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Introduction

This master’s thesis looks at the behaviour of heights on connected commutative algebraic
groups under taking integral multiples. In diophantine geometry the height is a measure of
algebraic complexity of an algebraic number.

The starting point for the topic of this thesis was a lecture given by my advisor Prof.
Dr. Huber-Klawitter on the Analytic Subgroup Theorem by Gisbert Wüstholz in the winter
semester of 2020/2021. The Analytic Subgroup Theorem is a result in transcendental
number theory. It implies several previous statements in this area like Baker’s Theorem
and can among other things be used to show transcendence of the logarithm logα of an
algebraic number α ̸= 0, 1.

The proof of the theorem given by Wüstholz in [Wüs89] uses heights on connected
commutative algebraic groups to show that some differential operators must vanish at a
given collection of points.

For a given commutative connected algebraic group G defined over Q the inequalities
needed for this are of the form

h([n]g) ≤ c1n
c2(h(g) + 1) + c3, (1)

h(g) ≤ c4n
c5(h([n]g) + 1) + c6 (2)

for points g ∈ G(Q) as well as integers n ∈ Z or Z \ {0} respectively. The notation [n] is
used for the multiplication-by-n-morphism.

In proving inequalities of shape (1) and (2) there are three different approaches in the
literature.
One is trying to define canonical heights with regard to multiplication. This idea is used
in [SC79]. This thesis applies this in Lemma 2.3.5 to the special cases of abelian and
semiabelian varieties to obtain versions of both height estimates. The constants for both
estimates only depend on the height function and the group.
Another approach is using the behaviour of the morphism of translation by a group element
g. This is utilised in [SC79] to get an estimate similar to inequality (1) where one of the
constants has a dependency on the point g. This estimate has the shape

h([n]g) ≤ c1n
2 + c2

with the constant c1 depending on the point g. This is discussed in Theorem 2.4.13 of this
thesis.
The third approach is employed in [Wüs89] for the second inequality. For this approach
the multiplication-by-n-morphism is represented by some collection of polynomials on the
group. This representation is then used show the inequalities. Depending on how explicitly
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these polynomials are given, the quality of constants in the estimates changes. In the case
of a general connected commutative algebraic group one gets estimates depending on the
prime factorisation of n. In this thesis this is discussed in Proposition 2.4.1 for the first
inequality and Proposition 2.5.5 for the second inequality. In the case of a linear group the
multiplication-by-n-morphism can be explicitly given. This is done for both inequalities in
[Hub21] and leads to estimates with constants which only depend on the group and the
specific height function chosen. In this thesis this is Lemma 2.3.10.

The original proof of the Analytic Subgroup Theorem by Gisbert Wüstholz in [Wüs89]
uses the inequalities shown in Proposition 2.0 in [Wüs89] and Proposition 5 in [SC79].
These are Theorem 2.4.13 and Proposition 2.5.5 in this thesis.

Inequalities of greater generality are stated by Alan Baker and Gisbert Wüstholz in
section 6.8 of "Logarithmic Forms and Diophantine Geometry" ([BW08]). The two authors
explain the steps necessary to prove the Analytic Subgroup Theorem and claim, but do
not prove, that on any commutative connected algebraic group G defined over Q height
estimates of the form

h([n]g) ≤ c1n
2h(g) + c2,

h(g) ≤ c3n
c4(h([n]g) + 1)

hold for the logarithmic height h associated to some very ample divisor D. Here g is a
point in G(Q) and [n] denotes the multiplication by n ∈ Z. In contrast to the inequalities
proven in this thesis, the constants c1, . . . , c4 ≥ 0 only depend on G and the divisor D.

Even though more general statements than proven in this thesis may hold, it aims to be
a resource for the different height estimates on a connected commutative algebraic group.

Structure of the thesis

This thesis is structured into two chapters. The first chapter is concerned with the algebraic
and geometric background needed to formulate and prove the height estimates. The second
chapter covers the construction of a completion of a connected commutative algebraic
group and the height estimates.

Section 1.1 gives a short introduction to divisors, linear systems and their associated
maps as well as the notion of (relatively) ample divisors and a version of the Enriques-
Severi-Zariski Lemma. This will later be used to define heights on varieties.

K-rational points of varieties are discussed in section 1.2.
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Section 1.3 discusses the definition of algebraic groups, the special cases of abelian
varieties and linear group varieties as well as the Theorem of Chevalley on the general
structure of commutative algebraic groups.

Afterwards heights on projective space, varieties and polynomials are defined in section
1.4. The notions of the Weil height machine on an arbitrary projective smooth variety
and the Néron-Tate height on an abelian variety are introduced. Additionally, this section
formulates some inequalities for heights on projective spaces which are needed later.

In the first section 2.1 of the second chapter the completion of an algebraic group and
a specific completion which is used in [SC79] are explained.

Section 2.2 looks at the relationship of the height estimates if the height differs with
the help of a lemma in [SC79].

The special cases of the height estimates on linear algebraic groups, semiabelian varieties
and algebraic groups which are a product of an abelian variety and a linear algebraic group
are discussed in section 2.3.

Section 2.4 covers versions of inequality (1) in the general setting. One is dependent on
prime factorisations while the other, which is covered in [SC79], is dependent on points.

Lastly, section 2.5 considers the version of inequality (2) in the general setting as done
in [Wüs89].
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Chapter 1

Background

In this thesis a variety X is viewed as a reduced separable scheme of finite type over an
algebraically closed field K. Its structure sheaf is denoted as OX . If X is irreducible, its
function field is denoted as K(X). The notation K[X] is sometimes alternatively used for
its ring of coordinates. An open subset of a variety is meant to be open in the Zariski
topology. Most notations used are analogous to [Har77].

The letter K generally denotes a number field or Q. The algebraic closure of a field K
is written as K.

Homogeneous coordinates of a projective K-space are written as [x0 : . . . : xn] ∈ PnK .
This might sometimes be shortened to [x]. If f and g are polynomials [f : g] is intended to
mean the (nonzero) coefficients of f and g viewed as points of some projective space. The
subscript K in PnK will sometimes be omitted if the field of definition should be clear from
the context. In general, this will then be the projective space defined over Q.

If a group G is a subgroup of some other group H the notation G ≤ H is used.

1.1 Maps and Divisors

The aim of this section is to see how a map ϕ : X → PnK from a projective variety over an
algebraically closed field K can be assigned to an object on X. This object is depending
on the viewpoint equivalently a linear equivalence class of divisors, an invertible OX -sheaf
or an isomorphism class of line bundles.

This becomes relevant in section 1.4.3, where divisors are used to construct heights on
varieties.

The main sources for this subsection are [Har77], [Mum76], [Sha13a] and [HS00].

In this whole section let X, Y denote smooth irreducible varieties over some algebraically
closed field K of characteristic zero.
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1.1.1 Definition of divisors

In the following subsection different definitions of divisors are introduced. While they are
not equivalent in general, they coincide for smooth projective irreducible varieties, the
situation in which they are needed for this thesis. Since for proving different statements
some notions of divisor are more convenient than others several constructions will be
introduced here.

Sources for this section are [Har77], [Sha13a] and [Sha13b].

Definition 1.1.1 ([Har77], Definition p.130). Let X be a smooth irreducible variety. A
prime divisor on X is a closed subvariety of codimension one. The free abelian group
generated by the prime divisors on X is denoted as Div(X). Its elements are called Weil
divisors.

Remark 1.1.2. Any smooth irreducible variety viewed as a scheme satisfies the conditions
needed in [Har77] for the definition of Weil divisors. A variety is reduced, therefore an
irreducible variety is an integral scheme. It is also separated and any smooth variety is
regular [GW10, Remark 6.33] hence also regular in codimension one.

Definition 1.1.3 ([Har77], first Definition p.158). The support of a Weil divisor D =∑
i∈I niYi ∈ Div(X) is the union Supp(D) := ⋃

i∈I
ni ̸=0

Yi.

Remark 1.1.4. The group of Weil divisors on X is partially ordered with the following
relation. Let D = ∑

niYi and E = ∑
mjYj be divisors on X and define

D ≤ E ⇐⇒ ni ≤ mi ∀Yi ⊂ X subvarieties of codimension one.

Definition 1.1.5 ([Har77], Definitions p.131). Let X be a smooth irreducible variety
and f ∈ K(X)∗ an invertible element of the function field of X. The principal divisor
associated to f is

(f) =
∑

vYi(f)Yi.

Here vY is the valuation defined on K(X) by the discrete valuation ring OX,Yi . If it is
ambiguous whether a principal divisor (f) should be viewed as a divisor on X or some
other variety, the notation (f)X will be employed.

Proposition 1.1.6 ([Har77], Paragraph after the first Definition p.131). The principal
divisors form a subgroup of the group of divisors.

Definition 1.1.7 ([Har77], Definitions p.131). Two divisors are called linearly equivalent
if they only differ by a principal divisor. The group Cl(X) of all divisors divided by the
subgroup of principal divisors is called the divisor class group of X.
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Definition 1.1.8 ([Har77], Definition p.141). Let X be a smooth irreducible variety. A
Cartier divisor is a global section of the sheaf K∗/O∗. Here K denotes the constant sheaf
associated to K(X) and K∗ is the sheaf of its invertible elements. The abelian group
CaDiv(X) of global sections of K∗/O∗ is called the group of Cartier divisors.

Remark 1.1.9. Even though the group structure on the group of Cartier divisors comes
from the multiplication in K(X), the group CaDiv(X) will in the following be denoted
additively.

Remark 1.1.10 ([Sha13a], fourth paragraph p.153). The above definition implies that a
Cartier divisors D can be represented by a collection {Ui, fi}i∈I . Here I is some index set,
the Ui ⊂ X are an open cover of X and the fi ∈ K(Ui)∗ are such that for any i, j ∈ I with
Ui ∩ Uj ̸= ∅ the quotient fi

fj
restricted to Ui ∩ Uj is an element of O(Ui ∩ Uj)∗. For two

Cartier divisors D = {Ui, fi}i∈I and E = {Vj , gj}j∈J their sum D + E can be represented
by {Ui ∩ Vj , figj}i∈I, j∈J . The neutral element is represented by {X, 1}.

Definition 1.1.11 ([Har77], Definition p.141, compare Corollary II.6.14 for the definition
of the Cartier class group). A Cartier divisor is called principal if it is equivalent to a
Cartier divisor of the form {X, f}. Two Cartier divisors are called linearly equivalent if
they only differ by a principal divisor. The group CaCl(X) of Cartier divisors modulo
principal Cartier divisors is called the Cartier class group of X.

Remark 1.1.12. The principal Cartier divisors, analogously to the case of Weil divisors in
Definition 1.1.1, form a subgroup of the Cartier divisors. This follows from the definition
and the preceding remark, since for f, g ∈ K(X)∗

{X, f}+ {X, g} = {X, fg}

and {X, f−1} are principal divisors.

Definition 1.1.13 ([Sha13a], fifth paragraph p.153). The support of a Cartier divisor
D = {Ui, fi}i∈I is defined as the closed set of all x ∈ X such that if x ∈ Ui the point x is a
zero or a singularity of fi.

Definition 1.1.14 ([Sha13b], third paragraph of section 1.4 on p.63). Let X be a smooth
irreducible variety. A line bundle L over X is a vector bundle of rank one.

Proposition 1.1.15 ([Sha13b], [Sha13b], compare section 1.4 on p.63). The line bundles
over a smooth irreducible variety form a commutative group with the group operation being
the tensor product. The neutral element is the trivial line bundle X × A1. This induces a
group structure on the set of line bundles up to isomorphism.

Definition 1.1.16 ([Har77], fifth paragraph of Definitions p.109). Let X be a smooth
irreducible variety. An invertible sheaf on X is a locally free OX -module of rank one.

Proposition 1.1.17 ([Har77], Proposition II.6.12). The invertible sheaves on a smooth
irreducible variety X form a group Pic(X) with regard to the tensor product of OX-modules.
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Definition 1.1.18 ([Sha13b], Definition p.84). Let F be an invertible sheaf on a smooth
irreducible variety X. The support Supp(F) of F is the complement X \ W , where
W = ⋂

U⊂X open
F(U)=0

U .

Theorem 1.1.19 ([Har77], Proposition II.6.11, Proposition II.6.15 and [Sha13b], Theorem
6.3 in the first Chapter). Let X be a smooth irreducible variety. The group of line bundles
up to isomorphisms, Cl(X), CaCl(X) and Pic(X) are isomorphic via homomorphism
induced by the following maps

a) Let D = {Ui, fi}i∈I be a Cartier divisor. The Weil divisor associated to D is∑
vYj (fi)Yj

where Ui is an open subset such that Yj ∩ Ui ̸= ∅.

b) Let D = {Ui, fi}i∈I be a Cartier divisor. The invertible sheaf L(D) associated to D
is the OX-submodule of K generated by

Ui 7→
1
fi
OX(Ui).

c) Let D = {Ui, fi}i∈I be a Cartier divisor. The line bundle L(D) associated to D is
the bundle which has local trivialisations Ui × A1 → Ui and transition functions

ϕij : (Ui ∩ Uj)× A1 → (Ui ∩ Uj)× A1

(x, λ) 7→
(
x, λ ·

(
fif

−1
j

)
(x)
)
.

Proof. The first isomorphism is Proposition II.6.11 in [Har77]. The proposition is applicable
since any smooth variety is regular (Remark 1.1.2) and any regular local ring is a unique
factorisation domain ([Mat70], Theorem 48 p.142).
The second isomorphism is Proposition II.6.15 in [Har77]. That proposition is applicable
since any variety is reduced, therefore an irreducible variety has the structure of an integral
scheme.
The third isomorphism is discussed in Theorem 6.3 of [Sha13b].

Example 1.1.20. Let X = Pn defined over Q for some n ∈ N>0. It can be viewed as
ProjQ[x0, . . . , xn]. Let D =

{
{xi ̸= 0}, x0

xi

}
0≤i≤n

. The Weil divisor associated to this
Cartier divisor is the hyperplane H0 = {x0 = 0}.
The line bundle associated to D has local trivialisations {xi ̸= 0} × A1 and transitions
functions ϕi,j = xi

xj
. Such a line bundle is called a hyperplane bundle.

The sheaf associated to D is the K(Pn) subsheaf generated by 1
xi
OX({xi ̸= 0}). It is called

Serre’s twisting sheaf and denoted as O(1)
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From now on this text uses the conventions of Weil divisors for the group of divisors
and divisors modulo principal divisors, that is Div(X) for the divisors on a variety X and
Cl(X) for divisors modulo principal divisors.

Proposition 1.1.21 ([Har77], Proposition II.6.4). Let n ∈ N>0. The group Cl(Pn) is
isomorphic to Z. An isomorphism Cl(Pn)→ Z is given by

a) [H] 7→ 1 in the case of Weil divisors, where H is some hyperplane

b)
[{
{xi ̸= 0}, x0

xi

}
0≤i≤n

]
7→ 1 in the case of Cartier divisors, where x0, . . . , xn is a

choice of coordinates for the projective space

c) O(1) 7→ 1 in the case of invertible sheaves, where O(1) is Serre’s twisting sheaf.

d) H 7→ 1 in the case of line bundles, where H is the hyperplane bundle

respectively.

Proof. In Proposition II.6.4 of [Har77] this is shown in the case of Weil divisors. Theorem
1.1.19 and Example 1.1.20 imply the map in case of Cartier divisors, line bundles and
invertible sheaves.

Lemma 1.1.22 (’Enriques-Severi-Zariski ’, [HS00] Theorem A.3.2.5 and [Mum76] compare
Theorem 6.10). Let X ⊂ Pn be a smooth projective irreducible variety. There exists some
d0 ∈ N such that for all d ≥ d0 the linear system of degree d hypersurface sections is
complete. This means that every effective divisor D on X which is linearly equivalent to
d-times a hyperplane section is cut out by a polynomial F of degree d, i.e. D = (F )X .

1.1.2 From maps into Pn to divisors

Definition 1.1.23 ([HS00], compare Definition p.40). Let ψ : X → Y be a morphism
of smooth irreducible varieties. Let D = {Ui, fi}i∈I ∈ Div(Y ) be a divisor such that
ψ(X) ̸⊂ Supp(D). Then the pullback of D is defined as ψ∗D = {ψ−1(Ui), fi ◦ ψ}i∈I .

Lemma 1.1.24 (’Moving Lemma’, [HS00], compare A.2.2.5). Let ψ : X → Y be a
morphism of smooth irreducible varieties.

a) Let D ∼ D̃ ∈ Div(Y ) be two linearly equivalent divisors such that ψ(X) ̸⊂ Supp(D)∪
Supp(D̃). Then ψ∗D ∼ ψ∗D̃ as divisors on X.

b) Let D ∈ Div(Y ) be a divisor. Then there exists a divisor D̃ ∈ Div(Y ) such that
D̃ ∼ D and ψ(X) ̸⊂ Supp(D).

10



Corollary 1.1.25 ([HS00], Proposition A.2.2.6). Let ψ : X → Y be a morphism of smooth
irreducible varieties. There is a well defined group homomorphism ψ∗ : CaCl(Y )→ CaCl(X)
which is induced by the pullback of divisors defined in Definition 1.1.23. This map is also
called pullback.

Proof. Part b) of Lemma 1.1.24 implies that in any linear equivalence class [D] ∈ CaCl(Y )
there exists some divisor D̃ ∈ [D] such that ψ∗

(
D̃
)

is a well defined divisor in Div(X).
Part a) of the Moving Lemma implies that [ψ∗D̃] is independent of the choice D̃. Hence

ψ∗ : CaCl(Y )→ CaCl(X)
[D] 7→ [ψ∗D]

is well defined.
This map is also a homomorphism. Let D := {(Wi, fi)}i∈I and E := {(Vj , gj)}j∈J be two
Cartier divisors on Y such that ψ(X) ̸⊂ Supp(D) and ψ(X) ̸⊂ Supp(E). One calculates

ψ∗(D + E) = ψ∗({(Wi ∩ Vj , figj)}(i,j)∈I×J)
= {(ψ−1(Wi ∩ Vj), (figj) ◦ ψ)}(i,j)∈I×J

= {(ψ−1(Wi) ∩ ψ−1(Vj), (fi ◦ ψ) · (gj ◦ ψ))}(i,j)∈I×J

= {(ψ−1(Wi), fi ◦ ψ)}i∈I + {ψ−1(Vj), gj ◦ ψ)}j∈J = ψ∗D + ψ∗E.

Construction 1.1.26. Let ϕ : X → Pn be a morphism of smooth irreducible varieties.
The divisor class of X associated to ϕ is ϕ∗([H]) for some hyperplane H ⊂ Pn.

Remark 1.1.27. Geometrically, the divisor class ϕ∗([H]) is the class of a divisor D which
is cut out by the preimage of H ′ ∩ϕ(X) under ϕ, where H ′ is a hyperplane of Pn such that
ϕ(X) is not contained in H ′.

1.1.3 From divisors to maps into Pn

Let X be a smooth irreducible variety defined over K = Q.

Definition 1.1.28 ([Har77], first Definition p.157). Let D ∈ Div(X) be a divisor. The
complete linear system of D is the subset |D| ⊂ Div(X) of divisors which are effective and
linearly equivalent to D.

Remark 1.1.29. This definition implies that a complete linear system is only dependent
on the linear equivalence class of the divisor.
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Remark 1.1.30 ([Har77], first Definition p.157). For an invertible sheaf this corresponds
to the space of global sections modulo K(X)∗. This implies that |D| has the structure of a
projective space.

Proposition 1.1.31 ([Har77], compare first Definition p.157). Let D ∈ Div(X) be a
divisor. The system |D| can equivalently be regarded as the subset L(D) ⊂ K(X) of
functions f such that

(f) +D ≥ 0

modulo K(X)∗.

Proof. This follows directly from the definition since for any effective divisor E linearly
equivalent to D the difference E − D must be principal, that is E − D = (f) for some
f ∈ K(X)∗ and (f) + D = (E − D) + D = E ≥ 0. Since the principal divisor of two
functions f, g ∈ K(X)∗ such that f

g ∈ K
∗ is the same, the second claim follows.

Definition 1.1.32 ([Har77], second Definition p.157). A subset L ⊂ Div(X) is called a
linear system if it is a projective subspace of some complete linear system. The dimension
of L as a linear system is defined as the dimension of L as a projective space.

Lemma 1.1.33 ([HS00], Corollary A.3.2.7). Let X be a projective smooth irreducible
variety and D ∈ Div(X). Then the dimension of |D| is finite.

Definition 1.1.34 ([HS00], second Definition p.51). A linear system L on X is called
basepoint free if ⋂D∈L Supp(D) = ∅. A point x ∈ ⋂D∈L Supp(D) is called a basepoint of L.
A divisor D is basepoint free if its complete linear system |D| is basepoint free.

Construction 1.1.35 ([HS00], compare Definition p.51 and Exercise A.3.5). Let D ∈
Div(X) be a basepoint free divisor such that dimL(D) <∞. The map associated to D is
the projective map ϕD : X → Pn defined by mapping a point x ∈ X as

x 7→ [ϕ0(x) : . . . : ϕn(x)].

