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EXERCISE SHEET 9

Each exercise gives two points for a total of eight points on this sheet.

1. Let M be a compact surface. A smooth family of metrics (g¢)e[o,7 is a solution of the
normalized Ricci flow, if
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Show that the volume is constant in time along the normalized Ricci flow, i.e.

d
% /M VOlgt =0.

Remark. By the Gaufi—Bonnet theorem
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2. Let M be a compact surface and suppose that (g¢)co,7] is a solution of the normalized

Ricci flow. Compute 9, K, and 9|dK,|2,.

is also independent of ¢, so that

is actually constant in time.

3. Let M be a compact surface and suppose that (gt)te[o,T] is a solution of the normalized
Ricci flow. Suppose moreover that K, > 0. Now define L; = log K, .

Show that
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4. Let M be a compact surface and suppose that (gt)te[o,T] is a solution of the Ricci flow.

Show that
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