Übungsaufgaben zur Vorlesung Funktionentheorie PD Dr. M. Simon Florian Link

SS 10, Serie 1 21.April 2010

(4 Punkte)

Aufgabe 1 (4 Punkte)

a) Sei $z \in \mathbb{C} \setminus \{0\}$. Zeigen Sie, dass gilt

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}.$$

- b) Für $a \in \mathbb{C}$ beliebig existiert ein $z \in \mathbb{C}$ mit $z^2 = a$. Geben Sie alle Lösungen von $z^2 = a$ an! Hinweis: Man kann $x, y, m, n \in \mathbb{R}$ suchen mit $(x+iy)^2 = m+in$.
- c) Zeigen Sie für alle $a, b \in \mathbb{C}$:
 - i) $-|a| \le Re(a) \le |a|$ und $-|a| \le Im(a) \le |a|$
 - ii) $|a b| \ge ||a| |b||$.

Aufgabe 2 (zu Proposition 2.5). Weisen Sie nach:

- a) $(\mathbb{C}, d_{\mathbb{C}})$ ist vollständig
- b) Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen in \mathbb{C} .
 - i) $a_n \to a \in \mathbb{C}$ und $b_n \to b \in \mathbb{C}$ \Rightarrow $a_n \cdot b_n \to a \cdot b$.
 - ii) $a_n \to a \in \mathbb{C}$ und $b_n \to b \in \mathbb{C} \setminus \{0\} \implies \frac{a_n}{b_n} \xrightarrow{n \to \infty} \frac{a}{b}$ $(\frac{a_n}{b_n} \text{ ist wohldefiniert für n groß genug}).$
 - iii) $|a_n| \stackrel{n \to \infty}{\longrightarrow} |a| \in \mathbb{R}$.
 - iv) $|a_n| \leq C < \infty$ für alle $n \in \mathbb{N}$. Dann existiert eine Teilfolge $(a_{n_j})_{j \in \mathbb{N}}$ von $(a_n)_{n \in \mathbb{N}}$ und ein $a \in \mathbb{C}$, so dass $a_{n_j} \stackrel{j \to \infty}{\longrightarrow} a$.

Aufgabe 3 (Holomorphe Funktionen). (4 Punkte) Seien $f: V \to \mathbb{C}$ und $g: U \to \mathbb{C}$ holomorph, wobei $U, V \subset \mathbb{C}$ offen. Zeigen Sie:

- a) $f \circ g : U \cap g^{-1}(V) \to \mathbb{C}$ ist holomorph und es gilt $(f \circ g)'(z) = f'(g(z)) \cdot g'(z)$ für alle $z \in U \cap g^{-1}(V)$. Warum ist $U \cap g^{-1}(V)$ offen?
- b) Sei $\widehat{f}: \overline{V} \to \mathbb{C}$, $\widehat{f}(z) := f(\overline{z})$. Angenommen, es existiere ein $a \in V$ mit $f'(a) \neq 0$. Zeigen Sie, dass in diesem Fall \widehat{f} nicht holomorph ist!

Bitte schreiben Sie Ihren Namen auf jedes Lösungsblatt. Abgabe ist am Mittwoch, 28.04.2010 bis 11:15 Uhr.