Here ϕ0, . . . , ϕn ∈ K(X) are a basis of the linear system |D|. This is a priori a rational map
defined on the open set, where no ϕi has singularities and not all ϕi vanish simultaneously.
Let x ∈ X be any point. View D as a Cartier divisor {Ui, fi}i∈I . Let x ∈ Ui0 for some
i0 ∈ I. In this case ϕ0 · fi0 , . . . , ϕn · fi0 are in OX(Ui0). If they all simultaneously vanished
at x ∈ Ui0 , any linear combination would also vanish at x. Any effective divisor linearly
equivalent to D restricted to Ui0 is a principal divisor associated to a linear combination
of ϕ0 · fi0 , . . . , ϕn · fi0 . Therefore if all those functions would vanish in a point x′ ∈ Ui0
that point would be contained in the support of any effective divisor linearly equivalent to
D. This means that x′ is a basepoint, but the base locus of |D| is empty by assumption.
Hence the map

y 7→ [ϕ0fi0(y) : . . . : ϕnfi0(y)]

is a morphism in an open neighbourhood of x. It defines the same rational map as ϕD.
Therefore ϕD has a continuation as a morphism on X.
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Lemma 1.1.36 ([Har77], compare Theorem 7.1 and Remark 7.8.1, [HS00] compare
Theorem A.3.1.6). Let X be a smooth irreducible variety over K. There exists a bijection
between the following sets:

a) The set of linear systems L of dimension n which are basepoint free on X.

b) The set of morphism ϕ : X → Pn such that ϕ(X) is not contained in any hyperplane
of Pn up to projective automorphisms in PGLn+1(K).

Proof. In Theorem II.7.1 in [Har77] the author proves that there is an one-to-one cor-
respondence between morphisms from a variety into projective space and sets of global
sections of invertible sheaves L on X which generate the sheaf L. Applying Remark II.7.8.1
in [Har77] implies that this is equivalent to a correspondence between sets of generators of
linear systems without basepoints on X and morphism from X into some projective space.
To get the result of the lemma one uses the map suggested in Remark II.7.8.1 of [Har77]. It
maps each basepoint free linear system to the map associated to one of its bases as a vector
space V . Since two bases can be transformed into one another by linear homomorphism
A ∈ GL(V ), the maps associated to two different bases of a linear system only vary by
some projective automorphism (in the sense of a morphism in PGLn+1(K)). It is left to
show that this associates every basepoint free linear system to a map whose image is not
contained in any hyperplane and that conversely every such map can be generated by the
basis of a linear system. Therefore assume that ϕ : X → Pn is the map associated to some
linear system L and its image is contained in some hyperplane H ⊂ Pn. This hyperplane
is the vanishing locus of some linear polynomial, i.e. there exists some nontrivial linear
relation

n∑
i=0

λiyi ◦ ϕ(x) = 0 ∀x ∈ X

for a given choice y0, . . . , yn of coordinates of Pn. Hence the sections ϕ∗(y0), . . . , ϕ∗(yn)
fulfil the same relation and are linearly dependent. This concludes the proof.

Remark 1.1.37. The version of the previous lemma that can be found in [HS00] as
Theorem A.3.1.6 seems to contain a slight inaccuracy.

The theorem claims that there is a bijection between linear systems without fixed
components (linear systems L such that there is no effective divisor D0 such that D ≥ D0
for any D ∈ L [compare HS00, third Definition p.51]) and morphisms into projective space
not contained in hyperplanes. But these linear systems should be in correspondence with
rational maps, while morphisms are in correspondence with basepoint free divisors.

An easy example why morphisms cannot be in correspondence with linear systems
without fixed components is the rational map

P2 → P1

[x0 : x1 : x2] 7→ [x0 : x1]

13



It is surjective, therefore not contained in any hyperplane. The linear system which it is
associated to is generated by the hyperplanes {x0 ̸= 0} and {x1 ̸= 0}. Their intersection
has codimension two, therefore this linear system does not have any fixed component. But
the map is not a morphism at [0 : 0 : 1].

It is unclear to me, whether the authors aimed to present the bijection for rational
maps or for morphisms. For this thesis I decided to present the version with morphisms.

The statement for rational maps can be found in Theorem 6.8 of [Mum76] for varieties
defined over C.

Remark 1.1.38. The maps used in the proof of Lemma 1.1.36 are analogous to the ways
in which in Construction 1.1.26 and Construction 1.1.35 maps were associated to divisors
and vice versa.

1.1.4 Ample, very ample and relatively ample divisors

Let X be a smooth irreducible variety defined over K = Q.

Definition 1.1.39 ([HS00], Definition p.52). A divisor D on a Q-variety X is called very
ample, if there is an n ∈ N>0 and an immersion i : X → Pn such that i∗O(1) is isomorphic
to the sheaf associated to D. A divisor D is called ample if some positive multiple nD is
very ample.

Remark 1.1.40. If D is an divisor on a projective variety X, then this is equivalent to
|D| defining an immersion by Construction 1.1.35.

Remark 1.1.41 ([Har77], compare Remark II.5.16.1). If an irreducible variety X is
projective there will always be very ample divisors on that variety. This is the case since
by definition X can be embedded into projective space. The divisor class associated to
this morphism by Construction 1.1.26 must now be very ample by Lemma 1.1.36. Any
very ample divisor is basepoint free, since it defines a morphism into projective space.

If the divisors are viewed as invertible sheaves a more direct definition of ample can be
given. In the case of varieties that definition is equivalent to the one above by Theorem
II.7.6 in [Har77].

Definition 1.1.42 ([Har77], Definition p.153 and Theorem 7.6). An invertible sheaf L on
X is ample if for any coherent sheaf F on X there is some integer n0 ≥ 0 such that for all
n ≥ n0 the sheaf F ⊗ L is generated by its global sections.

Proposition 1.1.43 ([Har77], Example 7.4.2). If X is an affine irreducible variety, any
divisor D on X is ample.

14



Lemma 1.1.44 ([HS00], Proposition A.3.2.4). Let ϕ : X → Y be a morphism of projective
irreducible varieties. Let D ∈ Div(Y ) be basepoint free. If ϕ∗D is well defined it is a
basepoint free divisor of X.

Lemma 1.1.45 ([HS00], compare Theorem A.3.2.3 ). Let X be a projective irreducible
variety and D,E ∈ Div(X) such that E is very ample

a) There exists some n ∈ N such that D + nE is basepoint free.

b) If D is basepoint free then D + E is very ample.

Corollary 1.1.46. Let X be a projective irreducible variety and D ∈ Div(X). Then there
exists basepoint free (and even very ample) divisors E1, E2 ∈ Div(X) such that

D = E1 − E2.

Proof. Let H ∈ Div(X) be any very ample divisor. By points a) and b) of the previous
lemma there exists some n ∈ N such that D + nH is very ample. Point b) implies
that also nH is very ample. Defining E1 := D + nH and E2 := nH gives the desired
decomposition.

Definition 1.1.47 ([Staa], compare Definition 29.37.1 and Lemma 29.37.4 (3)). Let X,
Y be irreducible varieties and ϕ : X → Y a morphism. An invertible sheaf F on X is
called ϕ-relatively ample if there exists an affine open covering {Ui}i∈I of Y such that F
restricted to ϕ−1(Ui) is ample.

Remark 1.1.48. While the definition of ample used in Stacks is slightly different than the
one used in Hartshorne, which is used in this thesis, they agree in the setting of irreducible
varieties due to Proposition 28.26.13 (7) of [Stab].

Lemma 1.1.49 ([Staa], Lemma 29.37.7). Let X, Y be irreducible varieties and ϕ : X → Y
a morphism. Let F be an invertible sheaf on X and G an invertible sheaf on Y which is
ϕ-relatively ample. There exists some n ∈ N>0 such that

F ⊗ ϕ∗G⊗n

is ample.

1.2 K-rational points of varieties

The analytic subgroup theorem looks at properties of commutative algebraic groups. To
define those in the generality required for the height estimates it is necessary to look at
the structure of varieties over arbitrary number fields. This section aims to give a short
outline of the necessary algebraic geometry to be able to do so. The main sources in this
section are [GW10] and [Bor91].

Let K be a subfield of Q. Any variety in this chapter is defined over Q.
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Definition 1.2.1. A K-structure on a variety X defined over Q is a K-scheme XK of
finite type over K which is reduced and separable such that

XK ×Spec(K) Spec(Q) ∼= X.

Definition 1.2.2. Let X be a variety defined over Q together with a K-structure XK . A
subvariety Y ⊂ X is defined over K if there is a K-subscheme YK ⊂ XK reduced, separable
and of finite type over K such that

YK ×Spec(K) Spec(Q) ∼= Y.

Definition 1.2.3. Let X,Y be two Q-varieties. A morphism ϕ : X → Y is defined over
K if for XK a K-structure on X and YK a K-structure on Y there exist a K-morphism
ϕK : XK → YK and ϕK ×Spec(K) Q ∼= ϕ.

Remark 1.2.4. The three preceding definitions are reformulations of constructions done
in [Bor91] sections AG.11 and AG.12.2.

The K-structure on a variety is a more general formulation of the idea that for an
affine variety V over Q for which the associated ideal IV ⊂ Q[X1, . . . , Xn] can be generated
by polynomials f1, . . . , fm defined over some number field K there is a scheme over K
associated to

K[X1, . . . , Xn]/(f1, . . . , fm)

whose base extension by Q is V .

Definition 1.2.5 ([GW10], compare definition in the first paragraph of section (5.1) on
page 118). Let X be a variety defined over Q which has a K-structure XK . A K-rational
point of X is a morphism from Spec(K)→ XK . The set of K-rational points of X will be
denoted as X(K).

The notion of a K-rational point is the more general formulation of the closed points of
an affine variety X which have coordinates in K. The morphisms Spec(K)→ X correspond
to the K-algebra morphisms

K[X1, . . . , Xn]/(f1, . . . , fm)→ K.

Any such morphism gives a point in the variety with coordinates (x1, . . . , xn) ∈ AnK and
vice versa, since

K[X1, . . . , Xn]/(f1, . . . , fm)⊗K Q = Q[X1, . . . , Xn]/(f1, . . . , fm)

and any K-algebra homomorphism is completely determined by its images for a set of
generators. In this case these are X1, . . . , Xn.
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Example 1.2.6. The affine line A1
K associated to K[X] is a K-structure on A1

Q. Its K-
rational points are all closed points in A1

K . Therefore A1
Q(K) can be associated to the

points of K.

Example 1.2.7. The affine variety defined by the ideal (X1X2 − 1) ⊂ Q[X1, X2] is a K-
variety, since X1X2 − 1 ∈ Q[X1, X2] ⊂ K[X1, X2]. Its K-rational points can be associated
to the vanishing locus of X1X2 − 1 in A2

K since every such tuple of coordinates defines a
morphism

K[X1, X2]/(X1X2 − 1)→ K.

By projecting to either X1 or X2 the set of K-rational points can also be associated to
A1
K \ {0}.

1.3 Commutative algebraic groups

This section aims to be a short introduction to commutative algebraic groups. It will mainly
follow [Spr98] and [Bor91] for the first subsection and the definition of linear algebraic
groups, [Mum70] for abelian varieties and [Mil15] for Chevalley’s theorem.

1.3.1 General definitions

In the following K will denote a subfield of Q and G will be a variety defined over Q.

Definition 1.3.1 ([Spr98], 2.1.1). An algebraic group is a variety G defined over Q and a
choice of morphisms called multiplication µ and inverse ι

µ : G×G→ G ι : G→ G

and a Q-point e ∈ X(Q) called the neutral element, such that µ, ι and e give the Q-points
of G the structure of a group.
An algebraic group such that the group structure is commutative is called a commutative
algebraic group.

Definition 1.3.2 ([Spr98], 2.1.1). A morphism of algebraic groups is a morphism which is
a group homomorphism and a morphism of varieties.

Definition 1.3.3 ([Spr98], 2.1.1). If the algebraic group G has a K-structure, e ∈ X is a
K-rational point and the morphisms µ and ι are defined over K, then G is a K-group.

Proposition 1.3.4 ([Spr98], 2.1.1). If G is a K-group, the set G(K) has a group structure
induced by the structure on G.
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Proof. The set G(K) is equal to the set Mor(Spec(K), G). Since G has a group structure
it induces a group structure on Mor(Spec(K), G) and therefore on G(K).

Definition 1.3.5 ([Spr98], 2.1.1). A morphism ϕ : G → H of algebraic groups is a
K-morphism if G and H have a K-structure and ϕ is defined over K as a morphism.

To emphasise the fact that the algebraic groups considered in this thesis will be
commutative they will be, if not stated otherwise, denoted additively. That is as an
algebraic group

(G, 0G,+).

There will be some exceptions to this rule if the group operation for a specific group
coincides with an operation which is generally denoted multiplicatively. These will be
stated explicitly. The notation [n]G, or [n] if there will not be any confusion about the
group, will denote the multiplication by n, i.e.

[n]G : G→ G.

g 7→ g + . . .+ g︸ ︷︷ ︸
n times

Definition 1.3.6 ([Spr98], 2.1.1). Let G be an algebraic group. A closed subgroup H of G
is a closed subset of G (in the Zariski topology) which is also a subgroup with regards to
the group structure on G.

Remark 1.3.7. A closed subgroup H of an algebraic group G is again an algebraic group
and the inclusion morphism H ↪→ G is a group homomorphism ([Spr98] 2.1.1).

There can be subgroups of G which do not have the structure of a variety as the
following example shows.

Example 1.3.8. Let G = A1
Q \ {0} and choose an embedding of Q into the complex

numbers. The subset S1
Q = {x ∈ Q∗ | x · x = 1} is a subgroup of G. Here x denotes the

complex conjugation of x. Since all proper Zariski-closed subsets of G are finite, S1
Q is not

closed in the Zariski topology. Therefore S1
Q is a subgroup but not a closed subgroup of G.

The definition of a subgroup also extends analogously to the definitions above to
K-algebraic groups.

Definition 1.3.9 ([Spr98], 2.1.1). Let G be an algebraic group which is defined over K.
A K-subgroup of G is a subgroup H ≤ G such that H is a closed K-subvariety of G.

The added structure provided by the group operation has some implications on the
underlying variety.
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Proposition 1.3.10 ([Spr98], compare Proposition 2.2.1 ). The underlying variety of an
algebraic group G is irreducible iff it is connected.

Proof. The implication irreducible to connected holds for any variety.
For the converse one can use points (i) and (ii) of Proposition 2.2.1 in [Spr98], which state
that there is a unique irreducible component G0 of G which contains the identity element
and that this irreducible component is a subgroup of G. This is also the unique connected
component of G containing 0G.
So G0 = G if G is connected and therefore the variety underlying G is irreducible in this
case.

Proposition 1.3.11 ([Bor91], Proposition I.1.2). Any algebraic group is smooth.

Lemma 1.3.12 ([Bor91], I.1.4 and [Spr98], Proposition 2.2.5). Let ϕ : G → H be a
morphism of algebraic groups. Then

a) ϕ(G) is a closed subgroup of H.

b) ker(ϕ) is a normal and closed subgroup of G.

If G and H are K-groups and the morphism ϕ is defined over K then ϕ(G) is a K-subgroup
of H.

1.3.2 Abelian varieties

As stated in the introduction of the section, this subsection will mainly be following
[Mum70].

This subsection is again looking at algebraic groups defined over Q. The letter K will
again denote a subfield of Q.

Definition 1.3.13 ([Mum70], Definition on p.39 ). An algebraic group whose underlying
variety is irreducible and complete is called an abelian variety.

This definition especially implies that all abelian varieties are connected.

Proposition 1.3.14 ([Mum70], p.41 (ii)). Any abelian variety is commutative.

The condition of completeness also leads to an interaction of line bundles with the
group operation.
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Definition 1.3.15 ([HS00], Corollary A.7.2.5). Let A be an abelian variety. A divisor or
line bundle L is called symmetric if

L ∼= [−1]∗AL.

It is called antisymmetric if

L−1 ∼= [−1]∗AL.

Lemma 1.3.16 (’Law of the Cube’, [Mum70], Corollary 3 p.59 ). Let A be an abelian
variety. For any n ∈ Z and any line bundle L the following holds

[n]∗AL ∼ L
(

n2+n
2

)
⊗ ([−1]∗AL)

(
n2−n

2

)
.

Corollary 1.3.17. If L is a symmetric line bundle on an abelian variety A, then

[n]∗AL ∼ Ln
2
.

If L is an antisymmetric line bundle, then

[n]∗AL ∼ Ln.

Proof. For a symmetric line bundle one has [−1]∗L ∼ L. Therefore an easy explicit
calculation gives

[n]∗AL
1.3.16∼ L

(
n2+n

2

)
⊗ ([−1]∗AL)

(
n2−n

2

)
∼ L

(
n2+n

2

)
⊗ L

(
n2−n

2

)
= L

(
n2+n+n2−n

2

)
= Ln

2
.

An analogous computation using [−1]∗AL ∼ L−1 gives the result for antisymmetric line
bundles.

Regarding the line bundles as divisors one gets the following equivalent result.

Corollary 1.3.18. Let D be a divisor on the abelian variety A. If D is symmetric, i.e.
[−1]∗AD ∼ D, then

[n]∗AD ∼ n2D.

If D is antisymmetric , i.e. [−1]∗AD ∼ −D, then

[n]∗AD ∼ nD.
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Proposition 1.3.19 ([Mum70], Proposition p.64). Let A be an abelian variety of dimension
g and n ∈ N>0. Then

An := ker([n]A) ∼= (Z/nZ)2g .

Corollary 1.3.20. Let A be an abelian variety of dimension g and n ∈ N>0. If A is
defined over K then

|{a ∈ A(K)| [n]Aa = 0A}|

divides n2g.

Proof. This follows from the preceding proposition combined with the facts that A(K) and
ker([n]A) are subgroups of A. This implies that

{a ∈ A(K)| [n]Aa = 0A} = A(K) ∩ ker([n]A) ≤ ker([n]A)

is a group. Now Lagrange’s theorem implies the statement.

1.3.3 Linear algebraic groups

Next to abelian varieties another class of algebraic groups are linear algebraic groups.

Just like the previous subsections, this subsection is again looking at algebraic groups
defined over Q. The letter K will again denote a subfield of Q.

The literature used for this section is [Spr98] and [Bor91].

Definition 1.3.21 ([Spr98], 2.1.1). An algebraic group whose underlying variety is affine
is called a linear algebraic group.

Unlike abelian varieties a linear algebraic group don not have to be commutative.

Example 1.3.22 ([Bor91], compare with I.1.6 (2)). Let n ≥ 1. The group

(GLn(Q), ·)

(with · denoting the matrix multiplication) has a structure of an algebraic group. It
is given by taking the matrix entries (Xi,j)1≤i,j≤n and the inverse of the determinant
D−1 = det((Xi,j)1≤i,j,≤n)−1 as coordinates of the affine space An

2+1
Q . The rational points

GLn(Q) can now be identified with the following closed subvariety of An2+1
Q{

(X1,1, X1,2, . . . , Xn,n, D
−1) ∈ An

2+1
Q | det((Xi,j)1≤i,j,≤n)) ·D−1 − 1 = 0

}
⊂ An

2+1
Q .
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This is an affine variety, since it is a closed subvariety of an affine variety.
The multiplication and inversion of GLn(Q) are each given by polynomial equations for
each coordinate

µ : GLn(Q)×GLn(Q)→ GLn(Q)

(((Xi,j)1≤i,j≤n, D
−1
X ), ((Yi,j)1≤i,j≤n, D

−1
Y )) 7→

( n∑
k=1

Xi,kYk,j

)
1≤i,j≤n

, D−1
X D−1

Y



ι : GLn(Q)→ GLn(Q)

((Xi,j)1≤i,j≤n, D−1) 7→
((

(−1)i+jD−1 det
(

(Xl,m)1≤l,m≤n

l ̸=i, m ̸=j

))
1≤i,j≤n

, det((Xi,j)1≤i,j≤n)
)
.

Hence they are morphisms of varieties. This algebraic structure is compatible with the
group structure and makes GLn(Q) a linear algebraic group. But for n ≥ 2 this group
structure is not commutative. These groups are called general linear groups.

In the case n = 1 this group is given the following name.

Definition 1.3.23 ([Bor91], Example I.1.6 (2) ). The linear algebraic group GL1(Q) is
called multiplicative group. It will generally be denoted as (Gm, ·, 1).

The affine line A1
Q can also be given a group structure compatible with its algebraic

structure by the addition on Q.

µ : A1
Q × A1

Q → A1
Q

(X,Y ) 7→ X + Y

ι : A1
Q → A1

Q

X 7→ −X

This group as well has its own name.

Definition 1.3.24 ([Bor91], Example I.1.6 (1)). The affine line A1
Q with the group structure

defined above is called the additive group. It is generally denoted as (Ga,+, 0).

Remark 1.3.25. The multiplicative group as well as the additive group are defined over
any field Q ⊂ K ⊂ Q. Their K-rational points can be associated with K \ {0} and K
respectively, since they have a K-structure defined by K[X,X−1] and K[X].

Definition 1.3.26 ([Spr98], 3.4.1). An algebraic group V such that for some l ∈ N0

V ∼= Gl
a

is called a vector group.
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Definition 1.3.27 ([Spr98], 3.2.1). An algebraic group T is called a torus if there is some
l ∈ N0 such that

T ∼= Gl
m.

It can be shown that up to isomorphism every linear algebraic group is a subgroup of a
general linear group.

