dt

∣∣∣
t=0
Lgt(γ) = −

ˆ b

a

(Kg0 − K̄)
√
g0(γ̇, γ̇)ds = −

ˆ
γ

(Kg0 − K̄)dsg0 .

Lemma 5.27
Let (M, g) be a Riemannian surface. Suppose Ω is a domain inM with C1 boundary
γ : S1 →M . Let ν be the outward pointing vector field along γ. If f : S1 → R is a
smooth function, then we can define a family of curves γt via

γt(s) = expγ(t)(tf(s)ν(s)).

Let Ωt be the corresponding domain bounded by γt.

Then
d

ds

∣∣∣
s=0

Lg(γs) =

ˆ
γ

kγfds

and
d

ds

∣∣∣
s=0

Volg(Ωs) =

ˆ
γ

fds.

Proof of theorem 5.25: We argue by contradiction.

If the theorem were false, there would exist a function ϕ : (0, 1) × [0,∞) → R
satisfying conditions 1.–3. and (gt)t∈[0,∞) a solution of the normalized Ricci flow
on S2 with function hg0 is strictly larger than the function ϕ(ξ, 0) and nevertheless

hgt0 (ξ0) ≤ ϕ(ξ0, t0)

for some ξ0 ∈ (0, 1) and t0 > 0. Since hgt(ξ) depends continuously on both
variables, we may assume hgt0 (ξ0) = ϕ(ξ0, t0). Moreover, we assume that for all
t < t0, the inequality

hgt(ξ) > ϕ(ξ, t)

holds, i.e. that t0 is the first time there is equality.

This will lead to a contradiction. To this end, let Ω0 be a domain of M with
Volgt0 (Ω0) = 4πξ0 and Lgt0 (∂Ω0) = ϕ(ξ0, t0). One can show that such a domain
exists, is connected and has smooth boundary. On S2, such a domain will also
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be simply connected. (See theorem 1 of [1].) Let γ0 : S1 → S2 be the boundary
curve of Ω0.

We can now get information about ϕ in two ways: one, we will consider variations
of t, i.e. of the metric. Two, we will consider variations of the domain, i.e. of the
boundary curve γ. In the first case, this means using the Ricci flow equation, in
the second this means using the definition of the isoperimetric profile. These two
sources are responsible for the differential inequality.

By assumption hgt(ξ) ≥ ϕ(ξ, t) for all t ≤ t0. Together with the definition of the
isoperimetric profile, this implies

L(t) ≥ hgt(V (t)) ≥ ϕ(V (t), t)

for all t ≤ t0 and by choice of Ω0

L(t0) = hgt0 (V (t0)) = ϕ(V (t0), t0),

where L(t) = Lgt(γ0) and V (t) = Volgt(Ω0)/(4π). We record also that

V (t0) = ξ0.

Taking the derivative, we obtain

L′(t0) ≤ ∂t|t=t0ϕ(V (t), t) = (∂tϕ)(V (t), t) + (∂ξϕ)(V (t), t)V ′(t0).

Using the lemma, we have

L′(t0) = −
ˆ
γ0

(Kgt0
− K̄)dsγ0 = L(t0)−

ˆ
γ0

Kgt0
dsγ0

and

V ′(t0) = − 1

2π

ˆ
Ω0

(Kgt0
− K̄) volgt0 =

1

2π
Volgt0 (Ω0)− 1

2π

ˆ
Ω0

Kgt0
volgt0 .

Note that the assumption Volgt(S
2) = 4π implies K̄ = 1. We remarked that Ω0

is connected and simply connected, so that χ(Ω0) = 1. Thus, by Gauß–Bonnet
theorem we have ˆ

Ω0

Kgt0
volgt0 = 2π −

ˆ
γ0

kγ0dsgt0 .

Since V (t0) = ξ0 and L(t0) = ϕ(ξ0, t0), we have the inequality

ϕ(ξ0, t0)−
ˆ
γ0

Kgt0
dsγ0 ≤ (∂tϕ)(ξ0, t0) + (∂ξϕ)(ξ0, t0)

(
2ξ0 − 1 +

1

2π

ˆ
γ0

kγ0dsgt0

)
.

