SS 10, Serie 8 16.Juni 2010

Aufgabe 1 (Maximumprinzip für Sub-/Superharmonische Funktionen) (4 Punkte) Für $B_R(0) \subset \mathbb{R}^n$ sei $u \in C^0(\overline{B_R(0)}) \cap C^2(B_R(0))$ subharmonisch (superharmonisch) auf $B_R(0)$, d.h.

$$\Delta u_{(\leq)}^{\geq} 0$$
 auf $B_R(0)$.

Man zeige:

$$\sup_{B_R(0)} u = \sup_{\partial B_R(0)} u$$

(bzw.
$$\inf_{B_R(0)} u = \inf_{\partial B_R(0)} u$$
).

Hinweis: Untersuchen Sie $v_{\varepsilon}(x) := u(x) + \varepsilon |x|^2$.

Aufgabe 2 (4 Punkte)

Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph mit

$$\lim_{R \to \infty} \sup_{z \in \mathbb{C} \setminus B_R(0)} \operatorname{Re}(f(z)) = 0.$$

Zeigen Sie: $f \equiv const.$ Hinweis: Re(f) ist harmonisch. Verwenden Sie Aufgabe 1.

Aufgabe 3 (1.Schritt für Aufgabe 4) (4 Punkte) Sei $u : \mathbb{C} \setminus \{-1\} \to \mathbb{R}$ definiert durch

$$u(z) := \log (|1+z|),$$

wobei log : $\mathbb{R}^+ \to \mathbb{R}$ der reelle Logarithmus ist. Zeigen Sie:

$$\lim_{\varepsilon \searrow 0} \int_{-\pi+\varepsilon}^{\pi-\varepsilon} u(e^{it})dt = 0.$$

Hinweis: Untersuchen Sie das Wegintegral der auf $U := \mathbb{C} \setminus \{-1,0\}$ holomorphen Funktion $z^{-1}u(z)$ über einen geeigneten in U zusammenziehbaren Weg und verwenden Sie dann den Cauchy'schen Integralsatz.

Aufgabe 4 (Berechnung reeller Integrale mit funktionenth. Hilfsmitteln)(4 Punkte) Berechnen Sie

$$\lim_{\varepsilon \searrow 0} \int_{\varepsilon}^{\pi-\varepsilon} \log \left(\sin(t)\right) dt.$$

Hinweis: Zeigen Sie zunächst $|1+e^{it}|=|2\cos(t/2)|$ und verwenden Sie dann Aufgabe 3.

Bitte schreiben Sie Ihren Namen auf jedes Lösungsblatt. Abgabe ist am Mittwoch, 23.06.2010 bis 11:15 Uhr. Viel Spaß!