Lemma 1.3.28 ([Spr98], Theorem 2.3.7). Any linear algebraic group defined over a field
K is isomorphic to a closed subgroup of GLn(K) for some n ∈ N>0.

This allows to transplant definitions like unipotent and semi-simple into the setting of
linear algebraic groups.

Definition 1.3.29 ([Spr98], 2.4.1). Let L ⊂ GLn(K) be a linear algebraic group. An
element g ∈ L is called unipotent if there exists some m ∈ N>0 such that

(g − 1GLn(K))m = 0Matn(K).

An element h ∈ L is called semi-simple if it is diagonisable as a matrix over the algebraic
closure K of K.

This generalises to automorphisms over vector spaces of arbitrary dimension in the
following way.

Definition 1.3.30 ([Spr98], 2.4.7). Let W be an arbitrary K-vector space. An endomor-
phism f of W is said to be locally unipotent if its restriction to any finite dimensional
f -invariant subspace is unipotent. Analogously f is said to be locally semi-simple if its
restriction to any f -invariant finite dimensional sub vector space is semi-simple.

For any linear algebraic K-group L right multiplication by g ∈ L is a group isomorphism.
Since the underlying variety is affine morphisms from L to L can be associated with K-
algebra morphisms on the coordinate ring K[L] ([Bor91], I.1.5). So the right multiplication
by g defines a K-vector space morphism ρg : K[L] → K[L], which we can use to define
semi-simple and unipotent for arbitrary linear algebraic groups and a Jordan decomposition
of elements in L.

Proposition 1.3.31 (’Jordan Decomposition’, [Spr98], 2.4.8 and [Bor91], Theorem 4.4).
For g ∈ L, where L a linear K-group, there are unique elements gu ∈ L called the unipotent
part and gs ∈ L called the semi-simple part of L, such that

g = gugs = gsgu

(ρg)u = ρgu , (ρg)s = ρgs .

If L is a subgroup of some GLn(K), then this coincides with the notion of unipotent and
semi-simple defined above. The unipotent part gu as well as the semi-simple part gs are
again defined over K.
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Definition 1.3.32 ([Spr98], 2.4.8). An element g ∈ L is called unipotent if it is equal to
its unipotent part gu. The element is called semi-simple if it is equal to its semi-simple
part gs.

Since the notions of unipotent and semi-simple part are compatible with group homo-
morphisms, this implies that these definitions are compatible with the ones for subgroups
of general linear groups ([Spr98], 2.4.9).

Definition 1.3.33 ([Spr98], 2.4.11). A linear algebraic group U is called a unipotent group
if all its elements are unipotent.

Definition 1.3.34 ([Bor91], I.4.5). A linear algebraic group L is called a semi-simple
group if all its elements are semi-simple.

An example of a unipotent group is a vector group.

Example 1.3.35. Let V = Ga(K)n be a vector group over a number field K. Then the
following embedding makes V a unipotent subgroup of GLn+1(K)

ϕ : V → GLn+1(K)

(v1, . . . , vn) 7→



1 v1 0 . . . . . . 0
0 1 v2 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . ...
0 . . . . . . 0 1 vn
0 . . . . . . . . . 0 1


.

So any vector group is unipotent.

Theorem 1.3.36 ([Spr98], 3.1.1, 3.1.2 and [Bor91], I.4.5, I.4.6 and Theorem I.4.7). Let L
be a connected commutative linear algebraic group over a number field K. The unipotent
elements Lu and the semi-simple elements Ls of L each form a connected closed subgroup
of L. The map induced by the multiplication on L

µ : Lu × Ls → L

is an isomorphism of algebraic groups.
After some finite field K ′/K extension Lu is isomorphic to a vector group and Ls is
isomorphic to a split torus. So one gets

L ∼= Gla
a ×Glm

m

for some la, lm ∈ N0 as K ′-groups.
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Proof. The first statement is Theorem I.4.6 in [Bor91]. The idea behind the proof is to
embed L into some general linear group. Then use a generalisation of the fact that when
two endomorphisms commute they can be triagonalised simultaneously together with the
only unipotent semi-simple morphism being the identity morphism.
The second statement can be found in the book by Springer. For the unipotent part
this is [Spr98] Lemma 14.3.2 in combination with any module over a field being free
(compare [Spr98] 3.3.1). The statement on the semi-simple part is using part (b) of the
proposition in I.4.6 [Bor91], which states that any set of commuting endomorphisms can be
diagonalised over the field extension by the eigenvalues of the endomorphisms. To obtain
such a field extension it is sufficient to adjoin finitely many elements, since the K-vector
space of semi-simple endomorphisms contained in GLn(K) is finitely generated and any
endomorphism has only finitely many eigenvalues over the algebraic closure. So there is
such a field extension which is a finite extension.

Proposition 1.3.37. In the group Ga the kernel of the morphism [n]Ga is trivial. In Gm

the kernel of [n]Gm has n elements if K is algebraically closed. If K is not algebraically
closed | ker[n]Gm | divides n.

Proof. For Ga this is the claim that multiplication by n in a field is injective.
For Gm the claim is that a field contains either all n-th roots of unity or their number
divides n and every algebraically closed field contains all roots of unity.

Corollary 1.3.38. Let L ∼= Gla
a ×Glm

m , dimL = la + lm =: d be a split commutative linear
group. Then for any x ∈ L and n ∈ Z the cardinality of [n]−1

L ({x}) divides nd.

Proof. The preceding proposition implies that the cardinality of the kernel of [n]L divides
nd. Since [n]L is a group homomorphism the cardinality of the preimage is the same
everywhere which implies the corollary.

1.3.4 Chevalley’s theorem

In general, a smooth connected algebraic group over a number field will be an extension of
an abelian variety by an affine variety. This is the structure theorem for algebraic groups
by Chevalley.

Definition 1.3.39 ([Mil15], compare Definition 1.48 and the paragraph following it). A
short exact sequence of algebraic groups is a sequence

0→ G′ i→ G
p→ G′′ → 0

such that i is an isomorphism onto the kernel of p and p is surjective. One also says G is
an extension of G′′ by G′.
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Remark 1.3.40. The script [Mil15] uses a more general definition of algebraic groups.
What in this thesis is called an algebraic group is called a group variety in [Mil15].

Theorem 1.3.41 ([Mil13], compare Theorem 5.1). Let G be an algebraic K-group with K
being a subfield of Q. Then G is a unique extension of an abelian variety A by a normal
linear algebraic group L which is a subgroup of G

0→ L
i→ G

p→ A→ 0.

This construction commutes with extension of the base field K.

Corollary 1.3.42. Let K be a subfield of Q and G a connected commutative algebraic
K-group. Then there exists a finite field extension K ′/K and la, lm ∈ N0 such that G is
the following extension of algebraic groups

0→ Gla
a ×Glm

m
i→ G

p→ A→ 0.

Proof. This follows from combining the decomposition in Theorem 1.3.41 and the one
in Theorem 1.3.36 combined with the fact that the decomposition in Theorem 1.3.41 is
compatible with change of the base field.

Proposition 1.3.43. Let K be a subfield of Q and G a connected commutative algebraic
K-group. Then for any g ∈ G the number of preimages of the multiplication-by-n-morphism
[n]G of g divides n2 dimG.

Proof. Without loss of generality assume that the linear part L of G is split over K. Let
g ∈ G be some point and g1, . . . , gm its preimages under [n]G. Since the projection map p :
G→ A commutes with the group operations, the number of elements in {p(g1), . . . , p(gm)}
divides n2 dimA. We want to know how many of the g1, . . . , gm have the same image under
p. Assume g1, . . . , gc are all mapped to the same a ∈ A by p. Then all the differences
lj := g1− gj for 1 ≤ j ≤ c must be in the kernel of p and therefore in the image of i. The lj
are n torsion elements of G, since [n]Glj = [n]G(g1 − gj) = g− g = 0. Combining Corollary
1.3.38 with the fact that i is an injective map gives that the number of preimages of 0G
under [n]G in i(L) divides ndimL. The only thing left to note is now that if a′ is some other
element in A such that [n]Aa′ = p(g), at least c of the g1, . . . , gm must map to a′. Hence c
divides m and therefore m must divide n2 dimA · ndimL and thus also n2 dimG.

Another way to regard this exact sequence is to say that G is a L-torsor over A or
principal L-bundle over A. This first needs some definitions.
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Definition 1.3.44 ([Spr98], 2.3.1). Let G be an algebraic group. A variety X defined over
Q is called a G-space if it has a G-action which is given by a morphism. This means there
is a morphism of varieties

· : G×X → X

such that for all h, g ∈ G and x ∈ X

·(g, ·(h, x)) = ·(g + h, x), ·(0G, x) = x.

If G, X and the action are defined over some field K ⊂ Q then X is a G-space over K.
In the following text the notation g · x is used for ·(g, x).

Definition 1.3.45 ([Spr98], 2.3.1). Let G be an algebraic group. A morphism between
G-spaces X and Y is a morphism ϕ : X → Y of varieties such that for all g ∈ G and all
x ∈ X

ϕ(g · x) = g · ϕ(x).

Definition 1.3.46 ([BSU13], Definition 6.1.1). Let L be an affine algebraic group. A
principal L-bundle or torsor is a morphism of varieties p : X → Y such that

a) p is faithfully flat.

b) X is an L-space with action α and p is invariant under this action.

c) The following diagram is cartesian

L×X X

X Y

pr2

α p

p

.

Here pr2 is the projection on the second coordinate.
Remark 1.3.47. Let p : X → Y and p′ : X ′ → Y ′ be principal L-bundles. Any map
f : X → X ′ of L-spaces induces a unique map fL : Y → Y ′ such that p′ ◦ f = fL ◦ p, since
p is a quotient ([BSU13] p.77 paragraph after point (iv) and [MFK94] Proposition 0.1).
Such maps f are called L-equivariant and define morphisms between L-principal bundles.
If there are L-bundles p : X → Y , p′ : X ′ → Y ′ and p′′ : X ′′ → Y ′′ and L-space morphisms
f : X → X ′, g : X ′ → X ′′, one has (g ◦ f)L = gL ◦ fL. This is a consequence of the big
square in the following commutative diagram commuting, if both smaller ones do, together
with the factoring of a map through the quotient being unique.

X X ′ X ′′

Y Y ′ Y ′′

f

p

g

p′ p′′

fL gL

.

Uniqueness of the factorisation also implies that (idX)L = idY .
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Proposition 1.3.48 ([Mil15], compare 2-1, 5.61). Let G be an algebraic group and L and
A as in Theorem 1.3.41. Then G is an L-principal bundle over A.

Proof. The morphism p is faithfully flat by Remark 1.28 in [Mil15]. The linear group L
acts on G by

· : L×G→ G

(l, g) 7→ g + i(l).

The map p is invariant under this action since ker(p) = i(L). It is left to show that

L×G→ G×A G
(l, g) 7→ (g + i(l), g)

is an isomorphism of varieties. This map is a well defined morphism since for any g ∈ G
and l ∈ L the equality p(g + i(l)) = p(g) holds. This has an inverse map as a map of sets

G×A G→ L×G
(g′, g) 7→ (i−1(g′ − g), g)

and as such is a bijective map. But since the fibre product G ×A G can be viewed as a
closed subset of G×G this map is also a morphism of varieties. So this is an isomorphism
L×G ∼= G×A G. It can be seen that the induced map of sets

L(K)×G(K)→ G(K)×A(K) G(K)

for any field of definition K of G is also bijective with an analogous reasoning.

Definition 1.3.49 ([BSU13], paragraph after the Example on p.77). Let L be an affine
algebraic group and p : X → Y a principal L-bundle and Z an L-space. Then a variety W
with a morphism q : X × Z →W and pZ : W → Y such that

X × Z X

W Y

pr1

q p

pZ

is cartesian is called an associated bundle. In the following text the associated bundle will
also be denoted as X ×L Z.

Remark 1.3.50. This construction makes q : X × Z → X ×L Z a G-bundle with regards
to the diagonal action of L on X × Z defined as

L× (X × Z)→ X × Z
(l, (x, z)) 7→ (l · x, l−1 · z)
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([BSU13], paragraph after the example on p.77). Therefore X ×L Z is a quotient of X × Z
by the diagonal action. Let X ′ ×L Z ′ be an L-bundle associated to p′ : X ′ → Y ′. Due to
the universal property of the quotient any morphism f : X × Z → X ′ × Z ′ of L-spaces
with regards to the diagonal action defines a morphism of the associated bundles. If one
has f1 : X → X ′ and f2 : Z → Z ′ maps of L-spaces with their respective action, then their
product f1 × f2 : X × Z → X ′ × Z ′ will be a map of L-spaces with the diagonal action.
Hence each such map defines a morphism f1 ×L f2 of associated bundles.

1.4 Heights

A height function is intended to be a way to measure algebraic complexity of an algebraic
number and to be a generalisation of the normal absolute value on Z.

The following is a survey of the material needed to do the height estimate in later
chapters. It is mainly taken from chapters 1 to 5 of Part B in [HS00].

In the following section let K always denote an algebraic number field.

1.4.1 Heights on projective space

The set of non-trivial places of K will be denoted as MK . The subset of archimedian and
nonarchimedian places will be written as M0

K and M∞
K respectively.

Remark 1.4.1. Every absolute value | · | in M0
K is normalised such that its restriction to

Q agrees with the standard archimedian absolute value on Q, that is for any x ∈ Q

|x| = max{x,−x}.

If | · | is an absolute value in M∞
K then it is normalised such that its restriction to Q is one

of the standard p-adic absolute values. This means that if p ∈ N>0 is a prime such that
|p| ≤ 1, then the normalisation of | · | is chosen such that

|p| = 1
p
.

Definition 1.4.2 ([Lan94], Corollary 1 Part II §1). Let ν ∈ MK be a place. The local
degree dν is defined as

dν :=
{

[Kν : Qp] ν ∈M0
K corresponding to a prime ideal p|(p)

[Kν : R] ν ∈M∞
K .

Here Kν denotes the completion of K with respect to the absolute value ν.
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For any number field K and any finite algebraic field extension L/K there is the
following degree formula

Lemma 1.4.3 (’Degree Formula’, [Lan94], Corollary 1 Part II §1). It holds that∑
ω∈ML
ω|K=ν

[Lω : Kν ] = [L : K].

In the case of K = Q and L a number field this formula implies∑
ν∈M0

L
ν|p

dν = [L : Q]
∑

ν∈M∞
L

dν = [L : Q].

These places also fulfil the following product formula.

Lemma 1.4.4 (Product formula, [HS00], Proposition B.1.2). For a number field K and
a ∈ K \ {0} one has ∏

ν∈MK

|a|dν
ν = 1.

Definition 1.4.5 ([HS00], Definition p.176). Let P ∈ Pn(Q) be a point with projective
coordinates [p0 : . . . : pn], such that p0, . . . , pn ∈ K for a number field K.
The absolute multiplicative height of P on the projective space Pn(Q) is defined as

H(P ) :=

 ∏
ν∈MK

max{|p0|ν , . . . |pn|ν}dν

 1
[K:Q]

.

The absolute logarithmic height or absolute height of P on the projective space Pn(Q) is
defined as

h(P ) := logH(P ) = 1
[K : Q]

∑
ν∈MK

dν log max{|p0|ν , . . . |pn|ν}.

Lemma 1.4.6 ([HS00], compare Lemma B.2.1). The absolute height is well defined and
induces the following height maps:

H : Pn(Q)→ [1,∞)
P 7→ H(P )

h : Pn(Q)→ [0,∞)
P 7→ h(P )

Remark 1.4.7. If it is not obvious which projective space a height function h is associated
to a subscript hPn is added.
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Definition 1.4.8 ([HS00], Definition p.171). The (logarithmic) height on Q or affine height
is defined as the projective height of the point [1 : a] ∈ P1(Q)

h(a) := h([a : 1]) ∀a ∈ Q.

Proposition 1.4.9 ([HS00], Proposition B.2.6 (b)). Let

Sn,m : Pn × Pm → PN

([x], [y]) 7→ [x0y0 : x0y1 : . . . : xnym]

be the Segre embedding. For any [x] ∈ Pn and [y] ∈ Pm

hPN (Sn,m([x], [y])) = hPn([x]) + hPm([y]).

1.4.2 Some inequalities for heights on projective spaces

Lemma 1.4.10. Let P = [x0 : . . . : xn], Q = [y0 : . . . : yn] ∈ Pn(Q). Let h be the
height function associated to that choice of coordinates. If the pointwise product and sum
respectively of P and Q is well defined, then

h([x0 + y0 : . . . : xn + yn]) ≤ log 2 + h([x0 : . . . : xn : y0 : . . . : yn])
h([x0y0 : . . . : xnyn]) ≤ h([x0 : . . . : xn]) + h([y0 : . . . : yn]).

Proof. Let K be a number field such that x0, . . . , xn, y0, . . . , yn ∈ K, then

h([x0 + y0 : . . . : xn + yn]) = 1
[K : Q]

∑
ν∈MK

dν log max
i=1,...,n

|xi + yi|ν

≤ 1
[K : Q]

 ∑
ν∈M0

K

dν log max
i=1,...,n

max{|xi|ν , |yi|ν}

+
∑

ν∈M∞
K

dν log max
i=1,...,n

2 max{|xi|ν , |yi|ν}


= 1

[K : Q]

 ∑
ν∈MK

dν log max
i=1,...,n

{|xi|ν , |yi|ν}+
∑

ν∈M∞
K

dν log 2


= h([x0 : . . . : xn : y0 : . . . : yn]) +

∑
ν∈M∞

K
dν

[K : Q] log 2

1.4.3= h([x0 : . . . : xn : y0 : . . . : yn]) + [K : Q]
[K : Q] log 2

= h([x0 : . . . : xn : y0 : . . . : yn]) + log 2,
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h([x0 · y0 : . . . : xn · yn]) = 1
[K : Q]

∑
ν∈MK

dν log max
i=1,...,n

|xiyi|ν

= 1
[K : Q]

∑
ν∈MK

dν log max
i=1,...,n

|xi|ν |yi|ν

≤ 1
[K : Q]

∑
ν∈MK

dν log
(

max
i=1,...,n

|xi|ν max
j=1,...,n

|yj |ν
)

= 1
[K : Q]

 ∑
ν∈MK

dν log max
i=1,...,n

|xi|ν +
∑

ν∈MK

dν log max
j=1,...,n

|yj |ν


=h([x0 : . . . : xn]) + h([y0 : . . . : yn]).

Remark 1.4.11. Since the projective point [x0 + y0 : . . . : xn + yn] depends on the chosen
representatives [x0 : . . . : xn] and [y0 : . . . : yn] of the points P and Q, the first inequality
will as well depend on those choices. Since the projective point [x0y0 : . . . : xnyn] is
independent of those choices, the latter inequality is as well.
Remark 1.4.12. Both inequalities generalise if one has more summands or factors
respectively. Assume there are points

[
x

(1)
0 : . . . : x(1)

n

]
, . . . ,

[
x

(m)
0 : . . . : x(m)

n

]
∈ Pn(Q)

such that their pointwise sum or product is a well defined point in Pn. For the first
inequality one has

h

([
m∑
i=1

x
(i)
0 : . . . :

m∑
i=1

x(i)
n

])
≤ h

([
x

(1)
0 : . . . : x(1)

n : . . . : x(m)
0 : . . . : x(m)

n

])
+ logm.

This uses that for any absolute value | · | on a number field which contains x(1)
0 , . . . , x

(m)
n

max
1≤j≤n

{∣∣∣∣∣
m∑
i=1

x
(i)
j

∣∣∣∣∣
}
≤ m max

1≤i≤m
1≤j≤n

{∣∣∣x(i)
j

∣∣∣}
holds. Then the calculations can be done analogously to Lemma 1.4.10.
For the second inequality one has

h

([
m∏
i=1

x
(i)
0 : . . . :

m∏
i=1

x(i)
n

])
≤

m∑
i=1

h
([
x

(i)
0 : . . . : x(i)

n

])
and this follows from a repeated application of the inequality in the case of two factors.
Corollary 1.4.13. For any n ∈ Z and x, y ∈ Q

h(nx) ≤ h(x) + log |n|∞ (1.1)
h(x+ y) ≤ h(x) + h(y) + log 2 (1.2)
h(xn) = |n|∞h(x) (1.3)

h(x · y) ≤ h(x) + h(y). (1.4)

Here | · |∞ refers to the normal absolute value on Z.
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Proof. Let K be a number field such that x, y ∈ K. We first proof the fourth inequality:

h(x · y) = h([x · y : 1]) = h([x · y : 1 · 1])
1.4.10
≤ h([x : 1]) + h([y : 1]) = h(x) + h(y)

Let n ∈ Z be any integer. Then the following holds:

h([n : 1]) =
∑

p prime
log max{|n|νp , 1}+ log max{|n|∞, 1} = log max{|n|∞, 1} = log |n|∞

Here νp denotes the place in Q associated to the prime number p. Therefore if y = n

h(nx) ≤ h(x) + log |n|∞.

