Introduction to the Ricci Flow

WS 2019/2020
Exercise Sheet 3

Each exercise gives two points for a total of eight points on this sheet.

1. Prove the following theorem from the lecture: Let M be a closed manifold and suppose g is a Riemannian metric on M. Then there exists a unique, maximal solution $\left(g_{t}\right)_{t \in\left[0, T_{\max }\right)}$ of the Ricci flow with initial value g.
Hint: Consider the set of all solutions of the Ricci flow with initial value g. This set is non-empty by the short time existence theorem. This set can be given a partial order by comparing the length of the interval, on which the flow exists. More precisely, let $\left(g_{t}^{1}\right)_{t \in\left[0, T_{1}\right)}$, $\left(g_{t}^{2}\right)_{t \in\left[0, T_{2}\right)}$ be two solutions with initial value g. Then we define a partial order \preceq by

$$
\left(g_{t}^{1}\right)_{t \in\left[0, T_{1}\right)} \preceq\left(g_{t}^{2}\right)_{t \in\left[0, T_{2}\right)}: \Leftrightarrow T_{1} \leq T_{2} .
$$

The lemma of Zorn can then be applied to show that a maximal solution exists. Finally, conclude it must be unique.
2. (Conformal Laplacian) Let (M, g) be a n-dimensional Riemannian manifold.
(a)Let $u \in \mathcal{C}^{\infty}(M)$ and $\tilde{g}=e^{2 u} g$. Show that

$$
R_{g}=e^{-2 u}\left(2(n-1) \Delta_{g} u+(2-n)(n-1)|d u|_{g}^{2}+R_{g}\right)
$$

Hint: Use the formula for the sectional curvature from last sheet. Note that

$$
R_{g}=\sum_{i=1}^{n} \sum_{\substack{j=1, j \neq i}}^{n} \sec _{g}\left(e_{i}, e_{j}\right)
$$

for any orthogonal basis e_{1}, \ldots, e_{n}.
(b)Suppose $n \geq 3$. The conformal Laplacian L_{g} is the differential operator

$$
L_{g} f=4 \frac{n-1}{n-2} \Delta_{g} f+R_{g} f .
$$

Let $v \in \mathcal{C}^{\infty}(M)$ and $\tilde{g}=v^{\frac{4}{n-2}} g$. Show that

$$
R_{\tilde{g}}=v^{-\frac{n+2}{n-2}} L_{g} v
$$

3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and let $\alpha \in(0,1)$.
(a)Show that if $u, v \in C^{\alpha}(\Omega)$ then $u v \in C^{\alpha}(\Omega)$ and

$$
\|u v\|_{C^{\alpha}(\Omega)} \leq\|u\|_{C^{\alpha}(\Omega)}\|v\|_{C^{\alpha}(\Omega)} .
$$

(b)Show that if $u \in C^{\alpha}(\Omega)$, then $\exp \circ u \in C^{\alpha}(\Omega)$ and

$$
\|\exp \circ u\|_{C^{0}(\Omega)} \leq \exp \left(\|u\|_{C^{0}(\Omega)}\right)
$$

and

$$
[\exp \circ u]_{\alpha} \leq \exp \left(\|u\|_{C^{0}(\Omega)}\right)[u]_{\alpha} .
$$

4. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and let $\alpha \in(0,1)$. Furthermore, suppose $K \in C^{\alpha}(\Omega)$. Define

$$
\begin{gathered}
N: C^{2, \alpha}(\Omega) \rightarrow C^{\alpha}(\Omega) \\
u \mapsto\left(1-e^{-2 u}\right) \Delta_{g} u+K e^{-2 u} .
\end{gathered}
$$

(a)Show that N is well-defined.
(b)Show that there exists a $C>0$, such that

$$
\|N(u)\|_{C^{\alpha}(\Omega)} \leq C \exp \left(2\|u\|_{C^{0}(\Omega)}\right)\left(1+\|u\|_{C^{\alpha}(\Omega)}\right)\left(1+\|u\|_{C^{2, \alpha}(\Omega)}\right)
$$

for all $u \in C^{2, \alpha}(\Omega)$.
(c)Show that there exists a $C>0$ and a continuous function $F: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\|N(u)-N(v)\|_{C^{\alpha}(\Omega)} \leq C F\left(\|u\|_{C^{\alpha}(\Omega)}+\|v\|_{C^{\alpha}(\Omega)}\right)\left(\|u-v\|_{C^{2, \alpha}}\right)
$$

for all $u, v \in C^{2, \alpha}(\Omega)$.
Hint: Use the formula

$$
e^{u}-e^{v}=e^{v}\left(e^{u-v}-1\right)=e^{v} \frac{e^{u-v}-1}{u-v}(u-v) .
$$