Next, we consider variations in the domain. To this end, suppose γδ is a family of
curves with γ0 as before. Then γδ also bounds a domain Ωδ. We define

L̂(δ) = Lgt0 (γδ) and V̂ (δ) = Volgt0 (Ωδ)/(4π).
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From the definition of the isoperimetric profile, we see that

L̂(δ) ≥ hgt0 (V̂ (δ)) ≥ ϕ(V̂ (δ), t0)

and
L̂(0) = hgt0 (V̂ (0)) = ϕ(V̂ (0), t0).

This implies

L̂′(0) = ∂δ|δ=0ϕ(V̂ (δ), t0) = (∂ξϕ)(V̂ (0), t0)V̂ ′(0)

and
L̂′′(0) ≥ (∂ξ∂ξϕ)(V̂ (0), t0)(V̂ ′(0))2 + (∂ξϕ)(ξ0, t0)V̂ ′′(0).

Supposing that
γδ(s) = expγ(s)(tf(s)ν(s)),

the lemma from before gives

L̂′(δ) =

ˆ
γδ

kγδfdsgt0

and
V̂ ′(δ) =

1

4π

ˆ
γδ

fdsgt0 .

In conclusion, we obtain
ˆ
γ0

kγ0fdsgt0 = (∂ξϕ)(ξ0, t0)
1

4π

ˆ
γ0

fdsgt0 .

Since this holds for every f , this relation implies

kγ0 =
1

4π
(∂ξϕ)(ξ0, t0).

Now suppose f ≡ 1. Then V̂ ′(δ) = 1
4π
L̂(δ) and so

V̂ ′′(0) = L̂′(0) =
1

4π

ˆ
γ0

kγ0dsγ0 =

(
1

4π

)2

(∂ξϕ)(ξ0, t0)ϕ(ξ0, t0).

To compute the second derivative of L̂, we first apply Gauß–Bonnet to obtain

L̂′(δ) =

ˆ
γδ

kγδdsgt0 = 2π −
ˆ

Ω(δ))

Kgt0
volgt0 .

Then by the lemma

L̂′′(0) = −
ˆ
γ0

Kgt0
dsgt0 .

Thus

−
ˆ
γ0

Kgt0
dsgt0 ≥ (∂ξ∂ξϕ)(ξ0, t0)

(
ϕ(ξ0, t0)

4π

)2

+(∂ξϕ)(ξ0, t0)

(
1

4π

)2

(∂ξϕ)(ξ0, t0)ϕ(ξ0, t0)
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or equivalently

−
ˆ
γ0

Kgt0
dsgt0 ≥

(
1

4π

)2 [
(∂ξ∂ξϕ)ϕ2 + (∂ξϕ)2ϕ

]
(ξ0, t0).

The computation of the mean curvature of γ0 simplifies the first boxed inequality
to

∂tϕ ≥ ϕ+ (∂ξϕ)(1− 2ξ0)− 1

8π2
(∂ξϕ)2ϕ−

ˆ
γ0

Kgt0
dsγ0 .

Now applying the second boxed inequality, we obtain

∂tϕ ≥ ϕ+ (∂ξϕ)(1− 2ξ0)− 1

8π2
(∂ξϕ)2ϕ+

(
1

4π

)2 [
(∂ξ∂ξϕ)ϕ2 + (∂ξϕ)2ϕ

]
=

(
1

4π

)2 (
(∂ξ∂ξϕ)ϕ2 − (∂ξϕ)2ϕ

)
+ ϕ+ (1− 2ξ0)(∂ξϕ)

at (ξ0, t0). This is a contradiction to the assumption

∂tϕ <

(
1

4π

)2 (
(∂ξ∂ξϕ)ϕ2 − (∂ξϕ)2ϕ

)
+ ϕ+ (1− 2ξ)(∂ξϕ).

Definition 5.28
A metric g on S2 is called rotationally symmetric, if there is an isometric S1 action
on (S2, g).

There are two exceptional orbits, which consist of one point each. These points are
called the poles of (S2, g). The regular orbits are called latitude circles.

Suppose (S2, g) is rotationally symmetric. The collection of orbits of S1 can be parametrized
by the closed interval [0, π]. More explicitly, we have a map φ : S2 → [0, π], such that
φ−1(s) is a latitude circle if s ∈ (0, 1) and φ−1(0) and φ−1(1) are the poles.