This proves the first inequality.
The proof of the second inequality also works analogously to Lemma 1.4.10. It holds that

h(x+ y) = h([x+ y : 1])

= 1
[K : Q]

 ∑
ν∈M0

K

dν log max{|x+ y|ν , 1}+
∑

ν∈M∞
K

dν log max{|x+ y|ν , 1}


≤ 1

[K : Q]

 ∑
ν∈M0

K

dν log max{|x|ν |y|ν , 1}+
∑

ν∈M∞
K

dν log (2 max{|x|ν , |y|ν , 1})


≤ 1

[K : Q]
∑

ν∈MK

dν log (max{|x|ν , 1}max{|y|ν , 1}) + log 2

= h([x : 1]) + h([y : 1]) + log 2
= h(x) + h(y) + log 2.

The ” ≤ ”-inequality of the third equality follows from a successive application of the fourth
inequality. To see that even equality holds one proceeds as in the proof of the second
inequality in Lemma 1.4.10 but uses that for any absolute value | · |

max{|xn|, 1} = max{|x|n, 1} = (max{|x|, 1})n = (max{|x|, 1})|n|

holds if n ≥ 0. If n < 0, one uses

max{|xn|, 1} = max{|x|n, 1} = |x|n max{|x|−n, 1} = |x|n
(
max{|x|−1, 1}

)|n|∞
.

The product formula Lemma 1.4.4 now implies that

h(xn) = |n|∞h(x) + n
∑

ν∈MK

dν log |x|ν = |n|∞h(x) + 0 = |n|∞h(x).
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Proposition 1.4.14. Let [x0 : . . . : xn] ∈ Pn(Q) for some choice of coordinates. Let h be
the height function associated to that choice of coordinates. Assume that x0 ̸= 0. Then

h([x0 : . . . : xn]) ≤
n∑
i=1

h([x0 : xi]) ≤ nh([x0 : . . . : xn]).

Proof. If x0 ̸= 0 one has

h([x0 : . . . : xn]) = h

([
1 : x1

x0
: . . . : xn

x0

])
h([x0 : xi]) = h ([ 1 : xi

x0
]) 1 ≤ i ≤ n.

Let K be a number field containing x0, . . . , xn and | · | any absolute value on this number
field. Then

max
1≤i≤n

{∣∣∣∣ xix0

∣∣∣∣ , |1|} = max
1≤i≤n

{∣∣∣∣ xix0

∣∣∣∣ , 1} ≤ n∏
i=1

max
{∣∣∣∣ xix0

∣∣∣∣ , 1} .
This implies the first inequality.
For any 1 ≤ i ≤ n and any absolute value | · | on K one has

max{|x0|, |xi|} ≤ max
0≤j≤n

{|xj |}.

Therefore
h([x0 : xi]) ≤ h([x0 : . . . : xn])

for any 1 ≤ i ≤ n and
n∑
i=1

h([x0 : xi]) ≤ nh([x0 : . . . : xn]).

Proposition 1.4.15. Let [1 : x1 : . . . : xn] ∈ Pn(Q) and [1 : y1 : . . . : ym] ∈ Pm(Q) for
some choice of coordinates. Then

h([1 :x1 : . . . :xn :1 :y1 : . . . :ym])≤h([1 :x1 : . . . :xn])+h([1 :y1 : . . . : ym])
h([1 :x1 : . . . :xn])+h([1 :y1 : . . . :ym])≤2h([1 :x1 : . . . :xn :1 :y1 : . . . :ym]).

Proof. This works analogously to Proposition 1.4.14. Let K be a number field containing
x1, . . . , xn, y1, . . . , ym and let | · | be any absolute value on this number field. Then

max
1≤i≤n
1≤j≤m

{|xi|, |yj |, |1|} = max
1≤i≤n
1≤j≤m

{|xi|, |yj |, 1} ≤ max
1≤i≤n

{|xi|, 1} max
1≤j≤m

{|yj |, 1}.

This implies the first inequality.
The second follows since

h([1 : x1 : . . . : xn]) ≤ h([1 : x1 : . . . : xn : 1 : y1 : . . . : ym])
h([1 : y1 : . . . : ym]) ≤ h([1 : x1 : . . . : xn : 1 : y1 : . . . : ym])

analogously to Proposition 1.4.14.
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1.4.3 Heights on varieties

Let X be an irreducible projective variety over Q.

Definition 1.4.16 ([HS00], Definition p.183). Let ϕ : X → PnQ be a morphism. The
(absolute logarithmic) height of X relative to ϕ is defined as

hϕ : X(Q)→ [0,∞)
P 7→ h(ϕ(P )).

Here h : Pn(Q)→ [0,∞) is the absolute height on the projective space Pn(Q).

Proposition 1.4.17 ([HS00], Theorem B.2.5). Let ϕ : PnQ → PmQ be a rational map, which
is given locally on some open set by the homogeneous degree d ∈ N polynomials ϕ0, . . . , ϕm.
Then for all P ∈ Pn(Q) such that not all ϕi vanish in P

h(ϕ(P )) ≤ dh(P ) +O(1).

Here O(1) is a bounded function only dependent on n, d and ϕ.
If P is an element in a subvariety X ⊂ PnQ and the ϕi vanish nowhere simultaneously on
X one has

h(ϕ(P )) = dh(P ) +O(1).

In this case O(1) depends again on n, d and ϕ but also on the subvariety X.

Theorem 1.4.18 ([HS00], Theorem B.3.1 ). Let ϕ : X → PnQ, ψ : X → PmQ be morphisms
associated to the same Divisor on X. Then

hϕ(P ) = hψ(P ) +O(1) ∀P ∈ X(Q)

O(1) is independent of P but depends on ϕ and ψ.

This now enables constructing the following families of heights defined up to bounded
functions on projective varieties.

Theorem 1.4.19 (’Height Machine (Weil)’, [HS00], Theorem B.3.2). Let X be a smooth
variety defined over a number field K. Then there exists

hX : Div(X)→ {functions X(Q)→ R}
D 7→ hX,D

such that
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a) (Normalisation) For H the divisor associated to a hyperplane in Pn(Q) and P ∈ Pn(Q)
one has

hPn,H(P ) = hPn(P ) +O(1) P ∈ Pn(Q).

b) (Functoriality) For a morphism f : X → Y of smooth K-varieties and D ∈ Div(Y )
one has

hX,ϕ∗D(P ) = hY,D(ϕ(P )) ∀P ∈ X(Q).

c) (Additivity) For D,E ∈ Div(X)

hX,D+E(P ) = hX,D(P ) + hX,E(P ) +O(1) ∀P ∈ X(Q).

d) (Linear equivalence) For D,E ∈ Div(X) such that D and E are linearly equivalent

hX,D(P ) = hX,E(P ) +O(1) ∀P ∈ X(Q).

e) (Positivity) For D ∈ Div(X) effective and B the base locus of |D|

hX,D(P ) ≥ O(1) ∀P ∈ (X \B)(Q).

f) (Uniqueness) A height function hX,D is up to O(1) determined by normalization,
functoriality for embeddings and additivity.

The idea behind proving this theorem is the following. If a divisor D ∈ Div(X) is
basepoint free (or alternatively very ample), then D defines a morphism ϕD : X → Pn.
In this case the height that the height machine associates to the divisor D is defined as
the height hϕD

relative to the map ϕD. Any divisor E on a projective variety can be
written as the difference of two basepoint free divisors. The height associated to E will
be defined as the difference of the heights associated to two such basepoint free divisors.
Now Proposition 1.4.17 and Theorem 1.4.18 can be used to check that the construction is
well defined and that it has the desired properties. Since there is a choice to be made in
the divisors used for the definition as well as in the coordinates chosen for an embedding
associated to a basepoint free divisor, this definition will only determine hX up to bounded
functions.
The details of the proof can be found in [HS00] (Theorem B.3.2).

Remark 1.4.20. If it is clear from the context to which variety X the Theorem 1.4.19 is
applied to, the notation hX,D for a given divisor D ∈ Div(X) is shortened to hD.
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Remark 1.4.21 ([HS00], compare Theorem B.3.6). Using the uniqueness property in the
preceding theorem induces a function

hX : Div(X)→ {functions X(Q)→ R}/{bounded functions}
D 7→ hX,D

uniquely determined by the analogous properties of normalisation, functoriality and addi-
tivity.
The linear equivalence property implies that this function is constant on divisor classes so
Theorem 1.4.19 also induces a function

Cl(X)→ {functions X(Q)→ R}/{bounded functions}
[D] 7→ hX,D

uniquely determined by the analogous formulations of normalisation, functoriality and
additivity.

Remark 1.4.22. The functions O(1) appearing in the height machine depend on the
variety, the divisor and the morphism, but are independent of the choice of points in the
variety. Therefore the second point in the height machine can be phrased in the following
way. Let ϕ,X, Y and D be as in point (b) of Theorem 1.4.19. Then there exists some
constant C := C(f,X, Y,D) ∈ R≥0 such that for any P ∈ X(Q)

|hX,ϕ∗D(P )− hY,D(ϕ(P ))| ≤ C.

Remark 1.4.23. In the following text sometimes the notation

h ∼ h′

used in [SC79] will be used to denote two height function h and h′ which only differ by
some bounded function O(1).

Corollary 1.4.24 ([HS00], compare Theorem B.3.6). Let X be a smooth variety over a
number field K. Then there exists

hX : Cl(X)→ {functions X(Q)→ R}/O(1)
D 7→ hX,D.

Lemma 1.4.25 ([SC79], Lemme 3). Let X be an irreducible projective variety and ϕ and
ψ morphisms

ϕ : X → PN ψ : X → PM ,

such that ϕ is a closed immersion. Then

hψ ≤ C1 + C2hϕ

for some C1, C2 ∈ R and C1 ̸= 0.
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Proof. Since ϕ−1 exists as a rational map and ϕ(X) is a variety one has the following
morphism of varieties

ψ ◦ ϕ−1 : ϕ(X) ⊂ PN → PM .

This is locally given by polynomials. The Weil height on ϕ(X) viewed as subvariety of the
projective space is the height hϕ on X. One has that if in a neighbourhood of x ∈ X(Q)
the rational map ψ ◦ ϕ−1 is given by a family of homogeneous polynomials F of the same
degree, then

hψ(x) = hϕ(X)((ψ ◦ ϕ−1)(x)) ≤ deg(F )hϕ(x) +O(1).

Since the variety ϕ(X) is quasi-compact a finite subset of such neighbourhoods cover ϕ(X).
If one takes the maximum of degF and bounds C for the absolute value of O(1) associated
to these open neighbourhoods, one gets the constants C1 and C2 respectively. With this
the claim follows.

Corollary 1.4.26. Let X be an irreducible projective variety defined over Q, D a divisor
on X which is linearly equivalent to a basepoint-free one and E a divisor on X linear
equivalent to a very ample one. Then there are λ, µ such that for any x ∈ X

hD(x) ≤ µhE(x) + λ.

Proof. If D is a basepoint free divisor, its associated height is the same as the height hϕD

of one of its associated maps into projective space. So the claim holds if D is basepoint
free and E is very ample by the preceding Lemma 1.4.25. In the general case let D′ ∼ D
be basepoint free and E′ ∼ E be very ample and the statement holds with constants λ′

and µ′. The fourth point of Theorem 1.4.19 implies that there are constants C1, C2 such
that for any x ∈ X(Q)

hD(x) ≤ hD′(x) + C1 hE′(x) ≤ hE(x) + C2.

Hence

hD(x) ≤ hD′(x) + C1 ≤ µ′hE′(x) + λ′ + C1

≤ µ′hE(x) + µ′C2 + λ′ + C1

=: µhE(x) + λ

with µ := µ′ and λ := µ′C2 + λ′ + C1.

1.4.4 Heights on abelian varieties

Heights on abelian varieties have the additional property that they are (up to some bounded
function depending on the variety and divisor) quadratic with respect to the group law.
This is section B.3 and B.4 in [HS00].
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Proposition 1.4.27 ([HS00], Corollary B.3.4 (a)). For an abelian variety A defined over
K and a divisor D ∈ Div(A) the following formula holds for all P ∈ A(Q) and m ∈ Z

hA,D([m]AP ) = m2 +m

2 hA,D(P ) + m2 −m
2 hA,D([−1]P ) +O(1).

The proof uses the law of the cube, which is Lemma 1.3.16.

For a divisor D whose divisor class is symmetric (as in Definition 1.3.15) the formula
of the proposition simplifies to

hA,D([m]P ) = m2hA,D(P ) +O(1).

Here O(1) depends on A, D and m. Furthermore the height fulfills the parallelogram
equality for all P,Q ∈ A(Q) up to some bounded function dependent on D, A and the
group law on A

hA,D(P +Q) + hA,D(P −Q) = 2hA,D(P ) + 2hA,D(Q) +O(1).

So the height relative to a symmetric divisor is a quadratic form up to some bounded
function.

For antisymmetric divisors something similar happens,

hA,D([m]P ) = mhA,D(P ) +O(1)

with O(1) dependent on A, D and m. Here the height can be viewed as linear up to some
bounded function. For all P,Q ∈ A(K)

hA,D(P +Q) = hA,D(P ) + hA,D(Q) +O(1)

with O(1) again dependent on D, A and the group law on A.

This allows one to construct a canonical height with respect to a multiplication
morphism for symmetric and antisymmetric divisors respectively. The construction works
analogously to the construction of a Néron-Tate height on a variety relative to a divisor
and a function (compare to [HS00], Theorem B.4.1). But it turns out that the resulting
height is independent of the choice of m for the multiplication.

Theorem 1.4.28 (’Néron, Tate’, [HS00], Theorem 5.1). Let A be an abelian variety defined
over a number field K and D ∈ Div(A) a divisor of symmetric divisor class. Then there
exists a unique height function which only depends on the divisor class of D

ĥA,D : A(Q)→ R

such that ĥA,D is a quadratic form, i.e.
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a) ĥA,D = hA,D +O(1)

b) ĥA,D ◦ [m] = m2ĥA,D

c) ĥA,D(P +Q) + ĥA,D(P −Q) = 2ĥA,D(P ) + 2ĥA,D(Q) ∀P,Q ∈ A(Q).

For an antisymmetric divisor the analogous construction gives the following theorem.

Theorem 1.4.29 ([HS00], Theorem 5.5). Let A be an abelian variety defined over a number
field K and D ∈ Div(A) a divisor of antisymmetric divisor class. Then there exists a
unique height function only dependent on the divisor class of D

ĥA,D : A(Q)→ R

such that ĥA,D is a linear form, i.e.

1. ĥA,D = hA,D +O(1)

2. ĥA,D(P +Q) = ĥA,D(P ) + ĥA,D(Q) ∀P,Q ∈ A(Q).

Splitting an arbitrary divisor into its symmetric and antisymmetric parts allows one
to construct a canonical height for that divisor, which has a unique linear and quadratic
part. This leads to the following generalisation of the previously constructed heights for
symmetric and antisymmetric divisors respectively.

Lemma 1.4.30 ([HS00], Theorem B.5.6). Let A be an abelian variety defined over a
number field K and D ∈ Div(A) a divisor. For any divisor class associated to such a D
there exists a unique height function

ĥA,D : A(Q)→ R

such that ĥA,D agrees with the canonical height constructed in the previous theorems if D
is a symmetric or antisymmetric divisor and

a) For any D ∈ Div(A) : ĥA,D(0) = 0

b) For any D, E ∈ Div(A): ĥA,D+E = ĥA,D + ĥA,E

c) For any D ∈ Div(A) there is a unique quadratic form qD and a unique linear form
lD such that

ĥA,D = qD + lD

which can be obtained by the height functions

qD = 1
2 ĥA,D+[−1]∗D lD = 1

2 ĥA,D−[−1]∗D.
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A consequence of this lemma is that up to something bounded, every logarithmic height
on an abelian variety is quadratic with respect to the group law.

Corollary 1.4.31. Let A be an abelian variety defined over a number field K and D ∈
Div(A) a divisor. Let the height associated to D be hA,D and let ĥA,D be the canonical
height associated with D as in the previous lemma. Then

hA,D = ĥA,D +O(1).

In particular any height on an abelian variety associated to a divisor behaves up to some
bounded function quadratic with respect to the group law.

Proof. Let D ∈ Div(A) be a divisor. Then

2D ∼ (D + [−1]∗D) + (D − [−1]∗D) (1.5)

is a decomposition of 2D into a symmetric and an antisymmetric divisor. This leads to

2hA,D
1.4.19 (3)= hA,D+D +O(1)

= hA,2D +O(1)
(1.5)= hA,(D+[−1]∗D)+(D−[−1]∗D) +O(1)

1.4.19 (c)= hA,D+[−1]∗D + hA,D−[−1]∗D +O(1)
= ĥA,D+[−1]∗D + ĥA,D−[−1]∗D +O(1)

= 2
(1

2 ĥA,D+[−1]∗D + 1
2 ĥA,D−[−1]∗D

)
+O(1)

1.4.30= 2ĥA,D +O(1).

Therefore

hA,D = ĥA,D +O(1).

1.4.5 Heights on polynomials

Definition 1.4.32 ([HS00], section B.7 on p.224 and Remark B.7.0 on p.225). Let K be
a number field, ν an absolute value on K and f = ∑

aαX
α1
1 · · ·Xαn

n ∈ K[X1, . . . , Xn] a
polynomial. The Gauss norm of f is defined as

|f |ν = max
α
|aα|ν .

The logarithmic height of the polynomial is defined as

h(f) = 1
[K : Q]

∑
ν∈MK

dν log |f |ν .
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Remark 1.4.33. This is the same as the height of the coefficients of f taken as a projective
point and thus also independent of the choice of field of definition K. This follows again
from the product formula in Lemma 1.4.4.
Therefore two polynomials which only differ by a scalar in K have the same height.

Proposition 1.4.34 (’Gelfand’s inequality’, [HS00], Proposition B.7.3 ). Let there be
integers d1, . . . , dm ∈ N≥1 and algebraic polynomials f1, . . . , fr ∈ Q[X1, . . . , Xm] such that
degXi

(f1, . . . fr) ≤ di for any i ∈ {1, . . . ,m}, then

r∑
i=1

h(fi) ≤ h(f1 · · · fr) + d1 + . . .+ dm.

Proposition 1.4.35 (compare [HS00] Proposition B.7.3 (a)). Let there be polynomials
f1, . . . , fr ∈ Q[X1, . . . , Xm] and d1, . . . , dm ∈ N≥1 such that degXi

(f1, . . . fr) ≤ di for any
i ∈ {1, . . . ,m}, then

h(f1 · · · fr) ≤
r∑
i=1

(h(fi) + (deg fi +m) log 2) .

Proof. We proceed analogously to the proof of Proposition B.7.3 (a) in [HS00] and only
change the definition of the height of a polynomial.

Each coefficient of f1 · · · fr is a sum of a products a1 · · · ar where ai is a coefficient of
fi. The number of non-zero summands for the coefficient of a monomial XE1

1 · · ·XEm
m for

E1 + . . .+ Em = deg(f1 · · · fr) is at most

m∏
i=1

(
Ei + r − 1
r − 1

)
.

This holds since the number of r-partitions of Ei is
(Ei+r−1

r−1
)
. We want to estimate this

product. For this we use the following claim.

Claim. Let n,m ∈ N0 and n ≥ m. Then(
n

m

)
≤ 2n. (1.6)

Proof. One shows that ∑n
m=0

(n
m

)
= 2n. This follows by induction on n.

n = 0:
0∑

m=0

(
0
m

)
=
(

0
0

)
= 1 = 20
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n ≥ 1: Assume the claim holds for a given n ≥ 0.

n+1∑
m=0

(
n+ 1
m

)
=
(
n+ 1

0

)
+

n∑
m=1

(
n+ 1
m

)
+
(
n+ 1
n+ 1

)

= 1 +
n∑

m=1

((
n

m− 1

)
+
(
n

m

))
+ 1

=
(
n

0

)
+

n∑
m=1

(
n

m

)
+

n−1∑
m=0

(
n

m

)
+
(
n

n

)

= 2
n∑

m=0

(
n

m

)
IH= 2 · 2n

= 2n+1

Therefore
m∏
i=1

(
Ei + r − 1
r − 1

)
≤

m∏
i=1

2Ei+r−1 = 2
∑r

i=1 Ei+m(r−1) = 2deg(f1···fr)+m(r−1)

Using Remark 1.4.33 we can view the polynomials as projective points and apply the
two inequalities of Lemma 1.4.10 to pullout the sums and products of coefficients of the fi.
This leads to

h(f1 · · · fr) ≤
r∑
i=1

h(fi) + log
(
m∏
i=1

(
Ei + r − 1
r − 1

))

≤
r∑
i=1

h(fi) + log 2deg(f1···fr)+m(r−1)

=
r∑
i=1

h(fi) + (deg(f1 · · · fr) +m(r − 1)) log 2

=
r∑
i=1

h(fi) +
(

r∑
i=1

(deg(fi) +m)
)

log 2

=
r∑
i=1

(h(fi) + (deg(fi) +m) log 2) .
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Chapter 2

Heights and height estimates on
commutative connected algebraic
groups

Let G be a commutative connected algebraic group. To obtain heights on G one could
try to use the height machine. But G is in general not a complete variety, therefore the
theorem is not applicable. The following sections will construct a completion G of G and
divisors on this completion.

2.1 Completion of a connected commutative algebraic group

2.1.1 The completion of L

In this section let L be an affine algebraic group defined over some number field K. Assume
without loss of generality that

L ∼= Gla
a ×Glm

m

for some la, lm ∈ N0 over K. This can be done because of Theorem 1.3.36. The goal of
this section is to find a projective variety L which is a completion of L, that is L ⊂ L is
dense. The construction done here is the same as in [SC79] section 1.2.

