Introduction to the Ricci Flow

WS 2019/2020
Exercise Sheet 13

Each exercise gives two points for a total of eight points on this sheet.

1. Let g be the round metric on the sphere S^{2}. For $\theta \in(0, \pi)$ and $\varphi \in(0,2 \pi)$, we define spherical coordinates on S^{2} via

$$
\begin{gathered}
x=\sin (\theta) \cos (\varphi), \\
y=\sin (\theta \sin (\varphi), \\
z=\cos (\theta) .
\end{gathered}
$$

(a)Show that $g=d \theta^{2}+\sin (\theta)^{2} d \varphi^{2}$.
(b)Show that $\Delta_{g} f=\frac{\partial^{2} f}{\partial \theta^{2}}+\frac{1}{\sin (\theta)^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\cot (\theta) \frac{\partial f}{\partial \theta}$.
2. Let g be the round metric on S^{2} and let u_{t} be a family of smooth functions on S^{2}, each depending only on $\theta=\cos (z)$.
Show that $g_{t}=e^{2 u_{t}} g$ satisfies the Ricci flow equation, if

$$
\partial_{t} u_{t}=e^{-2 u_{t}}\left(\frac{\partial u_{t}}{\partial \theta}+\cot (\theta) \frac{\partial u_{t}}{\partial \theta}-1\right) .
$$

3. Let (M, g) be a compact Riemannian surface. The isoperimetric profile of (M, g) is the function

$$
h(\xi)=\inf \left\{L_{g}(\partial \Omega): \Omega \subset M, \partial \Omega \in C^{1}, \operatorname{Vol}_{g}(\Omega)=\xi \operatorname{Vol}_{g}(M)\right\}
$$

defined for $\xi \in(0,1)$. Now consider the standard round sphere $\left(S^{2}, g\right)$. Assume without proof that the infimum is attained by a connected domain, whose boundary has constant geodesic curvature. Show that

$$
h(\xi)=4 \pi \sqrt{\xi(1-\xi)} .
$$

4. (Calculations related to the isoperimetric profile of the King-Rosenau solution)
(a)Let $\varphi_{K R}:(0,1) \times[0, \infty) \rightarrow \mathbb{R}_{+}$be the function

$$
\varphi_{K R}(\xi, t)=4 \pi \sqrt{\frac{\sinh \left(\xi e^{-2 t}\right) \sinh \left((1-\xi) e^{-2 t}\right)}{\sinh \left(e^{-2 t}\right) e^{-2 t}}} .
$$

Show that

$$
\varphi_{K R}(\xi, t)=4 \pi(\xi)^{1 / 2}\left(1-\frac{1}{2} \exp (-2 t) \operatorname{coth}\left(e^{-2 t}\right) \xi+O\left(\xi^{2}\right)\right)
$$

as $\xi \rightarrow 0$.
(b)Let $f(t)=\operatorname{coth}\left(e^{-t}\right) e^{-t}$. Show that

$$
f(t) \leq 1+\frac{1}{2} e^{-2 t} .
$$

