Introduction to the Ricci Flow ws 2019/2020

EXERCISE SHEET 5

Each exercise gives two points for a total of eight points on this sheet.

1. Let (M,g) be a Riemannian manifold. Show that for any $\alpha \in \Gamma(T^*M)$ and $X, Y, Z \in \Gamma(TM)$, the following formula holds

$$[R(X,Y)\alpha](Z) = -\alpha(R(X,Y)Z).$$

On the right hand side, R is the curvature of the induced connection, i.e.

$$R(X,Y)\alpha = \nabla_X^g \nabla_Y^g \alpha - \nabla_Y^g \nabla_X^g \alpha - \nabla_{[X,Y]}^g \alpha.$$

2. Let (M, g) be a Riemannian manifold and $f \in C^2(M)$. Let e_1, \ldots, e_n be an orthonormal frame of TM, i.e. local vector fields, such that $g(e_i, e_j) \equiv 1$. Then

$$\sum_{i=1}^{n} \operatorname{Hess}_{g}(f)(\nabla_{X}^{g}e_{i}, e_{i}) = 0$$

for any $X \in \Gamma(TM)$.

Hint: Expand

$$\nabla_X^g e_i = \sum_{j=1}^n g(\nabla_X^g e_i, e_j).$$

Use the symmetry of $\operatorname{Hess}_q(f)$ and that

$$0 = Xg(e_i, e_j) = g(\nabla_X^g e_i, e_j) + g(e_i, \nabla_X^g e_j).$$

3. (Counts as two exercises.)

Denote by $\langle \cdot, \cdot \rangle_0$ the standard inner product on \mathbb{R}^n . The associated volume form is

$$\operatorname{vol}_0(v_1,\ldots,v_n) = \det(A),$$

where A is the matrix satisfying $Ae_i = v_i$.

Now suppose that $\langle \cdot, \cdot \rangle$ is any other standard inner product on \mathbb{R}^n . There exists a symmetric endomorphism $B : \mathbb{R}^n \to \mathbb{R}^n$, such that

$$\langle v, w \rangle = \langle Bv, Bw \rangle.$$

(a)Show that the volume form vol associated to $\langle \cdot, \cdot \rangle$ satisfies

$$\operatorname{vol} = \det(B) \operatorname{vol}_0$$

(Recall that vol is uniquely specified by the condition

$$\operatorname{vol}(e_1,\ldots,e_n) = 1$$

for any oriented $\langle \cdot, \cdot \rangle$ -orthonormal basis.)

(b)Suppose that $(\langle \cdot, \cdot \rangle_t)_{t \in (a,b)}$ is a smooth family of inner products on \mathbb{R}^n . We denote the time derivative by β_t , i.e.

$$\beta_t(v,w) = \frac{d}{dt} \langle v, w \rangle_t.$$

The trace of β_t with respect to $\langle\cdot,\cdot\rangle_t$ is defined to be

$$\operatorname{tr}_t(\beta_t) = \sum_{i=1}^n \beta_t(e_i, e_i),$$

where e_1, \ldots, e_n is an orthonormal basis with respect to $\langle \cdot, \cdot \rangle_t$. Show that

$$\frac{d}{dt}\operatorname{vol}_t = \frac{1}{2}\operatorname{tr}_t(\beta_t)\operatorname{vol}_t.$$

Hint: You may assume that

$$\langle v, w \rangle_t = \langle B_t v, B_t w \rangle$$

for a smooth family of symmetric endomorphisms $B_t : \mathbb{R}^n \to \mathbb{R}^n$. Then apply (a).