We can then consider the function

L : [0, π]→ R+

s 7→ Lg(φ
−1(s)),

which computes the length of the latitude circles, and the map

A : [0, π]→ R+

s 7→ Volg(φ
−1([0, s])),

which computes the area of the disk consisting of the latitude circles parametrized by the
interval [0, s].
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The function A is strictly increasing. Moreover, we may assume that Volg(S
2) = 4π, so

that A is an invertible function [0, π]→ [0, 4π].

With this in mind, we define the function

ϕg : [0, 1]→ R+

ϕg(ξ) = L(A−1(4πξ)).

Theorem 5.29
Suppose (gt)t∈[0,∞) is a rotationally symmetric solution of the normalized Ricci flow
on S2 with Vol(S2, gt) = 4π. Consider the function ϕ(ξ, t) = ϕgt(ξ).

Then
∂tϕ =

1

(4π)2

(
ϕ2∂ξ∂ξϕ− ϕ(∂ξϕ)2

)
+ ϕ+ (∂ξϕ)(1− 2ξ).

Corollary 5.30
Suppose (gt)t∈[0,∞) is a rotationally symmetric solution of the normalized Ricci flow
on S2 with positive Gauss curvature. Consider the function ϕ(ξ, t) = ϕgt(ξ).

Suppose that (ĝt)t∈[0,∞) is another solution of the normalized Ricci flow on S2. If
the isoperimetric profile of ĝt satisfies hg0(ξ) ≥ ϕ(ξ, 0) for all ξ ∈ (0, 1), then for
ξ ∈ (0, 1) and t ∈ [0,∞), we have

hgt(ξ) ≥ ϕ(ξ, t).

Sketch of the proof: First, one shows that ϕgt is actually concave for every t, because of
the positivity of the Gauss curvature.

Next, for ε ∈ (0, 1) the function (1 − ε)ϕ is considered. It can be seen that this
function satisfies the assumptions of theorem 5.25 and thus

hgt(ξ) ≥ (1− ε)ϕ(ξ, t)

holds for every ε ∈ (0, 1). Passing to the limit ε→ 0 yields the corollary.

To apply the theorem, we need a rotationally symmetric solution of the normalized Ricci
flow on S2 with positive curvature. Such a solution is furnished by the King–Rosenau
solution or sausage model. The descriptive second name stems from the fact that far in
the past the solution looks like two cigar solitons glued together.

Note that since it is a solution on S2 we already know that the solution of the Ricci flow
has a finite time singularity, i.e. the solution is at best ancient. Of course, the normalized
solution is in fact defined up to infinite time.

In fact the King–Rosenau solution is an ancient solution and we can describe it explicitly
as the metric

gt =
sinh(e−2t)

2e−2t (cosh(z) + cosh(e−2t))

(
dz2 + dθ2

)
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on R × S1, where z denotes the coordinate on R and θ denotes the coordinate on S1 =
[0, 4π]/0 ∼ 4π. The metrics gt extend smoothly to a metric on the sphere S2 of volume
4π and solve the normalized Ricci flow equation.

The function ϕKR(ξ, t) for this solution can be compute explicitly and according to
Andrews and Bryan it is given by

ϕKR(ξ, t) = 4π

√
sinh(ξe−2t) sinh((1− ξ)e−2t)

sinh(e−2t)e−2t
.

Proposition 5.31
For any isoperimetric profile hg of a metric g on S2 with volume 4π, there exists a
t0, such that for all ξ ∈ (0, 1) the following inequality holds

hg(ξ) ≥ ϕKR(ξ, t0).

Proof idea: For any ξ ∈ (0, 1) one hase

ϕKR(ξ, t)→ 0

as t→ −∞. Thus for individual ξ, there always exists a t(ξ) ∈ R, such that

hg(ξ) ≥ ϕKR(ξ, t(ξ)).

In fact, t(ξ) can be chosen as a continuous function (0, 1)→ R ∪ {∞}.
Analysing the behavior at the endpoints yields a continuous extension of t(ξ) onto
the interval [0, 1]. By compactness, this gives a uniform lower bound for t(ξ). This
uniform lower bound is a valid choice for t0.

Theorem 5.32
Let (gt)t∈[0,∞) be a solution of the normalized Ricci flow on S2 with volume 4π.
Then there exists a t0 ∈ R, such that

hgt(ξ) ≥ ϕKR(ξ, t+ t0).

Theorem 5.33
Let (M, g) be a compact Riemannian surface. Then the isoperimetric profile has the
expansion

hg(ξ) =
√

4πVolg(M)ξ1/2 −
(

1

4
√
π

Volg(M)3/2 sup
x∈M

Kg(x)

)
ξ3/2 +O(ξ2)

as ξ ↘ 0.

