Aufgabe 1 ($\mathbb{R} \not\approx \mathbb{R}^n$) (4 Punkte)

Zeigen Sie, dass \mathbb{R} und \mathbb{R}^n , $n \geq 2$, nicht homöomorph sind.

Aufgabe 2 (Umlaufzahl) (4 Punkte)

Sei $\gamma \in C^0(I, \mathbb{R}^2)$, I = [a, b], ein geschlossener Weg, also $\gamma(a) = \gamma(b)$.

- (1) Definieren Sie für $z_0 \notin \gamma(I)$ die Umlaufzahl $n(\gamma, z_0) \in \mathbb{Z}$.
- (2) Zeigen Sie, dass $n(\gamma, \cdot)$ auf den Komponenten von $\mathbb{R}^2 \setminus \gamma(I)$ konstant ist.

Aufgabe 3 (Fundamentalsatz der Algebra) (4 Punkte)

Jedes Polynom $p(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_0$ mit $a_k \in \mathbb{C}$ hat eine Nullstelle in \mathbb{C} . Hinweis. Betrachten Sie die Umlaufzahl von $\gamma_r(t) = p(re^{it})$ bzgl. des Nullpunkts. Verwenden Sie $p(z) \approx z^n$ für $|z| \gg 1$.

Aufgabe 4 (nullhomotope Abbildungen) (4 Punkte)

Sei X ein topologischer Raum. Zeigen Sie, dass $f \in C^0(\mathbb{S}^n, X)$ genau dann nullhomotop ist, wenn es zu $F \in C^0(\overline{B^{n+1}(0)}, X)$ fortgesetzt werden kann.

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 2.7. vor der Vorlesung.