Proposition 2.1.1 ([SC79], 1.2). The variety L := (P1)la+lm is a completion of L. This
is a smooth and connected variety.
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Proof. The projective line P1 is a completion of Ga and Gm by the inclusion

A1 → P1

x 7→ [x : 1]

Since L is isomorphic to a product of copies of Ga and Gm the statement follows. The
projective line P1 is smooth and connected, therefore so is L.

The completion of Ga and Gm as the projective space P1 will be denoted by Ga and
Gm respectively.

Proposition 2.1.2. The variety L has an L-action which agrees with the group law on L.

Proof. Since L and L are products this can be proved by checking the statement for each
factor Ga ⊂ P1 and Gm ⊂ P1. In the additive case there is the addition map

Ga ×Ga → Ga

([x : 1], [y : 1]) 7→ [x+ y : 1].

By rewriting this, one sees that the map can be regularly continued to Ga × P1 as

Ga × P1 → P1

([x : 1], [y0 : y1]) 7→ [xy1 + y0 : y1].

In the multiplicative case the group law is given as

Gm ×Gm → Gm

([x : 1], [y : 1]) 7→ [xy : 1].

which has a continuation to Gm × P1 by

Gm × P1 → P1

([x : 1], [y0 : y1]) 7→ [xy0 : y1].

Proposition 2.1.3 ([SC79], Proposition 2). Let n ∈ Z \ {0}. Then the multiplication-by-n-
morphism [n]L on L has a continuation [n]L as a morphism on L.

Proof. This can again be checked on the level of factors, since the multiplication-by-n-
morphism is defined by multiplication-by-n on every factor. On the factors the continuations
are

[n]Ga
: P1 → P1

[x0 : x1] 7→ [nx0 : x1]
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and

[n]Gm
: P1 → P1

[x0 : x1] 7→
{

[xn0 : xn1 ] n ≥ 0
[x−n

0 : x−n
1 ] n < 0.

.

Therefore a continuation on L exists.

For 1 ≤ i ≤ la+ lm let pri denote the projection of L to its i-th factor. These projection
maps are compatible with the L-action on L in the sense that for l ∈ L and x ∈ L

pri(l · x) = pri(l) · pri(x).

On the left hand side one has L operating on L and on the right hand side Ga or Gm

acting on P1 as in the proof of Proposition 2.1.2. Define divisors

L′
a = [1 : 0], L′

m = [0 : 1] + [1 : 0]

in P1. They are the divisors associated to the subvarieties P1 \Ga and P1 \Gm respectively.
Then the subvarieties

Li :=
{

pr−1
i (L′

a) 1 ≤ i ≤ la
pr−1
i (L′

m) la < i ≤ la + lm

are divisors in L. Define the divisor L∞ as

L∞ :=
la+lm⋃
i=1

Li.

By definition, the divisor L∞ agrees with the closed subvariety L \ L of L.

Lemma 2.1.4. The divisor L∞ is invariant under the action of L on L and a very ample
divisor.

Proof. To prove the first point one shows that any divisor Li is invariant under the action
of L. But for this it suffices to show that the divisors L′

a and L′
m are invariant under the

action of Ga and Gm respectively, since the projections are compatible with the group
action of L. We get the orbits

{[x · 0 + 1 : 0 · 1]| x ∈ Ga} = {[1 : 0]} = L′
a

for L′
a and

{[x · 0 : 1]| x ∈ Gm} = {[0 : 1]},
{[x · 1 : 0]| x ∈ Gm} = {[1 : 0]}
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for the elements of L′
m and thus the L′

m are Gm-invariant. So all Li are L-invariant and
therefore L∞ is L-invariant.
To prove the second part of the statement, one constructs the embedding into projective
space associated to the divisor. For a component Ga

∼= P1 the corresponding divisor La
limited to this component is by construction just the divisor associated to the point [1 : 0].
The map associated to this divisor is the identity map on P1

ξa : Ga → P1,

[x0 : x1] 7→ [x0 : x1].

For a component Gm
∼= P1 the corresponding divisor Lm on this component is the sum of

points [1 : 0] and [0 : 1]. This divisor has the associated linear system L(D) = ⟨1, x0
x1
, x1
x0
⟩K

if x0, x1 are the coordinates on P1. It is therefore associated to the following embedding:

ξm : Gm → P2

[x0 : x1] 7→ [x0x1 : x2
0 : x2

1].

Composing ξa and ξm with the Segre-embedding sufficiently often gives an embedding
ϕ of L into P2la 3lm −1. If this space has coordinates z0, . . . , z2la 3lm the divisor L∞ is the
pullback of the hyperplane {z0 = 0}:

ϕ∗({z0 = 0}) = {x(1)
0 · · ·x

(la)
0 x

(la+1)
0 x

(la+1)
1 · · ·x(la+lm+1)

0 x
(la+lm+1)
1 = 0},

=
la+lm⋃
i=1
{x(i)

0 = 0} ∪
lm⋃
i=1
{x(la+i)

1 = 0} ⊂
(
P1
)la+lm

.

Here x(i)
0 and x(i)

1 for 1 ≤ i ≤ la + lm denote the x0 and x1 coordinate of the i-th factor of
L. Hence the divisor L∞ is very ample.

2.1.2 Constructing an associated bundle

The following statements are a slightly more detailed version of section 2 ’Gefaserte Objekte’
in [Wüs84] and subsection 1.3 in [SC79].

Lemma 2.1.5 ([Ros56], Theorem 10). Let G be an algebraic group and

0→ L
i→ G

p→ A→ 0

the decomposition as in Theorem 1.3.41. Then there exists a rational section s of p. If G
is defined over a field K ⊂ Q, then s is also defined over K.

Proof. The Theorem 10 in the paper [Ros56] by Rosenlicht states that such a section exists
if
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• L is connected and solvable

• L acts on G in such a way that the map p : G→ A is the natural map of L-orbits.

Every commutative group is solvable and since G is connected L is also connected (by
Theorem 1.3.41). So the first condition holds. The second point is the restatement of the
exact sequence done in Proposition 1.3.48, thus such a section exists.
If G is defined over K, Theorem 1.3.41 states that also L and A as well as i and p are
defined over K. With Theorem 1.3.41 this implies that the action of L on G is defined
over K as well. Therefore the theorem in [Ros56] implies that the section s is defined over
K.

Lemma 2.1.6. Let G, A, L, p and i be as in the previous lemma. There exists a covering
U1, . . . , Un of open subsets of A such that

p−1(Ui) ∼= L× Ui

by some L-equivariant morphism such that

p−1(Ui) L× Ui

Ui

p pr2 .

Proof. By the previous Lemma 2.1.5 there is some rational section

s : A→ G.

Let U ⊂ A be an open subset of A such that s|U is regular. Then there is an isomorphism

p−1(U) ∼→ p−1(0A)× s(U)
h 7→ (h− s(p(h)), s(p(h)))

with its inverse being the addition on G. On the other hand

p−1(0A)× s(U) ∼→ L× U
(g1, g2) 7→ (i−1(g1), p(g2)).

This uses that i(L) = p−1(0A) and s is a section. This leads to the following isomorphism

ϕU : p−1(U) ∼→ L× U
h 7→ (i−1(h− s(p(h))), p(h))

i(l) + s(u)←[ (l, u)
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where in the second component it is used that s is a section and therefore p(s(p(h))) = p(h).
L acts on both p−1(U) and L×U . On p−1(U) this action is induced by the action of L on
G. Consider

L× p−1(U)→ p−1(U)
(l, g) 7→ i(l) + g.

This is well defined since p is L-invariant. The action on L× U is the following

L× (L× U)→ (L× U)
(l′, (l, u)) 7→ (l + l′, u).

The map defined above is equivariant under these L-actions. It also makes the following
diagram commute

p−1(U) L× U

U

ϕU

p pr2 .

Let now a ∈ U be fixed, choose b ∈ A arbitrary and g ∈ p−1(a− b). Then

sb := τ−g ◦ s ◦ τa−b

is a rational section of p. Here τ denotes the translation morphism. The section sb is
regular on an open neighbourhood Ub = τb−a(U) of b, since for any a′ ∈ Ub

p ◦ sb(a′) = p(s(a′ + a− b)− g)
a′∈Ub= p(s(a′ + a− b)) + p(−g)

= a′ + a− b− a+ b

= a′.

Analogous to the case above one gets an L-equivariant morphism

ϕUb
: p−1(Ub)→ L× Ub

h 7→ (i−1(h− sb(p(h))), p(h))

such that
p−1(Ub) L× Ub

Ub

ϕUb

p pr2
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commutes. Since A is quasi-compact, a finite number of such neighbourhoods Ub cover A.
Let them be called U1, . . . , Un each with a corresponding section si regular on Ui and local
trivialisations

ϕi : p−1(Ui)→ L× Ui.

Let Ui, Uj ∈ {U1, . . . , Un}. The preimage p−1(Ui∩Uj) can be viewed as a subset of p−1(Ui)
as well as p−1(Uj) using the isomorphisms from above. This leads to the following gluing
function

ϕi,j := (ϕi ◦ ϕ−1
j )|(Ui∩Uj) : L× (Ui ∩ Uj)→ L× (Ui ∩ Uj)

(l, u) 7→ (l + i−1(si(u)− sj(u)), u)

which is also L-equivariant.

Proposition 2.1.7 ([Wüs84], Beispiel 1 p.179). Let G,A,L, p and i be as in the previous
lemma and let X be an L-space. Then the associated bundle G×L X over A exists.

Proof. Let {U1, . . . , Un} be a cover of A, which leads to a cover of G as in the previous
corollary with transition function

ϕi,j : L× (Ui ∩ Uj)→ L× (Ui ∩ Uj)
(l, u) 7→ (gi,j(u)(l), u)

where each gi,j(u) is an L-equivariant map. Since the gi,j are functions associated to gluing
together G from subvarietes they form a cocycle i.e. for any i, j, k ∈ {1, . . . , n}

gi,j = gj,i gi,k = gj,k ◦ gi,j .

Now one defines W as the variety obtained by gluing patches

Ui ×X

with the functions

ψi,j : (Ui ∩ Uj)×X → (Ui ∩ Uj)×X
(u, x) 7→ (u, gi,j(0L) · x).

Since the gi,j form a cocycle, the ψi,j form one as well and the variety W is well defined.
Define

q : G×X →W

by defining it locally as

(Ui × L)×X → Ui ×X
(u, l, x) 7→ (u, x)
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and

pX : W → A

by defining it locally as

Ui ×X → A

(u, x) 7→ u.

Since any point (u, l, x) is uniquely determined by (u, x) and (u, l), the diagram

(Ui × L)×X (Ui ×X)

(Ui × L) Ui

pr1×pr3

q p

pX

is cartesian for any open set Ui and therefore

G×X G

W A

pr1

q p

pX

is cartesian. So W = G×L X is the associated bundle.

2.1.3 The completion of an arbitrary commutative connected algebraic
group

This subsection is also following [Ser97] subsection 1.3 and [Wüs84] section I.1.3. Let G be a
commutative connected algebraic group defined over a number field K with decomposition

0→ L
i→ G

p→ A→ 0

by Theorem 1.3.41. Assume without loss of generality that

L ∼= Gla
a ×Glm

m

with la, lm ∈ N0 as in Theorem 1.3.36.

Proposition 2.1.8 ([Wüs84], I.1.3, [SC79], 1.3). Let L be as in Proposition 2.1.1. Then
there exists a complete variety G such that G ↪→ G is a dense open subset. Moreover there
exists a morphism p : G→ A which agrees with p on G and whose fibres are isomorphic to
L. The variety G is also smooth and connected.
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Proof. Take G := G×L L as in Lemma 2.1.7. To show that the variety G is complete one
can view it as Q-scheme. In this setting G is complete if the map

G→ Spec(Q)

is proper. So we can apply the valuative criterion for properness to this map ([Har77],
Theorem II.4.7). We already know that L and A are complete. Choose affine coverings
Ui = Spec(Bi) of L and Vj = Spec(Cj) of A such that G is locally isomorphic to Ui × Vj .
Let K ′ be an arbitrary field and R

ι
↪→ K ′ a valuation ring. Let the following diagram

Spec(K ′) G

Spec(R) Spec(Q)

ι♯
.

commute. The image of Spec(K ′) lies in some affine patch Ui×Vj of G and can be specified
by giving an image of Spec(K ′) in L and an image of Spec(K ′) in A. This leads to the
commutative diagrams

Spec(K ′) Ui

Spec(R) Spec(Q)

ι♯

Spec(K ′) Vj

Spec(R) Spec(Q)

ι♯ .

The completeness of L and A now implies

Spec(K ′) Ui

Spec(R) Spec(Q)

ι♯
∃!

Spec(K ′) Vj

Spec(R) Spec(Q)

ι♯
∃! . (2.1)

Therefore there exists a map Spec(R)→ Ui × Vj such that the diagram commutes

Spec(K ′) G

Spec(R) Spec(Q)

ι♯
∃

and hence G is complete.
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Assume there was a second map ϕ : SpecR→ G making the diagram

Spec(K ′) G

Spec(R) Spec(Q)

ι♯
ϕ

commute. Since the Ua × Vb cover G, the map ϕ also defines a morphism ϕ : SpecR →
Ui′ × Vj′ for some i′, j′ such that

Spec(K ′) Ui′ × Vj′

Spec(R) Spec(Q)

ι♯
ϕ

and ergo
Spec(K ′) Ui′ ⊂ L

Spec(R) Spec(Q)

ι♯

Spec(K ′) Vj′ ⊂ A

Spec(R) Spec(Q)

ι♯ .

The varieties L and A are both proper, therefore prUi′ ◦ ϕ : Spec(R) → Ui′ ↪→ L and
prVj′ ◦ ϕ : Spec(R)→ Vj′ ↪→ A define the same maps as in the diagrams in Equation (2.1).
Therefor ϕ must agree with the map constructed above, hence this map is the unique
morphism to make the diagram commute and G is separated.
Therefore G is proper as a scheme over Q, hence a complete variety.
The group G is dense in this variety, since locally

Vj × L ↪→ Vj × L

maps onto a dense subset. Since L is smooth, any patch

Vj × L

is smooth and therefore G is a smooth variety. The morphism p can be taken as the
morphism pL from the construction of the associated bundle. This construction also implies
that its fibres are isomorphic to L.

Remark 2.1.9. If one uses Remark 1.3.50, the inclusion G ↪→ G constructed above is
the morphism induced by the map idG × ι : G× L→ G× L. Here ι : L→ L denotes the
inclusion of L in L.
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Proposition 2.1.10 ([SC79], Proposition 2). The multiplication-by-n-morphism [n]G has
a continuation as a morphism [n]G on G for any n ∈ Z.

Proof. By Proposition 2.1.3 we already know that the multiplication on L can be continued
to an L-equivariant morphism [n]L : L → L. The morphism [n]G : G → G is also L-
equivariant and hence [n]G × [n]L : G × L → G × L is equivariant with regards to the
diagonal action of L on the product.
Remark 1.3.50 now implies that there is a morphism [n]G := [n]G ×L [n]L.
It is left to show that this morphism is a continuation of [n]G. Remark 2.1.9 implies that
idG ×L ι : G ↪→ G is the inclusion of G in G. One has

(idG × ιL) ◦ ([n]G × [n]L) = [nG]× (ι ◦ [n]L)
2.1.3= [nG]×

(
[n]L ◦ ι

)
=
(
[n]G × [n]L

)
◦ (idG × ιL) .

Therefore (
idG ×L ι

)
◦
(
[n]G ×L [n]L

)
=
(
[n]G ×L [n]L

)
◦
(
idG ×L ι

)
.

If we define an L-action on L by the addition l · l̂ = l̂+ l, we get that we can view G as the
associated bundle G×L L and α : G× L→ G is an L-bundle with regards to the diagonal
action. Here α denotes the action of L on G. The diagram

G× L G× L

G G

[n]G×[n]L

α α

[n]G

commutes. Hence [n]G ×L [n]L = [n]G and

G G

G G

[n]G

[n]
G

commutes. This means that [n]G is an continuation of [n]G.

Proposition 2.1.11 ([SC79], compare Lemme 1). Let g0 ∈ G and τg0 the translation by
g0 on G. Then this morphism extends to an L-equivariant morphism on G.
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Proof. We proceed similarly to the previous proposition. The map τg0×idL : G×L→ G×L
is L-equivariant with regards to the diagonal action of L on G× L. Therefore it induces a
map τg0 ×L idL : G→ G. The map τg0 × idL commutes with idG × ι defined as in Remark
2.1.9, that is (

τg0 × idL
)
◦ (idG × ι) = (idG × ι) ◦ (τg0 × idL) ,

additionally
G× L G× L

G G

τg0 ×idL

α α

τg0

commutes. Here α denotes the action of L on G. Like in the previous proposition, the
map α defines an L-bundle with regards to the diagonal action of L on the product. By
uniqueness of the factorisation through a quotient, τg0 = τg0×L idL. Just like in Proposition
2.1.10, the morphism τg0 ×L idL is therefore a continuation of τg0 .

2.1.4 Divisors on the completion G

This part of the thesis follows subsections 1.4 and 1.5 of [SC79].

In this subsection the aim is to show that there is a very ample divisor on G which can
later be used to define a height function on G.

Proposition 2.1.12 ([Wüs84], I.1.3, [SC79], first paragraph of 1.4). Let L and G be as
in Proposition 2.1.8 and L∞ ⊂ L the divisor from Lemma 2.1.4. Then there exists an
effective divisor G∞ ⊂ G which is the fibre bundle over A with fibre L∞.

Proof. Let the collection Vi × L with transition functions ψi,j be as in the construction of
G. Consider the sets Vi × L∞. Since L∞ is invariant under L-action (by Lemma 2.1.4),
the function

ψi,j |(Vi∩Vj)×L∞ : (Vi ∩ Vj)× L∞ → (Vi ∩ Vj)× L∞

(u, d) 7→ (u, gi,j(0L) · d)

is well defined. Therefore all the Vi × L∞ glue to a subvariety of G∞ of G, which is the
set G \G. This subvariety is closed and of codimension 1, since it has these properties in
every open subset Vi ×L of G. So G∞ is a divisor on G. It is also effective, since L∞ is an
effective divisor.
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Proposition 2.1.13 ([SC79], Proposition 1). For D ∈ Div(A) ampleand a, b ∈ N>0
sufficiently large the following divisor is very ample:

Da,b := ap∗D + bG∞.

Proof. By Lemma 2.1.4 it is already known that L∞ is a very ample divisor. This can be
used to show that G∞ is relatively ample with regard to p : G→ A. For this choose again
a covering {Ui}i∈I of A such that p−1(Ui) ∼= Ui × L. Without loss of generality we can
assume that all those open sets Ui are affine. Since Ui is affine all of its divisors are ample
by Proposition 1.1.43. In particular the trivial divisor on Ui is ample. Since any multiple
of the trivial divisor is again the trivial divisor it is also very ample. On the preimage
p−1(Ui) ∼= Ui × L the divisor G∞ is of the form Ui × L∞.
This divisor is very ample on Ui × L. To see this choose f0, . . . , fn in the linear system
of the trivial divisor on Ui which define an embedding into projective space. If Ui ∼=
Spec(K[x1, . . . , xc]/(P1, . . . , Pr)) one such choice can be 1, x1, . . . , xc. Choose e0, . . . , em
as a basis of the linear system of L∞ on L. These correspond to embeddings

F : Ui → Pn E : L→ Pm

u 7→ [f0(u) : . . . : fn(u)] l 7→ [e0(l) : . . . : em(l)].

Any of the functions fj and ek extend to elements of the linear system of Ui × L∞ by

f ′
j((u, l)) := fj(u) and e′

k((u, l)) := ek(u).

All products f ′
je

′
k are also in the linear system of Ui × L∞. The f ′

je
′
k are a collection of

rational functions on Ui × L. This collection defines an embedding

Sn,m◦(F × E) : Ui×L→ Ps

(u, l) 7→ [f ′
0((u, l))e′

0((u, l)) : f ′
0((u, l))e′

1((u, l)) : . . . : f ′
n((u, l))e′

m((u, l))]

where Sn,m denotes the Segre embedding. Therefore the pullback of O(1) under this map
is isomorphic to Ui × L∞ and Ui × L∞ is very ample, hence ample.

For D ∈ Div(A) ample Proposition 1.1.49 implies that for a ∈ N>0 sufficiently large
the divisor G∞ + ap∗D is ample.

Corollary 2.1.14 ([SC79], Corollaire p.193). There are (a, b) ∈ N>0 ×N>0 such that Da,b

is very ample, which gives G the structure of a projective variety.

Proof. Because Da,b is ample for some a, b > 0, some k-th multiple of it is very ample
(by Definition 1.1.42). Thus let (ka, kb), k ∈ N be a tuple, such that the map relative to
D(ka,kb) is a closed immersion.

56



Remark 2.1.15. While in the construction here only the divisor D is varied the previous
theorems would hold analogously if L∞ is replaced with a different very ample divisor on
L. This is discussed in [FL84], [FH85] and [Wüs84]. The dimension of the projective space
in which Da,b embeds can be calculated depending on G∞ and D. This is done in Theorem
6.4 in [FH85].

