Übungsaufgaben zur Vorlesung Einführung in geometrische und parabolische

Evolutionsgleichungen

WS 2010/11, Blatt 2

PD Dr. M. Simon, E. Mäder

02.11.2010

http://home.mathematik.uni-freiburg.de/analysis/evngleichung/

Bemerkung: Es wird im Folgenden immer die Einsteinsche Summenkonvention verwendet.

Aufgabe 1

Sei M^n eine glatte Mannigfaltigkeit der Dimension n.

1. Seien $\phi: U \to \phi(U)$ und $\psi: V \to \psi(V)$ Karten mit $p \in U \cap V$. Verifizieren Sie die folgenden Formeln für einen Koordinatenwechsel:

$${}^{\phi}\frac{\partial}{\partial x^{j}}(p) = \frac{\partial(\psi \circ \phi^{-1})^{i}}{\partial x^{j}}(\phi(p))^{\psi}\frac{\partial}{\partial x^{i}}(p)$$

$${}^{\phi}dx^{j}(p) = \frac{\partial (\phi \circ \psi^{-1})^{j}}{\partial x^{i}} (\psi(p))^{\psi} dx^{i}(p).$$

2. Sei $X:M\to TM$ ein glattes Vektorfeld auf M und ω eine 1-Form auf M, lokal $X=X^i\frac{\partial}{\partial x^i}$ bzw. $\omega=\omega_k dx^k$. Zeigen Sie: Die Abbildung

$$X(\omega): M \to \mathbb{R}, X(\omega)(p) := X^{i}(p)\omega_{i}(p)$$

ist eine wohldefinierte Abbildung, das heißt, sie hängt nicht von der Wahl der Koordinaten ab.

3. Sei T ein $\binom{l}{k}$ Tensor auf M. Somit besitzt T eine lokale Darstellung

$$T = T_{i_1, \dots, i_k}^{j_1, \dots, j_l} dx^{i_1} \otimes \dots \otimes dx^{i_k} \otimes \frac{\partial}{\partial x^{j_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{j_l}}.$$

Sei $m \in \{1,...,k\},\, r \in \{1,...,l\}$ fest. Nun sei Rlokal definiert durch

$$R:=T^{j_1,\dots,j_{r-1},i,j_{r+1},\dots,j_l}_{i_1,\dots i_{m-1},i,i_{m+1},\dots,i_k}dx^{i_1}\otimes\dots\otimes dx^{i_{m-1}}\otimes dx^{i_{m+1}}\otimes\dots\otimes dx^{i_k}\otimes\frac{\partial}{\partial x^{j_1}}\otimes\dots\otimes\frac{\partial}{\partial x^{j_{r-1}}}\otimes\frac{\partial}{\partial x^{j_{r+1}}}\otimes\dots\otimes\frac{\partial}{\partial x^{j_{r+1}}}\otimes\dots\otimes\mathbb{Q}$$

Zeigen Sie: R ist ein wohldefinierter $\binom{l-1}{k-1}$ Tensor auf M.

Aufgabe 2

Sei M^n eine glatte Mannigfaltigkeit der Dimension n und $g = g_{ij}dx^i \otimes dx^j$ eine Riemannsche Metrik auf M. Sei $(S^{ij}(p))_{1 \leq i,j \leq n}$ die zu $(g_{ij}(p))_{1 \leq i,j \leq n}$ inverse Matrix, d.h. $S^{ij}g_{ik} = \delta_k^j$. Es sei S definiert durch $S := S^{ij}\frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^j}$. Zeigen Sie: S ist wohldefiniert, d.h. S hängt nicht von der Wahl der Koordinaten ab. Dadurch ist S auf ganz M wohldefiniert.

Fortsetzung auf der nächsten Seite!

Übungsaufgaben zur Vorlesung Einführung in geometrische und parabolische Evolutionsgleichungen WS 2010/11, Blatt 2 PD Dr. M. Simon, E. Mäder 02.11.2010

http://home.mathematik.uni-freiburg.de/analysis/evngleichung/

Aufgabe 3

Sei M^n eine glatte Mannigfaltigkeit der Dimension n. Für zwei glatte Vektorfelder X und Y auf M sei die Lie-Klammer wie in der Vorlesung in lokalen Koordinaten definiert:

$$[X,Y] := \left(\frac{\partial X^i}{\partial x^j}Y^j - \frac{\partial Y^i}{\partial x^j}X^j\right)\frac{\partial}{\partial x^i}.$$

Zeigen Sie: Die Definition von [X,Y] ist unabhängig von der Wahl der Karte.

Aufgabe 4 (Bonusaufgabe!)

Sei $M = \mathbb{R} \cup \{p\}$, p ein beliebiger Punkt nicht in \mathbb{R} . Sei $\mathcal{O}_{\mathbb{R}}$ die Standard-Topologie auf \mathbb{R} und definiere

$$\mathcal{O} = \{U \cup V : U \in \mathcal{O}_{\mathbb{R}}, V = \emptyset \text{ oder } V = \{p\} \cup (W \setminus \{0\}), \text{ wobei } W \in \mathcal{O}_{\mathbb{R}} \text{ mit } 0 \in W\}.$$

- 1. Zeigen Sie, dass \mathcal{O} eine Topologie auf $M = \mathbb{R} \cup \{p\}$ ist.
- 2. Konstruieren Sie einen C^0 -Atlas für (M, \mathcal{O}) .
- 3. Zeigen Sie: M ist nicht hausdorffsch.

Bitte schreiben Sie Ihren Namen auf jedes Lösungsblatt. Abgabe ist am Dienstag, den 09.11.2010, bis 8.15 Uhr.