Proof: This is shown by establishing ≤ and ≥ up to O(ξ2) in the expansion above. Recall
that the definition of hg(ξ) is via an infimum over domains. This means that “≤”
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can be shown by a good choice of domain. It turns out that small metric balls do
the job, because one has the following asymptotic formulas for the area of metric
balls

Volg(Br(x)) = πr2

(
1− Kg(x)

12
r2 +O(r4)

)
and the length of their boundary

Lg(∂Br(x)) = 2πr

(
1− Kg(x)

6
r2 +O(r4)

)
in a Riemannian surface (M, g) for r ↘ 0.

Not surprisngly, for ≥ one needs deeper results. The Bol-Fiala inequality says
that if (M, g) is simply connected and has curvature bounded above by κ, then
for any smooth domain Ω ⊂M one has

Lg(∂Ω)2 ≥ 4πVolg(Ω)− κVolg(Ω)2.

Now let ξ be sufficiently small, so that hg(ξ) is smaller than the injectivity radius.
This implies that the optimal domain Ω lies wholly in a geodesic ball, which is
diffeomorphic to a disk and hence simply connected. Thus the Bol-Fiala inequality
applies and we get

(hg(ξ))
2 = Lg(∂Ω)2 ≥ 4πξVolg(M)− sup

M
K(ξVolg(M))2.

Now use the expansion√
αx− βx2 =

√
αx1/2 − β

2
√
α
x3/2 +O(x2)

to obtain

hg(ξ) ≥
√

4πVolg(M)ξ1/2 − supM Kξ

4
√
πVolg(M)

ξ3/2 +O(ξ2).

Corollary 5.34
Let (gt)t∈[0,∞) be a solution of the normalized Ricci flow on S2 and assume that the
volume Vol(S2, gt) is 4π.

Then there exists t0 ∈ R, such that

Kgt(x) ≤ coth(e−2(t+t0))e−2(t+t0) ≤ 1 +
1

2
e−4(t+t0).

Proof: Let t0 ∈ R be as in theorem 5.32, so that

hgt(ξ) ≥ ϕKR(ξ, t+ t0)
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for every t ≥ 0.
By an exercise, we have the asymptotic expansion

ϕKR(ξ, t) = 4πξ1/2

(
1− 1

2
exp(−2t) coth(e−2t)ξ +O(ξ2)

)
as ξ → 0 and by theorem 5.33 we have

hgt(ξ) = 4πξ1/2 −
(

1

4
√
π

(4π)3/2 sup
x∈M

Kgt(x)

)
ξ3/2 +O(ξ2).

Thus the difference hgt(ξ)− ϕKR(ξ, t+ t0) has the expansion(
2π exp(−2(t+ t0)) coth(e−2(t+t0))− 1

4
√
π

(4π)3/2 sup
x∈M

Kgt(x)

)
ξ3/2 +O(ξ2).

Since hgt(ξ) ≥ ϕKR(ξ, t+ t0), this implies

sup
x∈M

Kgt(x) ≤ e−2(t+t0) coth(e−2(t+t0)).

By an exercise

coth(e−t)e−t ≤ 1 +
1

2
e−2t

and so
sup
x∈M

Kgt(x) ≤ 1 +
1

2
e−4(t+t0).

Applying Gauß–Bonnet gives

0 =

ˆ
M

Kgt − 1 volgt

=

ˆ
Kgt≥1

Kgt − 1 volgt +

ˆ
Kgt<1

Kgt − 1 volgt

≤ 1

2
e−4(t+t0) +

ˆ
Kgt<1

Kgt − 1 volgt ,

or equivalently ˆ
Kgt<1

|Kgt − 1| volgt ≤
1

2
e−4(t+t0).

Hence ˆ
M

|Kgt − 1| volgt ≤ e−4(t+t0).

Using that the derivatives of Kgt remain uniformly bounded along the flow and the
Gagliardo–Nirenberg inequality

‖∇kK‖L∞(M) ≤ C‖Kgt − 1‖(k+2)/(m+2)

L1(M) ‖∇mKgt‖(k+2)/(m+2)

one obtains exponential decay. (Note that the constant C in this inequality depends on
isoperimetric constant, which is controlled by the isoperimetric profile.)
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