That the variety G is projective allows to use the theory developed in the theorem on
the Weil height machine 1.4.19.

Proposition 2.1.16 ([SC79], Corollaire and Remarque 2 (iii) p.193). There exist a, b ∈ N>0
such that Da,b is very ample and has the following property. View G as a subvariety of some
PN via the embedding associated to Da,b. Then any effective divisor E linearly equivalent
to mDa,b for some m ∈ N>0 is the divisor of zeros of some nonzero polynomial φ of degree
m in the coordinates of PN .

Proof. Using the previous corollary let ã, b̃ ∈ N>0 be such that D
ã,̃b

is very ample. Then
G ⊂ PN is a smooth and therefore normal projective variety. The Enriques-Severi-Zariski-
Lemma 1.1.22 implies that there is some m0 ∈ N>0 with the property that there is a
homogeneous polynomial ψ of degree m such that divψ = E′ for all m ≥ m0 and any
effective divisor E′ on X which is linearly equivalent to m-times a hyperplane section. The
m0-uple embedding of PN → PM makes G a projective normal subvariety of PM such that
the Enriques-Severi-Zariski-Lemma holds with m′

0 = 1. Since the pullback of divisors under
the m0-uple embedding corresponds to multiplying the divisor by m0 this embedding of G
is induced by

m0Dã,̃b
= D

m0ã,m0b̃
.

Take a := d0ã and b := d0b̃. Since under this embedding any hyperplane section on G is
linearly equivalent to Da,b this gives the desired result.

Proposition 2.1.17 ([SC79], Corrolaire 1). If D is a symmetric divisor on A, then there
exists some effective divisor Zn in G dependent on n ∈ Z \ {0} such that

[n]∗
G

(Da,b) ∼ n2Da,b − bZn.

Proof. If L is trivial, the divisor G∞ is trivial and G ∼= A as well as Da,b = aD. Therefore
the claim follows from Lemma 1.3.16 and Zn is trivial for every n.
Assume now that L is nontrivial. First one considers the pullbacks of the components of
Da,b. On a component Ga

∼= P1 of L with coordinates x0, x1 one has:

[n]∗Ga
(L′

a) = [n]∗Ga
{x0 = 0} = {nx0 = 0} = L′

a.
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On Gm
∼= P1 with coordinates x0, x1 one has:

[n]∗Gm
(L′

m) = [n]∗Gm
{x0x1 = 0} = {xn0xn1 = 0} = |n|L′

m.

Let L ∼= Gla
a ×Glm

m for la, lm ∈ N0. Denote by Gi∞ the component of G∞ associated to Li
for 1 ≤ i ≤ la + lm. Here Li is the divisor on L as defined before Lemma 2.1.4. If la ≠ 0,
this implies

[n]∗
G
Gi∞ = Gi∞ 1 ≤ i ≤ la,

[n]∗
G
Gi∞ = Gi∞|n| la < i ≤ la + lm,

because of the definition of G∞ via gluing of L∞. If la = 0 the first line is just omitted.
On the abelian variety A the divisor D can be chosen such that it is of symmetric divisor
class, meaning D ∼ [−1]∗AD. Since p is a homomorphism, it commutes with multiplication
by n. Thus by the properties of the pullback it follows that:

[n]AD ∼ n2D,

[n]∗
G
p∗D = ([n]∗

G
◦ p∗)(D) = (p ◦ [n]G)∗(D) = ([n]A ◦ p)∗(D) ∼ p∗(n2D) = n2p∗D.

Combining these facts one gets:

[n]∗
G

(Da,b) = a[n]∗
G
p∗D + b[n]∗

G
G∞ ∼ an2p∗D + b

 la∑
i=1

Gi∞ + |n|
lm+la∑
j=la+1

Gj∞


∼ an2p∗D + b

 la∑
i=1

Gi∞ + |n|
lm+la∑
j=la+1

Gj∞ + n2G∞ − n2G∞



= n2(ap∗D + bG∞)− b

Zn︷ ︸︸ ︷ la∑
i=1

(n2 − |n|)Gi∞ +
lm+la∑
j=la+1

(n2 − 1)Gj∞

 .

Remark 2.1.18. The support of the divisor Zn is contained in G∞ for any n ∈ Z \ {0}.
The preceding proposition also shows, that the different components of Da,b behave
differently under pullback by [n]G. For n ∈ Z \ {0} one has

[n]∗
G

(p∗D) = n2(p∗D)

while the part of G∞ coming from the completion of the vector subgroup of L stays
unchanged under pullback

[n]∗
G

 la∑
i=1

Gi∞

 =

 la∑
i=1

Gi∞


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and the part of G∞ coming from the completion of the torus subgroup of L stays scales
with the absolute value of n

[n]∗
G

 la+lm∑
i=la+1

Gi∞

 = |n|

 la+lm∑
i=la+1

Gi∞

 .
.

Lemma 2.1.19 ([SC79], Corollaire 2). Let n ∈ Z \ {0} and a, b ∈ N>0 such that Da,b is
very ample. For this lemma view G as a subset of some PN through the embedding defined
by Da,b. Let X0, . . . , XN be the coordinates obtained by the embedding into PN . In this
case the multiplication-by-n-morphism [n]G can be represented by

φ(n) : G→ G

[x] 7→ [φ(n)
0 ([x]) : . . . : φ(n)

N ([x])]

such that every φ(n)
i is a homogeneous polynomial of degree n2 in X0, . . . , XN on the open

subset G.

Proof. By Lemma 1.1.36 the divisor Da,b defines an embedding of G into PN that is not
completely contained in any hyperplane of PN . So for all hyperplanes Hi := {Xi = 0}
the intersection with G ⊂ PN defines a divisor on G linearly equivalent to Da,b. By the
functoriality of the pullback one has:

Hi,n := [n]∗
G
Hi ∼ [n]∗

G
Da,b ∼ n2Da,b − bZn

⇐⇒ Hi,n + bZn ∼ n2Da,b.

Since Hi is an effective divisor, so is Hi,n and therefore Hi,n + bZn as well. According to
Corollary 2.1.16 there exists a polynomial φ(n)

i homogeneous of degree n2 such that

Hi,n + bZn = (φ(n)
i )G.

The base locus of this set of the Hi,n + bZn is
N⋂
i=1

(Hi,n + bZn) = Zn

since the intersection of all Hi is empty and therefore the intersection of all Hi,n must be
empty too. But this implies that on G the polynomials φ(n)

i all vanish at the same time
only on Zn ⊂ G∞. So φ := [φ(n)

0 : . . . : φ(n)
N ] is regular on all of G = G \G∞. If |n| ≥ 2 the

polynomials of φ vanish simultaneously on all of G∞, since in those cases the support of
Zn is all of G∞. The φ(n)

i can without loss of generality be chosen, such that the equality

φ
(n)
i

φ
(n)
j

= [n]∗
G

(
Xi

Xj

)
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holds, since φ(n)
i

φ
(n)
j


G

=
(
φ

(n)
i

)
G
−
(
φ

(n)
j

)
G

= (Hi,n − bZn)− (Hj,n − bZn)

= Hi,n −Hj,n = ([n]∗
G
Xi)G − ([n]∗

G
Xj)G =

(
[n]∗

G
Xi

[n]∗
G
Xj

)
G

= [n]∗
G

(
Xi

Xj

)
G

.

Thus φ = [n]G on G.

2.2 The dependence of the estimates on the chosen height
function

This section looks at which role the chosen height on the completion G of an algebraic
group G plays in proving inequalities. If the chosen height function is for example the
height associated to a constant morphism, every point of G will have the same height. As
a consequence both inequalities hold trivially. But this does not mean that the inequalities
have to hold for other heights.

One way to find different heights on G is the theorem of the Weil height machine
1.4.19. The aim of this section is to show that if any of the two inequalities holds for the
height associated to a very ample divisor, it will hold for any height associated to a very
ample divisor constructed in the height machine. If both inequalities hold for the height
associated to a very ample divisor, they will hold for any divisor constructed in the height
machine.

In this section G will always be a connected commutative algebraic group defined
over Q or a number field K. The variety G will denote its completion constructed in
Proposition 2.1.8.

Lemma 2.2.1. Let D be a very ample divisor on G. Assume one of the inequalities

hD(g) ≤ c1n
c2(hD([n]g) + c3) + c4,

hD([n]g) ≤ c5n
c6(hD(g) + c7) + c8

holds for g ∈ G(Q) and n ∈ Z \ {0} and the height hD with constants ci, for 1 ≤ i ≤ 8,
depending on some of G, D, g and n. Let E be another very ample divisor in Div(G).
Then an inequality of the same form holds for hE and the constants c′

i in this inequality
are dependent on D, E and any of G, g and n if the inequality for hD dependent on the
same parameter. The constants c′

2 and c′
6 can be chosen the same as c2 and c6.
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Proof. The Corollary 1.4.26 implies that there are constants CD, C ′
D, CE , C

′
E each depen-

dent on both D and E such that for all g ∈ G(Q)

hD(g) ≤ CDhE(g) + C ′
D,

hE(g) ≤ CEhD(g) + C ′
E .

In case of the first inequality this leads to

hE(g) ≤ CEhD(g) + C ′
E

≤ CE (c1n
c2(hD([n]g) + c3) + c4) + C ′

E

≤ CE
(
c1n

c2(CDhE([n]g) + C ′
D + c3) + c4

)
+ C ′

E

= CE max(1, CD)c1n
c2
(
hE([n]g) + (C ′

D + c3)
)

+ (CEc4 + C ′
E).

Therefore the constants can be chosen as c′
1 = CE max(1, CD)c1, c′

2 = c2, c3 = C ′
D + c3

and c4 = CEc4 + C ′
E .

For the second inequality the process works analogously.

Corollary 2.2.2. Assume that in the situation of the previous lemma both inequalities
hold for n ∈ Z \ {0}. Let E ∈ Div(G) be an arbitrary divisor. Then both inequalities hold
for hE with the same constraints on the constants as in Lemma 2.2.1 except that c′

2 and c′
6

can take the possible values c2, c
−1
2 , c−1

6 and c6.

Proof. If E ∈ Div(G) is an arbitrary divisor there are very ample divisors E1, E2 such that
E = E1 − E2 and hE = hE1 − hE2 +O(1). Let C > 0 be a constant such that |O(1)| ≤ C.
The first inequality in Lemma 2.2.1 implies that there are constants c1, . . . , c8 for given
n ∈ Z \ {0} such that for any g ∈ G(Q)

hE1(g) ≤ c1n
c2(hE1([n]g) + c3) + c4,

hE2([n]g) ≤ c5n
c6(hE2(g) + c7) + c8.

This implies

hE2(g) ≥ c−1
5 n−c6 (hE2([n]g)− c8)− c7 (2.2)

and therefore

hE(g) ≤ hE1(g)− hE2(g) + C

≤ c1n
c2(hE1([n]g) + c3) + c4 − hE2(g) + C

(2.2)
≤ c1n

c2(hE1([n]g) + c3) + c4 −
(
c−1

5 n−c6 (hE2([n]g)− c8)− c7
)

+ C

≤
(
max

{
c1, c

−1
5

}
nmax{c2,−c6}

)
(hE1([n]g)− hE2([n]g) + (c3 + c8)) + (c4 + c7 + C)

≤
(
max

{
c1, c

−1
5

}
nmax{c2,−c6}

)
(hE([n]g) + C + (c3 + c8)) + (c4 + c7 + C).
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Thus the constants can be chosen as c′
1 = max

{
c1, c

−1
5

}
, c′

2 = max {c2,−c6}, c′
3 = c3+c8+C

and c′
4 = c4 + c7 + C.

The proof in case of the second inequality works analogously.

Remark 2.2.3. If one looks at the inequalities while excluding n = 0, the following
reductions of parameters can be done. If c′

3 = c3 + |c4| as for example in Corollary 2.2.2,
then the constant c4 can be chosen as one. For c′

1 := max{c1c3, 1} the constant c3 can be
chosen equal to one in the first inequality. The analogous statements hold for the second
inequality. Both statements also hold if n is replaced by |n|.

Remark 2.2.4. Both the lemma and the corollary also hold if Z or Z \ {0} is replaced
with some subset of Z or Z \ {0} respectively.

2.3 The height inequalities in special cases

2.3.1 The inequalities if G is an extension of an abelian variety by a
torus

This section looks at how the construction of a canonical height can be done similarly to
the case of abelian varieties if G is the extension of an abelian variety by a torus. To do
this one uses the construction of a canonical height from sections B.4 and B.5 in [HS00].

In this section G will be a commutative connected algebraic group defined over some
number field K or Q. The group G is assumed to be the extension of an abelian variety
A by a linear group L that is a torus, i.e. L ∼= Gt

m, t ∈ N0, defined over Q. The variety
G will be its completion as constructed in Proposition 2.1.8. The divisor G∞ will be the
divisor associated to the complement G \G as in Proposition 2.1.12.

Definition 2.3.1 ([Hub21], Definition 9.16). An algebraic group G is called a semiabelian
variety if it is the extension of an abelian variety by a torus.

Proposition 2.3.2 ([HS00], analogous to Theorem B.5.1 (a) and (b) and compare [SC79]
paragraph 2.2 (1)). There is a canonical height h∞ on G associated to the height hG∞ such
that for any g ∈ G(Q) and n ∈ Z

h∞([n]g) = |n|h∞(g).

Proof. If the linear group is trivial, the height hG∞ is trivial and can therefore be chosen
as h∞.
If L is not trivial, then this proof completely emulates the construction of a canonical height
on abelian varieties (Lemma 1.4.30). The Remark 2.1.18 implies that for any n ∈ Z \ {0}

[n]∗G∞ ∼ |n|G∞.
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Choose n = 2. A canonical height ĥ on G associated to the multiplication-by-two-morphism
[2] can be constructed as

ĥ(g) = lim
n→∞

1
2nhG∞([2n]g) ∀g ∈ G(Q).

This construction can be found in Theorem B.4.1 of [HS00] and leads to a height that
differs from hG∞ only by a bounded function. To show that this height has the desired
behaviour under integer multiplication one looks at

ĥ([l]g) = lim
n→∞

1
2nhG∞([2nl]g)

1.4.19(2)= lim
n→∞

1
2n (|l|hG∞([2n]g) +O(1))

= |l|ĥ(g) + lim
n→∞

O(1)
2n

= |l|ĥ(g)

for arbitrary l ∈ Z. Therefore the choice h∞ = ĥ has the desired properties.

Remark 2.3.3. This construction would not work if L were not a torus, since on Ga the
pullback of the divisor L′

a under multiplication with an integer n ̸= 0 is

[n]∗L′
a ∼ L′

a.

But the construction of the canonical height can only be applied to divisors D and
morphisms φ : G→ G for which

φ∗D ∼ αD

for α > 1.

Proposition 2.3.4 ([HS00], analogous to Theorem B.5.1 (a) and (b)). Let D be an ample
symmetric divisor on A. Then there is a canonical height hq associated to the height hp∗D

such that for any g ∈ G(Q) and n ∈ Z

hq([n]g) = n2hq(g).

Proof. The proof of Proposition 2.1.17 in section 2.1.4 implies that

[n]∗(p∗D) ∼ n2p∗D.

Now the proof again can be done completely analogous to the construction of a canonical
height on an abelian variety (Theorem 1.4.29) and Proposition 2.3.2. I have therefore
omitted it.

63



Lemma 2.3.5. Let G be a commutative algebraic group defined over Q which is the
extension of an abelian variety A by a torus L. Let h be the height associated to a divisor
Da,b as in Proposition 2.1.14. Then there exist constants c1, c2, c3 independent of n and g
such that for any n ∈ Z \ {0} and g ∈ G(Q)

h([n]g) ≤ c1n
2(h(g) + 1) + c2,

h(g) ≤ h([n]g) + c3.

Proof. Due to the additivity of the Weil height machine there is

h := hDa,b
= haG∞+bp∗D = ahG∞ + bhp∗D +O(1).

The bounded function O(1) only depends on G and Da,b. Let h∞ and hq be the canonical
heights constructed in Proposition 2.3.2 and Proposition 2.3.4 respectively. Then there
exists a bounded function O(1)′ dependent on G and Da,b such that

h = ah∞ + bhq +O(1)′.

Let C ′ be a constant such that |O(1)′| ≤ C ′. Therefore for any g ∈ G(Q) and n ∈ Z

h([n]g) ≤ ah∞([n]g) + bhq([n]g) + C ′

= a|n|h∞(g) + bn2hq(g) + C ′

≤ n2 (ah∞(g) + bhq(g)) + C ′

≤ n2 (h(g) + C ′)+ C ′

≤ max{C ′, 1}n2 (h(g) + 1) + C ′,

h([n]g) ≥ h∞([n]g) + bhq([n]g)− C ′

= a|n|h∞(g) + bn2hq(g)− C ′

≥ h∞(g) + bhq(g)− C ′

≥ h(g)− 2C ′

=⇒ h(g) ≤ h([n]g) + 2C ′.

Hence the constants can be chosen as c1 = max(C ′, 1), c2 = C ′ and c3 = 2C ′.

Remark 2.3.6. The first inequality also holds for n = 0 if the constant c2 is modified to
c′

2 = max{h(0G), c2}.

Corollary 2.3.7. Let G be defined as in the previous lemma and E be an arbitrary divisor
on G. There exist constants c1, . . . , c4 independent of n and g such that for any n ∈ Z \ {0}
and g ∈ G(Q)

h([n]g) ≤ c1n
2(h(g) + 1) + c2,

h(g) ≤ c3(h([n]g) + 1) + c4.

Proof. This is a direct consequence of Corollary 2.2.2.
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2.3.2 The inequalities if G is a linear group

This subsection aims to elaborate the calculations already done in Lemma 6.8 of [Hub21].

Proposition 2.3.8 ([Hub21], compare Lemma 6.8). Let h denote the height on Q. Then
for all g ∈ Ga(Q) and n ∈ Z \ {0}

h([n]g) ≤ |n|(h(g) + 1),
h(g) ≤ |n|(h([n]g) + 1).

Proof. By Corollary 1.4.13 in the heights section

h([n]g) ≤ h(g) + log |n|
≤ |n|(h(g) + 1),

h(g) = h

( [n]g
n

)
≤ h([n]g) + h

( 1
n

)
= h([n]g) + log |n|
≤ |n| (h([n]g) + 1) .

Proposition 2.3.9 ([Hub21], compare Lemma 6.8). Let h denote the height on Q. Then
for all g ∈ Gm(Q) and n ∈ Z

h([n]g) = |n|h(g).

Proof. This is Corollary 1.4.13 (3).

Let now L be an arbitrary nontrivial linear group defined over the field K. If K = Q
then

L ∼= Gla
a ×Glm

m

for some la, lm ∈ N0. If K is a number field this holds in some finite extension of K.
Therefore it can be assumed without loss of generality that the linear group also has the
form of such a product over the number field K. This means L can be completed as in
Proposition 2.1.1

L ↪→
(
P1
)la+lm

.
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Let h denote the height induced on L by the Segre embedding(
P1
)la+lm

↪→ P2la+lm −1.

This is the map associated to the divisor ∑la+lm
i=1 pr∗

i ([1 : 0]) with pri : Gla
a ×Glm

m → Ga

for 1 ≤ i ≤ la and pri : Gla
a ×Glm

m → Gm for la < i ≤ la + lm being the projection on the
i-th component of L.

Lemma 2.3.10. Let L ∼= Gla
a ×Glm

m be a linear group defined over Q. Then there exists
some constant C only dependent on L such that for all g ∈ L(Q) and n ∈ Z \ {0}

h([n]g) ≤ n(h(g) + C),
h(g) ≤ n(h([n]g) + C).

If E ∈ Div(L) is a different divisor there are constants c1, . . . , c4 dependent on L and E
such that

h([n]g) ≤ c1n(h(g) + 1) + c2,

h(g) ≤ c3n(h([n]g) + 1) + c4

for any g ∈ L(Q) and n ∈ Z \ {0}.

Proof. Let g = (g1, . . . , gla+lm) ∈ Gla
a × Glm

m . By Proposition 1.4.9 the properties of the
Segre embedding imply

h(g) =
la+lm∑
i=1

h(gi)

with the heights on the right hand side denoting the affine height. Therefore

h([n]g) = h((ng1, . . . , ngs, (gla+1)n, . . . , (gla+lm)n))

=
la∑
i=1

h(ngi) +
lm∑
j=1

h((gla+j)n)

≤ |n|

 la∑
i=1

(h(gi) + 1) +
lm∑
j=1

h(gla+j)


≤ |n|(h(g) + la).
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Propositions 2.3.8 and 2.3.9 are used in the third line. Hence C can be chosen to equal la.
The second inequality is calculated in the same way

h(g) = h((g1, . . . , gla , gla+1, . . . , gla+lm))

=
la∑
i=1

h(gi) +
lm∑
j=1

h(gla+j)

≤ |n|

 la∑
i=1

(h(ngi) + 1) +
lm∑
j=1

h(gla+j)


≤ |n|(h(ng) + la)
= |n|(h(g) + C).

The second statement is a consequence of Corollary 2.2.2.

Remark 2.3.11. If a different completion of L is chosen then the constant C can be
chosen to be equal to 1 for factors n ∈ N0. Let

L ∼= Gla
a ×Glm

m

over the field Q. Another way to complete L is to first embed it into Ala+lm
Q which has

completion Pla+lm
Q . Since this makes L a dense open subset of Ala+lm

Q there is a completion

L ∼= Gla
a ×Glm

m → Pla+lm
Q

(g1, . . . , gla+lm) 7→ [g1 : . . . : gla+lm : 1].

