Introduction to the Ricci Flow

WS 2019/2020
Exercise Sheet 5

Each exercise gives two points for a total of eight points on this sheet.

1. Let (M, g) be a Riemannian manifold. Show that for any $\alpha \in \Gamma\left(T^{*} M\right)$ and $X, Y, Z \in$ $\Gamma(T M)$, the following formula holds

$$
[R(X, Y) \alpha](Z)=-\alpha(R(X, Y) Z)
$$

On the right hand side, R is the curvature of the induced connection, i.e.

$$
R(X, Y) \alpha=\nabla_{X}^{g} \nabla_{Y}^{g} \alpha-\nabla_{Y}^{g} \nabla_{X}^{g} \alpha-\nabla_{[X, Y]}^{g} \alpha .
$$

2. Let (M, g) be a Riemannian manifold and $f \in C^{2}(M)$. Let e_{1}, \ldots, e_{n} be an orthonormal frame of $T M$, i.e. local vector fields, such that $g\left(e_{i}, e_{j}\right) \equiv 1$. Then

$$
\sum_{i=1}^{n} \operatorname{Hess}_{g}(f)\left(\nabla_{X}^{g} e_{i}, e_{i}\right)=0
$$

for any $X \in \Gamma(T M)$.
Hint: Expand

$$
\nabla_{X}^{g} e_{i}=\sum_{j=1}^{n} g\left(\nabla_{X}^{g} e_{i}, e_{j}\right)
$$

Use the symmetry of $\operatorname{Hess}_{g}(f)$ and that

$$
0=X g\left(e_{i}, e_{j}\right)=g\left(\nabla_{X}^{g} e_{i}, e_{j}\right)+g\left(e_{i}, \nabla_{X}^{g} e_{j}\right)
$$

3. (Counts as two exercises.)

Denote by $\langle\cdot, \cdot\rangle_{0}$ the standard inner product on \mathbb{R}^{n}. The associated volume form is

$$
\operatorname{vol}_{0}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}(A),
$$

where A is the matrix satisfying $A e_{i}=v_{i}$.
Now suppose that $\langle\cdot, \cdot\rangle$ is any other standard inner product on \mathbb{R}^{n}. There exists a symmetric endomorphism $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that

$$
\langle v, w\rangle=\langle B v, B w\rangle .
$$

(a)Show that the volume form vol associated to $\langle\cdot, \cdot\rangle$ satisfies

$$
\operatorname{vol}=\operatorname{det}(B) \operatorname{vol}_{0} .
$$

(Recall that vol is uniquely specified by the condition

$$
\operatorname{vol}\left(e_{1}, \ldots, e_{n}\right)=1
$$

for any oriented $\langle\cdot, \cdot\rangle$-orthonormal basis.)
(b)Suppose that $\left(\langle\cdot, \cdot\rangle_{t}\right)_{t \in(a, b)}$ is a smooth family of inner products on \mathbb{R}^{n}. We denote the time derivative by β_{t}, i.e.

$$
\beta_{t}(v, w)=\frac{d}{d t}\langle v, w\rangle_{t} .
$$

The trace of β_{t} with respect to $\langle\cdot, \cdot\rangle_{t}$ is defined to be

$$
\operatorname{tr}_{t}\left(\beta_{t}\right)=\sum_{i=1}^{n} \beta_{t}\left(e_{i}, e_{i}\right),
$$

where e_{1}, \ldots, e_{n} is an orthonormal basis with respect to $\langle\cdot, \cdot\rangle_{t}$.
Show that

$$
\frac{d}{d t} \operatorname{vol}_{t}=\frac{1}{2} \operatorname{tr}_{t}\left(\beta_{t}\right) \operatorname{vol}_{t} .
$$

Hint: You may assume that

$$
\langle v, w\rangle_{t}=\left\langle B_{t} v, B_{t} w\right\rangle
$$

for a smooth family of symmetric endomorphisms $B_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then apply (a).