The projective height on Pla+lm
Q induces a height function on L. This height will be denoted

as h̃. For any absolute value | · | the following holds:

max
1≤i≤la
1≤j≤lm

{|ngi|, |gnla+j |, 1} ≤ max{|n|, 1} max
1≤i≤la
1≤j≤lm

{|gi|, |gla+j |n, 1}

≤ max{|n|, 1} max
1≤i≤la
1≤j≤lm

{|gi|, |gla+j |, 1}n
, (2.3)

max
1≤i≤la
1≤j≤lm

{|gi|, |gla+j |, 1} ≤ max
{
|n|−1, 1

}
max

1≤i≤la
1≤j≤lm

{|ngi|, |gla+j |, 1}

≤ max
{
|n|−1, 1

}
max

1≤i≤la
1≤j≤lm

{|ngi|, |gla+j |n, 1}
. (2.4)
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Let g = (g1, . . . , gla+lm) ∈ L(Q) be a point, then

h̃([n]g) = hPla+lm ([ng1 : . . . : ngla : gnla+1 : . . . : gnla+lm : 1])

= 1
[K : Q]

∑
ν∈MK

dν log max
1≤i≤la
1≤j≤lm

{|ngi|, |gnla+j |, 1}

(2.3)
≤ 1

[K : Q]
∑

ν∈MK

dν log max{|n|, 1} max
1≤i≤la
1≤j≤lm

{|gi|, |gla+j |, 1}n

= log |n|+ |n|h̃(g)
≤ |n|(h̃(g) + 1),

h̃(g) = hPla+lm ([g1 : . . . : gla : gla+1 : . . . : gla+lm : 1])

= 1
[K : Q]

∑
ν∈MK

dν log max
1≤i≤la
1≤j≤lm

{|gi|, |gla+j |, 1}

(2.4)
≤ 1

[K : Q]
∑

ν∈MK

dν log max
{
|n|−1, 1

}
max

1≤i≤la
1≤j≤lm

{|ngi|, |gla+j |n, 1}

≤ log |n|+ h̃([n]g)
≤ |n|(h̃([n]g) + 1).

This is the completion used in [Hub21].

2.3.3 The inequalities if G is the product of an abelian variety and a
linear group

All this section does is to combine the height estimates on a linear group and the height
estimates on an abelian variety to show the following inequalities in the special case of G
being a product of an abelian variety and a linear group.

Lemma 2.3.12. Let G be a connected commutative algebraic group, L a linear algebraic
group and A an abelian variety all defined over Q such that G ∼= L× A. For any height
constructed on G with the Weil height machine the following inequalities hold. Let g ∈ G(Q)
and n ∈ Z \ {0}

h([n]g) ≤ c1n
2(h(g) + 1) + c2,

h(g) ≤ c3n
2(h([n](g) + 1) + c4.

The constants c1, c2, c3, c4 only depend on G and the divisor.
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Proof. As stated in Corollary 2.2.2 it is sufficient to show both height estimates in the case
of the height associated to a very ample divisor.
Let D be a very ample symmetric divisor on A which embeds A into some PN and let E
be the divisor of points at infinity associated to the embedding of L in P2dim L−1 used in
Lemma 2.3.10. Let pL : G→ L and pA : G→ A be the respective projections. The divisor
F = p∗

LE + p∗
AD is associated to the embedding

G = L×A ↪→ PN × P2la+lm −1 Segre
↪→ P(N+1)2la+lm −1.

Therefore hF = hp∗
LE

+ hp∗
AD

and the claim follows from Lemma 2.3.5 and Lemma 2.3.10
together with the functoriality of the height. The explicit calculations can be done
analogously to Lemma 2.3.5.

2.4 The first height inequality on an arbitrary commutative
connected algebraic group

In this whole section let G be a commutative connected algebraic group defined over Q.
Let G be the completion of G as in Proposition 2.1.8 and let

0→ L
i→ G

p→ A→ 0

be the decomposition of G associated to the decomposition of G into a linear group L and
an abelian variety A. The multiplication-by-n-morphism on G will be denoted as [n]G.
Fix Da,b the very ample divisor on G as in the Corollaries 2.1.16 and 2.1.14.

2.4.1 The inequality dependent on prime factors

This inequality is using the same idea as Proposition 2.0 in [Wüs89].

Proposition 2.4.1. Let G an algebraic group as defined above in this section and n ∈ Z.
Then there are constants C1 dependent on n and C2 independent of n such that for any
m ∈ N0 and g ∈ G(Q)

hDa,b
([nm]Gg) ≤ n2mC1(hDa,b

(g) + 1) + C2.

Proof. Identify G with G ↪→ PN by using the embedding induced by Da,b. Take the
projective height h on PN that is the same as hDa,b

for points in G. For any g ∈ G and
C2 = max{0, h(0G)} as well as any constant C

h([0]Gg) = h(0G) ≤ C2 = 0 · C(h(g) + 1) + C2.
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Therefore in this case the inequality will hold for n = 0.
For the case n = 1 take C1 ≥ 1 and C2 as above.
When considering the case n ̸= 0, 1 let again C2 = max{0, h(0G)}. Let

φ(n) : PN → PN

be the rational map of degree n2 and regular on G defined in Lemma 2.1.19. By Proposition
1.4.17 there is a constant C ′

1 dependent on φ(n) such that for any g ∈ G(Q)

h([n]Gg) = h(φ(n)(g)) ≤ n2h(g) + C ′
1. (2.5)

Choose C1 = max{C ′
1, 1}, then

h([n]Gg)
(2.5)
≤ n2h(g) + C ′

1 ≤ n2h(g) + C1 + C2 ≤ n2C1(h(g) + 1) + C2.

This proves the case m = 1 and also covers the case m = 0 for any nontrivial multiplication
factor n.
If n = 0, 1 nothing additional has to be shown for the case of general m. Since (−1)m is 1
or −1, the case n = −1 is covered by m = 1 as well. One just takes the maximum of the
constants obtained in the inequality for multiplication with −1 and 1.
If n ̸= 0, 1,−1 a repeated application of the case m = 1 gives the general statement.

h([nm]Gg) = h([n]G([nm−1]Gg))
≤ n2(h([nm−1]Gg) + C ′

1

= n2(h([n]G[nm−2]Gg) + C ′
1

≤ ...

≤ n2mh(g) +
(
n2(m−1) + n2(m−2) + . . .+ 1

)
C ′

1

≤ n2mC1(h(g) + 1)
≤ n2mC1(h(g) + 1) + C2.

Remark 2.4.2. Analogously to the situation in Remark 2.3.6 one can see that if n is
chosen to be not equal to 0 the constant C2 can be omitted.

Corollary 2.4.3. Let G be an algebraic group as defined in the beginning of this section,
E a very ample divisor on G and n ∈ Z. Then there are constants C1 dependent on the
prime factors of n and C2 independent of n such that for any g ∈ G(Q)

hE([nm]Gg) ≤ n2mC1(hE(g) + 1) + C2.

Proof. The statement for E = Da,b follows from the previous proposition. The statement
for any other very ample E follows from Lemma 2.2.1.
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2.4.2 The inequality as in Serre

This section is following §2 in [SC79].

By the additive property of the Weil height machine 1.4.19 we get that

hDa,b
∼ ahG∞ + bhp∗D ∼ ahG∞ + bhD ◦ p.

So we can treat the heights hG∞ and hp∗D separately to obtain an inequality.

The height associated to G∞

Lemma 2.4.4 ([SC79], Lemme 1). Let g0 ∈ G(Q) be an arbitrary element. There is a
constant C > 0 dependent on g0 such that for all g ∈ G(Q)

|hG∞(g + g0)− hG∞(g)| ≤ C.

Proof. Let τg0 be the translation on G by g0. This agrees with G acting on G by g0 and
can therefore be continued to some morphism from G to G by Proposition 2.1.11. The
divisor G∞ is invariant under the group action of G on G defined in Proposition 2.1.11
and therefore the divisors G∞ and τg0G∞ are linearly equivalent. The functoriality of the
Weil height machine 1.4.19 implies

hG∞ ∼ hτ∗
g0G∞ ∼ hG∞ ◦ τg0 .

This is equivalent to the statement in the lemma.

Remark 2.4.5. The construction in the height machine is in theory explicit enough to
calculate a bound C for O(1) in Lemma 2.4.4. But this needs explicit formulas for the
translation τg0 as well as an explicit description of the linear systems of two basepoint free
divisors E1, E2 such that G∞ = E1 − E2.

Remark 2.4.6. By symmetry one sees that the same constants C(g0) = C(−g0) can be
chosen for g0 and −g0 since for any g ∈ G(Q)

|hG∞(g − g0)− hG∞(g)| = |hG∞(g − g0)− hG∞((g − g0) + g0)| ≤ C(g0).

The triangle inequality implies that C([n]Gg0) can be chosen smaller or equal to nC(g0),
which yields

|hG∞(g + [n]Gg0)− hG∞(g)| =
∣∣∣∣∣
n∑
i=1

hG∞(g + [i]Gg0)− hG∞(g + [i− 1]Gg0)
∣∣∣∣∣

≤
n∑
i=1
|hG∞(g + [i]Gg0)− hG∞(g + [i− 1]Gg0)|

≤
n∑
i=1

C(g0) = nC(g0).
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This leads to the height inequality found in the paper [SC79].

Proposition 2.4.7 ([SC79], Lemme 2). Let g1, . . . , gm ∈ G(Q). Then there are C1, C2 > 0
such that for all n1, . . . , nm ∈ Zm∣∣∣∣∣hG∞

(
m∑
i=1

nigi

)∣∣∣∣∣ ≤ C1 + C2

m∑
i=1
|ni|.

The constant C2 depends on the points, while C1 only depends on G and the divisor D.

Proof. For all gi take C̃i as the constant C(gi) from the preceding lemma. Set

C1 := max {0, hG∞(0G)} , C2 := max
i=1,...m

C̃i.

With these constants the inequality follows for the empty sum (equalling 0). The general
case can be shown inductively. Assuming the inequality already holds for g1, . . . , gk ∈ G(Q)
with k ≤ m, n1, . . . , nk−1, nk, lk ∈ Z, |lk| < |nk| and lk ≥ 0 there is the inequality

∣∣∣∣∣hG∞

( =:g︷ ︸︸ ︷
k−1∑
i=1

nigi + lkgk +gk
)∣∣∣∣∣ = |hG∞ (g + gk)− hG∞(g) + hG∞(g)|

≤ |hG∞ (g + gk)− hG∞(g)|+ |hG∞(g)|
IH
≤ C1 + C2

(
k−1∑
i=1
|ni|+ |lk|

)
+ |hG∞ (g + gk)− hG∞(g)|

≤ C1 + C2

(
k−1∑
i=1
|ni|+ |lk|

)
+ C̃k

= C1 + C2

(
k−1∑
i=1
|ni|+ |lk|+ 1

)
.

If lk < 0 the argument works completely analogously.

Since any fibre of p is by Proposition 2.1.8 isomorphic to L the dependence behaviour
height hG∞ on such fibres can be described more explicitly.

Proposition 2.4.8. For any g ∈ G(Q) there exists a constant C dependent on g such that
for any l ∈ L(Q)

|hG∞(g + i(l))− (hG∞(i(l)) + hG∞(g))| ≤ C.
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Proof. Let

i : L→ G

be the continuation of the map from L into G as defined in the beginning of the section and
constructed in 2.1.10. This is a morphism between projective varieties. Use the notation
that for any g ∈ G

ig := i ◦ τg.

This is again a morphism between projective varieties. One has that for any g ∈ G

i−1
g (G∞) = i−1(G∞) = L∞.

This follows from G and G∞ being locally defined as a product combined with the invariance
of G∞ under the G-action on G. Hence by the functoriality of heights (Theorem 1.4.19
(2)) there is some constant C(g) dependent on g such that

|hL∞ − hG∞ ◦ ig| =
∣∣∣hi∗gG∞ − hG∞ ◦ ig

∣∣∣ ≤ C(g). (2.6)

The divisor L∞ is very ample. Thus Corollary 1.4.26 implies that the height associated
to L∞ is equivalent up to some scalar to the height used in Lemma 2.3.10. The following
holds for any l ∈ L

hG∞(g + i(l)) = hG∞(ig(0L) + i(l)) = hG∞(ig(l)).

Combined with the above inequality for the choice of l = 0L this leads to

|hG∞(g)| = |hG∞(g + i(0L))|
(2.6)
≤ |hL∞(0L) + C(g)| = |C(g)| = C(g),

which implies

|hG∞(g + i(l))− (hG∞(i(l)) + hG∞(g))| ≤ |hG∞(g + i(l))− hL∞(l)|
+ |hL∞(l)− hG∞(i(l))|+ |hG∞(g))|
≤C(g) + C(0G) + C(g)
≤3 max{C(g), C(0G)} =: C.

Or equivalently

hG∞(g + i(l)) = hG∞(i(l)) + hG∞(g) +O(1)

with the absolute value of O(1) bounded by C.
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The height associated to p∗D

In this section let D be a symmetric divisor on A. The height hp∗D is defined as the height
associated to the pullback of the divisor D. This implies that

hp∗D ∼ hD ◦ p

or equivalently that there exists some constant C(D, p) such that for any g ∈ G(Q)

|hp∗D(g)− hD(p(g))| ≤ C(D, p). (2.7)

This can be used to show an inequality analogous to Proposition 2.4.7. To obtain the
constants one uses the following lemma.

Lemma 2.4.9. Let q : G(Q)→ R a function fulfilling the parallelogram law, that is for
any g, g′ ∈ G(Q)

q(g + g′) = 2(q(g) + q(g′).

Then the following inequality holds for any m ∈ N>0 and g1, . . . , gm ∈ G(Q)

q

(
m∑
i=1

gi

)
≤ 1
m

(
2m + 2m−1 − 2

) m∑
i=1

q(gi) =: Cm
m∑
i=1

q(gi).

Proof. The constant CM = 1
m

(
2m + 2m−1 − 2

)
can be constructed inductively.

The case m = 1 is trivial.
For m = 2 the constant follows from the parallelogram law:

q(g1 + g2) ≤ q(g1 + g2) + hq(g1 + g2)
= 2(q(g1) + q(g2))
= C2(q(g1) + q(g2)).

For m ≥ 2 induction implies that for any 1 ≤ j ≤ m+ 1

q

m+1∑
i=1
i ̸=j

gi + gj

 = 2

q
m+1∑
i=1
i ̸=j

gi

+ q(gj)


IH
≤ 2

 1
m

(2m + 2m−1 − 2)
m+1∑
i=1
i ̸=j

q(gi) + q(gj)

 .
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This is symmetric in the index j so by adding the inequalities for all indices j = 1, . . . , m+1
it follows that

(m+ 1)q
(
m+1∑
i=1

gi

)
≤
( 2
m

(2m + 2m−1 − 2) ·m+ 2
)m+1∑

i=1
q(gi)

=
(
2m+1 + 2m − 22 + 2

)m+1∑
i=1

q(gi)

=
(
2m+1 + 2m − 2

)m+1∑
i=1

q(gi)

=⇒ q

(
m+1∑
i=1

gi

)
≤ 1
m+ 1

(
2m+1 + 2m − 2

)m+1∑
i=1

q(gi)

= Cm+1

m+1∑
i=1

q(gi).

Proposition 2.4.10 ([SC79], compare 2.2 (1)). Let g1, . . . , gm ∈ G(Q). Then there are
C1, C2 > 0 such that for all n1, . . . , nm ∈ Zm∣∣∣∣∣hp∗D

(
m∑
i=1

nigi

)∣∣∣∣∣ ≤ C1 + C2

(
m∑
i=1
|ni|

)2

.

The constant C2 depends on the points, while C1 only depends on G and the divisor D.

Proof. For any divisor D ∈ Div(A) the associated height is up to some bounded function
O(1) dependent on D a quadratic form hq. So for all g1, . . . , gm ∈ G(Q) and n1, . . . , nm ∈ Z

hp∗D

(
m∑
i=1

nigi

)
=hq

(
m∑
i=1

nip(gi)
)

+O(1)

=hq

(
m∑
i=1

nip(gi)
)

+O(1)

≤Cm
m∑
i=1

n2
ihq (p(gi)) +O(1)

≤Cm

( m∑
i=1
|ni|

)2

max
i=1,...,m

hq(p(gi))

+O(1)

=C(m, g1, . . . , gm, p,D)
(

m∑
i=1
|ni|

)2

+O(1).

The constant Cm is the constant constructed in the previous lemma. To conclude take
C1 := C(m, g1, . . . , gm, p,D) and C2 such that it is an upper bound for the absolute value
of O(1).
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Using the inequalities already proven on A it is also possible to find an inequality for
the height associated to p∗D for which the dependence on the height of the point is more
explicit.

Proposition 2.4.11 ([SC79], compare 2.2 (1)). There exists a constant C only dependent
on D and p such that for any n ∈ Z \ {0} and g ∈ G(Q)

hp∗D([n]Gg) ≤ n2C(hp∗D(g) + 1).

Proof. Let C(D, p) be the constant as in equation 2.7 in the beginning of the subsection
such that for any g ∈ G(Q)

|hp∗D(g)− hD(p(g))| ≤ C(D, p).

Using Lemma 2.3.5 there is a constant C ′ ≥ 1 independent of g ∈ G(Q) such that for any
n ∈ Z \ {0}

hp∗D([n]Gg) ≤ hD(p([n]G(g))) + C(D, p)
= hD([n]Ap(g)) + C(D, p)

2.3.5
≤ n2C ′(hD(p(g)) + 1) + C(D, p)
≤ n2C ′(hp∗D(g) + C(D, p) + 1) + C(D, p)
≤ n2Ĉ(hp∗D(g) + 1).

Here Ĉ can be chosen as C ′C(D, p) + C ′ + C(D, p).

Remark 2.4.12. Analogously to the Remarks 2.3.6 and 2.4.2 the inequality also holds for
n = 0 if another constant C2 := max{0, hp∗D(0G)} is introduced.

The inequality as in Serre for the height associated to Da,b

Combining the estimates for G∞ and p∗D leads to the following theorem, which is Propo-
sition 5 in [SC79].

Theorem 2.4.13 ([SC79], Proposition 5). Let G be a connected commutative algebraic
group defined over Q and let ψ : G→ Pl be a projective morphism. For g1, . . . , gm ∈ G(Q)
there are constants C1, C2 > 0 such that for all n1, . . . , nm ∈ Z

hψ

(
m∑
i=1

nigi

)
≤ C1 + C2

(
m∑
i=1
|ni|

)2

.
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Proof. Let g1, . . . , gm ∈ G(Q) and n1, . . . , nm ∈ Z. For the height associated to hDa,b
one

has with appropriate constants:

hDa,b

(
m∑
i=1

nigi

)
≤ ahp∗D

(
m∑
i=1

nigi

)
+ bhG∞

(
m∑
i=1

nigi

)
+ C(Da,b, a, b, p,D,G∞)

2.4.10
2.4.7
≤ a

C(m, g1, . . . , gm, p,D)
(

m∑
i=1
|ni|

)2

+ C(p,D)


+ b

C(G∞)+C(g1, . . . , gm, G∞)
(

m∑
i=1
|ni|

)2
+C(Da,b, a, b, p,D,G∞)

=C ′(a, b,Da,b, p,D,G∞) + C ′(m, a, g1, . . . , gm, G∞, p,D)
(

m∑
i=1
|ni|

)2

=:C1 + C2

(
m∑
i=1
|ni|

)2

.

For general morphisms ψ the statement of Lemma 1.4.25 implies that there are constants
λ, µ ∈ R such that

hψ

(
m∑
i=1

nigi

)
≤λ+ µhDa,b

(
m∑
i=1

nigi

)

≤λ+ C1 + µ

C2

(
m∑
i=1
|ni|

)2


=: C̃1 + C̃2

(
m∑
i=1
|ni|

)2

.

Corollary 2.4.14. Let D ∈ Div(G) be a basepoint free divisor. For g1, . . . , gm ∈ G(Q)
there are constants C1, C2 > 0 such that for all n1, . . . , nm ∈ Z

hD

(
m∑
i=1

nigi

)
≤ C1 + C2

(
m∑
i=1
|ni|

)2

.

Proof. Applying Corollary 1.4.26 instead of Lemma 1.4.25 in the situation of the preceding
theorem gives the result of this corollary.
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2.5 The second height estimate

This section covers the height estimate which can be found as Proposition 2.0 in the
paper [Wüs89] by Wüstholz. The estimate is similar to Proposition 2.4.1 because both es-
timates have a dependency on the number n by which the element in the group is multiplied.

Since division by an integer n will in general not be a morphism an effective version of
the Hilbert Nullstellensatz is used in the proof of the result.

The sources used in this section are [Wüs89], [Mas83] and [Bro87].

2.5.1 The effective Nullstellensatz

In proof of Proposition 2.0 in [Wüs89] the paper [MW81] is cited in the context of showing
that a high enough power of a polynomial is contained in some given ideal. The paper
covers multiplicity estimates and does not seem to contain the statements which according
to the author should be applied in the proof of Proposition 2.0. Because of that it seems
reasonable to me to assume that instead [Mas83] was meant to be cited. That paper has a
section which contains an effective version of the Hilbert Nullstellensatz and statements
which seem to correspond to the ones mentioned in the proof of the proposition.

Proposition 2.5.1 ([Mas83], compare Theorem IV). Let K be a number field and let
the polynomials Q,P1, . . . , Pm ∈ K[X1, . . . , Xn] be each of total degree smaller or equal to
d ∈ N>0. If the polynomial Q vanishes in all common zeros of P1, . . . , Pm in Cn, there is
some integer e ≤ (8d)22n−1

and polynomials A1, . . . , Am ∈ K[X1, . . . , Xn] such that

Qe =
m∑
i=1

AiPi.

Since the paper by Masser and Wüstholz was published there have been improvements
on the upper bound of e. The bound can be given as exponential instead of doubly
exponential in the number of variables. Using such an improved effective Nullstellensatz
allows to find slightly better constants in the following subsection.

Proposition 2.5.2 ([Bro87], Corollary p.578). In the situation of the previous proposition
the bound on the constant e can be changed to

(min{n,m}+ 1)(n+ 2)(d+ 1)min{n,m}+1
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Remark 2.5.3. An even better estimate was found by János Kollár in [Kol88], which
bounds e by dmin{m,n} for most degrees of polynomials, but there are some assumptions
made such that only a limited number of the polynomials may have degree ≤ 2. The author
mentions that this is a purely technical assumption and in this case a slightly weaker bound
should hold.

The following statement is Lemma 4 of chapter 4 in [Mas83] transcribed to the case
of projective heights instead of sizes (i.e. maximal non archimedian absolute value of any
coefficient) of algebraic integers.
Lemma 2.5.4 ([Mas83], compare Lemma 4). Let K be an algebraic number field. Let
p, q ∈ N>0, aij ∈ K. If the system of linear equations

a11X1 + . . .+ a1pXp = 0
...

aq1X1 + . . .+ aqpXp = 0
has a solution x1, . . . , xp ∈ K such that xt ̸= 0, it has a solution x′

1, . . . , x
′
p ∈ K such that

x′
t ̸= 0 and

h
(
[x′

1 : . . . : x′
p]
)
≤ (p− 1) (log(p− 1) + h ([a11 : . . . : aqp])) .

Proof. Lemma 4 in [Mas83] claims that each coordinate of the solution x′
1, . . . , x

′
p ∈ K is 0

or some r-minor of the system of linear equations (for 1 ≤ r ≤ q the rank of the system).
If only one coordinate is non-vanishing or all non-vanishing coordinates are the same up to
a factor, the claim on the height is trivial. Let δ1, . . . , δs and 2 ≤ s ≤ r be the different
non-trivial r-minors, which equal some coordinate x′

i for an i ∈ {1, . . . , p}, then

h ([δ1 : . . . : δs]) = h

∑
σ∈Sr

sgn(σ)a
i
(1)
1 σ

(
i
(1)
1

) · · · a
i
(1)
r σ

(
i
(1)
r

) : . . .

. . . :
∑
σ∈Sr

sgn(σ)a
i
(s)
1 σ

(
i
(s)
1

) · · · a
i
(s)
r σ

(
i
(s)
r

)
1.4.10
≤ log r! + h

([
a
i
(1)
1 i

(1)
1
· · · a

i
(1)
r i

(1)
r

: a
i
(1)
1 i

(1)
2
a
i
(1)
2 i

(1)
1
· · · a

i
(1)
r i

(1)
r

: . . .

. . . : a
i
(s)
1 i

(s)
1
· · · a

i
(s)
r i

(s)
r

])
≤ log rr + h ([a11 · · · arr : a11 · · · ar−1 r−1ar+1 r+1 : . . .])

1.4.10
≤ r log r + rh ([a11 : . . . : aqp])
≤ (p− 1) (log(p− 1) + h ([a11 : . . . : aqp])) .

The claim follows since
h([x′

1 : . . . : x′
p]) ≤ h ([δ1 : . . . : δs].) .
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2.5.2 The second height estimate dependent on prime factors

This subsection is looking at the proof of Proposition 2.0 in [Wüs89].

I want to thank Prof. Dr. Philip Habegger for answering my questions regarding this
proposition. The following is the proof in Wüstholz with some steps altered with the help
of Prof. Dr. Habegger.
In one part of the proof Wüstholz claims that some specific polynomial must be contained
in an ideal and have coefficients of sufficiently bounded height. The proof I am presenting
here instead shows that there exists a collection of polynomials in that ideal with sufficiently
bounded heights which additionally have the property of only having nonzero coefficients for
some prediscribed monomials. This is a weaker statement than in the original formulation
of the proof, but seems to be sufficient to get the desired estimate. I did not manage to
understand the step of the proof as it is done by Wüstholz.

Proposition 2.5.5 ([Wüs89], compare Proposition 2.0). Let G be a commutative connected
algebraic group defined over Q and E a very ample divisor on G. For any n ∈ Z \ {0} there
are constants C1, C2 > 0 such that for any g ∈ G(Q)

hE(g) ≤ C1|n|C2(hE([n]Gg) + 1).

Proof. The Lemma 2.2.1 implies that if the inequality holds for one very ample divisor, it
holds for all very ample divisors.
Choose E = Da,b, the divisor constructed in Corollary 2.1.16. This divisor embeds G into
some projective space PN . The coordinates associated to this embedding will be denoted as
x0, . . . , xN . Identify G with its image under the embedding and define d := dimG. Assume
without loss of generality that d ≥ 1, since the claim is trivial otherwise.
Let now n ∈ Z \ {0} be fixed and choose a point g ∈ G(Q). Assume without loss of
generality that x0(g) ̸= 0.
To show the inequality one shows that it holds for the projective height of each pair of
coordinates [x0(g) : xi(g)] for 1 ≤ i ≤ N . Proposition 1.4.14 implies that

hDa,b
(g) = h ([x0(g) : . . . : xN (g)]) ≤

N∑
i=1

h ([x0(g) : xi(g)])

and thus, after multiplying the constant C1 by N , the inequality will hold for the height of
g.
The problem is now to show the inequality for the projective heights of these pairs of
coordinates. First one notices that if xi(g) = 0 the height h ([x0(g) : xi(g)]) = 0 and
therefore

hDa,b
(g) = h ([x0(g) : . . . : xN (g)]) ≤

N∑
i=1

xi(g)̸=0

h ([x0(g) : xi(g)]) (2.8)
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Now take 1 ≤ t ≤ N such that xt(g) ̸= 0.
Any homogeneous polynomial in two variables defined over an algebraically closed field
factors into linear polynomials. Thus that a non-trivial homogeneous polynomial Bt in
x0, xt vanishes in [x0(g) : xt(g)] is equivalent to x0(g)xt − xt(g)x0 dividing Bt, i.e. there
exists some polynomial Q such that Q · (x0(g)xt − xt(g)x0) = Bt. This allows one to apply
Gelfand’s inequality (Proposition 1.4.34) and thus

h ([x0(g) : xt(g)]) = h ([x0(g) : −xt(g)])
= h (x0(g)xt − xt(g)x0)
≤ h (x0(g)xt − xt(g)x0) + h(Q)

1.4.34
≤ h(Bt) + 2 degBt.

(2.9)

Hence to show the claim for the pair of coordinates x0(g), xt(g) it suffices to find a non-
trivial homogeneous polynomial Bt in x0 and xt whose height and degree are appropriately
bounded by |n| and hDa,b

([n]g) such that Bt(g) = B(x0(g), xt(g)) = 0.

To find such a Bt one starts by defining an auxiliary polynomial Rt in x0 and xt which
is non-trivial, vanishes in g and has its degree bounded by some power of |n|. For this let
g = g(1), . . . , g(δ) be the points in G(Q) such that

[n]Gg = [n]Gg(i),

in other words,

{g(1), . . . , g(δ)} = [n]−1
G ([n]Gg) .

Define

Rt := x0xt

δ∏
i=1

x0(g(i)),xt(g(i) )̸=0

(
xt(g(i))x0 − x0(g(i))xt

)
.

By definition, this polynomial is a homogeneous polynomial in two variables which vanishes
in g = g(1), . . . , g(δ). The condition x0(g(i)), xt(g(i)) ̸= 0 makes sure that Rt is a non-trivial
polynomial. But this construction does not give enough information about the height of
Rt.

Instead one uses this polynomial to find a different one whose height is controlled. For
this the following ideal is needed. Let ηi := xi ([n]G g) for 1 ≤ i ≤ N and let φ(n)

0 , . . . , φ
(n)
N

be the homogeneous polynomials representing the multiplication-by-n-morphism [n]G which
are constructed in Lemma 2.1.19. They are polynomials in x0, . . . , xN . One defines

fij = ηiφ
(n)
j − ηjφ

(n)
i .
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for 1 ≤ i, j ≤ N . In G these polynomials only cut out the points g = g(1), . . . , g(δ). Let
P1, . . . , Pχ be homogeneous polynomials in x0, . . . , xN which cut out G. The ideal generated
by the fij and the Pk will be called I[n]g. Using the relations

fij + fji = 0 and ηlfij + ηjfli + ηifjl = 0

for any 0 ≤ i, j, l ≤ N the subset of {fij}1≤i,j≤N of the above set of generators of I[n]g
can be replaced by {fi′j}j ̸=i′ for some fixed i′ such that ηi′ is not zero. Each of these
polynomials is homogeneous of degree n2. The ideal I[n]g vanishes at g = g(1), . . . , g(δ) and
possibly some at points in G \G = G∞.

Since G∞ = G \G is a closed set in the Zariski topology, we can find a homogeneous
polynomial S in x0, . . . , xN which vanishes on all of G \G but is nonzero at g. Without
loss of generality this S can be chosen as one of a fixed set S1, . . . , Sξ of homogeneous
polynomials which generate the ideal associated to G \G. The polynomial SRt vanishes at
g = g(1), . . . , g(δ) and all of G \G. Hence the Hilbert Nullstellensatz implies that

SRt ∈
√
I[n]g.

This means that there is some e ∈ N>0 such that

SeRet = (SRt)e ∈ I[n]g.

The problem of finding all polynomials of a given degree in a homogeneous ideal
J ⊂ Q[x0, . . . , xN ] =: R can be viewed as one of linear algebra. Let V be a homogeneous
polynomial of degree d. For any M ∈ N the homogeneous polynomials of degree M form a(M+N

M

)
-dimensional vector space Q[x0, . . . , xN ]M =: RM . One basis of this vector space

are the monomials of degree M . Multiplication by V induces a linear map

(V ·) : RM → RM+d

U 7→ V · U.

Analogously, the map defined by the coefficientwise addition of l homogeneous polynomials
of the same degree is a linear map

+l :
l factors︷ ︸︸ ︷

RM × . . .×RM → RM

(U1, . . . , Ul) 7→ U1 + . . .+ Ul.

Note that this does not induce a map of the projective spaces. Let V1, . . . , Vl be a set of
homogeneous generators of J of degrees d1, . . . , dl. If M ≥ max{d1, . . . , dl}, the following
is a well defined linear map:

JM : RM−d1 × . . .×RM−dl

((V1·),...,(Vl·))−→ RM × . . .×RM
+l−→ RM .
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By construction, the image of this map will be the degree-M -part J (M) := J ∩RM of J .
This implies that the kernel of

(JM − IdM ) : RM−d1 × . . .×RM−dl
×RM → RM

(U1, . . . , Ul, U) 7→ JM ((U1, . . . , Ul)− U

contains every polynomial in J (M) together with the information on how it can be generated
by V1, . . . , Vl.
Analogously, for any homogeneous polynomial V such that deg V = d ≤M the kernel of
the map

(JM − (V ·)) : RM−d1 × . . .×RM−dl
×RM−d → RM

(U1, . . . , Ul, U) 7→ JM ((U1, . . . , Ul)− V · U

contains all the degree-M -multiples of V in J , that is every polynomial in J (M) which is a
multiple of V together with all possibilities of generating each from V1, . . . , Vl. By looking
at the kernel of

(JM − (V ·)) : RM−d1 × . . .×RM−dl
×Q[x0, xt]M−d → RM

(U1, . . . , Ul, U) 7→ JM ((U1, . . . , Ul)− V · U
(2.10)

for some 1 ≤ t ≤ N one gets the polynomials homogeneous in x0, xt whose V -multiple is
contained in J (M). The last four maps obviously depend on the set of generators chosen
for J .

One applies this last linear map (2.10) to Se, the ideal I[n]g with the set of generators
{fi′j , Pk}0≤j≤N, j ̸=i′

1≤k≤χ
, degree M = e(degS + degRt) and the coordinate xt chosen to be

the same one as in the definition of Rt. This gives polynomials of the same degree as Ret
homogeneous in x0 and xt such that their product with Se is in I[n]g.

Choose for each vector space of homogeneous polynomials of a given degree the mono-
mials of this degree as a basis. The linear map defined in the previous paragraph can then
be expressed by a matrix MS whose entries are coefficients of the fi′j , the Pk and Se.

All the polynomials used in the definition of MS are homogeneous, hence can be rescaled
without changing their vanishing locus. Therefore assume without loss of generality that Se,
the fi′j and P1, . . . , Pχ are scaled in such a way that one of the coefficients of each is equal
to one. Also note that this scaling does not change the height of any of the polynomials.

Claim. The height of MS = (mij)1≤i≤q
1≤j≤p

can be bounded by a constant CMS
in the following

way

h ([m11 : . . . : mpq]) ≤ NhDa,b
(g) + eCMS

. (2.11)

The constant CMS
≥ 1 depends CMS

depends on S1, . . . , Sξ, P1, . . . , Pχ, φ(n)
0 , . . . , φ

(n)
N and

N . Hence it is dependent on n, the divisor Da,b and the geometry of G.
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Proof. Let MS = (mij)1≤i≤q
1≤j≤p

for some p, q ∈ N>0. By the definition of MS any its entries is

0 or a coefficient of one of the fi′j for 0 ≤ i, j ≤ N , one of P1, . . . , Pχ or Se. Since omitting
zeros or doubled coordinates does not change the height of a projective point one has

h ([m11 : . . . : mpq]) = h ([Se : P1 : . . . : Pχ : fi′0 : . . . : fi′N ])

Since each of the polynomials has at least one coefficients equal to one, a repeated application
of Proposition 1.4.15 gives

h ([Se : P1 : . . . : Pχ : fi′0 : . . . : fi′N ]) ≤ h (Se) +
N∑
j=0
j ̸=i′

h
(
fi′j
)

+
χ∑
k=1

h (Pk) (2.12)

Applying Proposition 1.4.35 to h(Se) one has that

h(Se) ≤ e (h(S) + (degS +N + 1) log 2) . (2.13)

The height of the fi′j can be bounded in the following way:

h(fi′j) = h(ηi′φ(n)
j − ηjφ

(n)
i′ )

1.4.10
≤ h([ηi′φ(n)

j : ηjφ(n)
i′ ]) + log 2

1.4.10
≤ h([ηi′ : ηj ]) + h([φ(n)

j : φ(n)
i′ ]) + log 2

≤ h([η0 : . . . : ηN ]) + h([φ(n)
0 : . . . : φ(n)

N ]) + log 2

= hDa,b
(g) + h([φ(n)

0 : . . . : φ(n)
N ]) + log 2.

(2.14)

Combining these inequalities gives

h ([m11 : . . . : mpq]) =h ([Se : P1 : . . . : Pχ : fi′0 : . . . : fi′N ])
(2.12)
≤h (Se) +

N∑
j=0
j ̸=i′

h
(
fi′j
)

+
χ∑
k=1

h (Pk)

(2.13)
≤e (h(S) + (degS +N + 1) log 2) +

N∑
j=0
j ̸=i′

h
(
fi′j
)

+
χ∑
k=1

h (Pk)

(2.14)
≤e (h(S) + (degS +N + 1) log 2)

+N
(
hDa,b

(g) + h([φ(n)
0 : . . . : φ(n)

N ]) + log 2
)

+
χ∑
k=1

h (Pk)

e≥1=:NhDa,b
(g) + eC(N,P1, . . . , Pχ, S, φ

(n)
0 , . . . , φ

(n)
N )

Since S was chosen to be one of the polynomials in the fixed set S1, . . . , Sξ which cuts out
G \ G the constant C(N,P1, . . . , Pχ, S, φ

(n)
0 , . . . , φ

(n)
N ) can be replaced by one depending
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on φ
(n)
0 , . . . , φ

(n)
N , N , S1, . . . , Sξ, and P1, . . . , Pχ (by substituting h(S) + log 2 degS with

max1≤c≤ξ (h(Sc) + log 2 degSc)). The constant is bigger than 1 since all summands in the
constant are positive and already

e(N + 1) log 2 ≥ (N + 1) log 2 ≥ 2 log 2 = log 4 ≥ 1.

Claim. The matrix MS has at most

eN |n|2NdCp + 1 (2.15)

rows. Here Cp ≥ 1 is a constant only depending on N,S1, . . . , Sξ and χ. Hence Cp only
depends the geometry of G and Da,b.

Proof. The number of rows of MS is the sum of the dimensions of the vector spaces of
homogeneous polynomials of degrees e(degS + degRt)− deg fi′j for 0 ≤ j ≤ N and j ̸= i′

as well as e(degS + degRt)− degPk for 1 ≤ k ≤ χ in N + 1 variables and the dimension
of the vector space of homogeneous e degRt polynomials in 2 variables. The degree of Rt
is bounded by δ + 2. Using Corollary 1.3.43 we get δ ≤ |n|2d and degRt ≤ |n|2d + 2. Since
S was chosen to be one of S1, . . . , Sξ we have degS ≤ max1≤c≤ξ degSc. Therefore we have
that

dimRe(degS+degRt)−deg fi′j
=
(
e(degS + degRt)− deg fi′j +N

N

)

≤
(
e
(
max1≤c≤ξ degSc + |n|2d + 2

)
− deg fi′j +N

N

)

≤
(
e
(
max1≤c≤ξ degSc + |n|2d + 2

)
+N

N

)
.

Analogously

dimRe(degS+degRt)−degPk
=
(
e(degS + degRt)− degPk +N

N

)

≤
(
e
(
max1≤c≤ξ degSc + |n|2d + 2

)
− degPk +N

N

)

≤
(
e
(
max1≤c≤ξ degSc + |n|2d + 2

)
+N

N

)

and

dimQ[x0, xt]edegRt =
(
edegRt + 1

1

)
≤
(
e(|n|2d + 2) + 1

1

)
= e(|n|2d + 2) + 1.
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For any integers u, v ≥ 0 one has(
u+ v

v

)
= (u+ v)(u+ v − 1) · · · (u+ 1)

v! = u+ v

v
· · · u+ 1

1 ≤ (u+ 1)v. (2.16)

Therefore

p =
N∑
j=0
j ̸=i′

dimRe(degS+degRt)−deg fi′j
+

χ∑
k=1

dimRe(degS+degRt)−degPk
+ dimQ[x0, xt]e degRt

≤N ·
(
e
(
max1≤c≤ξ degSc + |n|2d + 2

)
+N

N

)

+ χ ·
(
e
(
max1≤c≤ξ degSc + |n|2d + 2

)
+N

N

)
+ e(n2d + 2) + 1

(2.16)
≤N ·

(
e

(
max

1≤c≤ξ
degSc + |n|2d + 2

)
+ 1

)N
+ χ

(
e

(
max

1≤c≤ξ
degSc + |n|2d + 2

)
+ 1

)N
+ e(|n|2d + 2) + 1

e,N≥1
≤ eN

(
(N + χ) ·

(
max

1≤c≤ξ
degSc + |n|2d + 3

)N
+ |n|2d + 2

)
+ 1

To pull the powers of |n| to the front one uses that for any integers u, v, w ∈ N>0 the
inequality

(uv + w)N = uN
(
v + w

u

)N
≤ uN (v + w)N (2.17a)

holds.
(2.17a)
≤ eN

(
(N + χ) · |n|2dN ·

(
max

1≤c≤ξ
degSc + 4

)N
+ |n|2d + 2

)
+ 1

N≥1
≤ eN

(
|n|2dN

(
(N + χ) ·

(
max

1≤c≤ξ
degSc + 4

)N
+ 1

)
+ 2

)
+ 1

(2.17a)
≤ eN |n|2dN

(
(N + χ) ·

(
max

1≤c≤ξ
degSc + 4

)N
+ 3

)
+ 1

:=eN |n|2dNC(S1, . . . , Sc, N, χ) + 1.

Claim. The exponent e in the Hilbert Nullstellensatz can be chosen smaller than

|n|2d(N+2)Ce (2.18)

where Ce is a constant depending on S1, . . . , Sξ, P1, . . . , Pχ and N . Hence Ce depends on
Da,b and the geometry of G.

86



Proof. This is an application of the effective Nullstellensatz by Brownawell (Proposi-
tion 2.5.2). We have polynomials in N + 1 variables and the set of generators for the
ideal I[n]g we have chosen earlier has N + χ elements. As a bound for the degrees of the
polynomials we choose the maximum of their degrees. Therefore

e
2.5.2
≤ (min{N + 1, N + χ}+ 1) (N + 3)

·

 max
0≤j≤N, j ̸=i′

1≤k≤χ

{deg fi′j , degPk, degS + degRt}+ 1


min{N+1,N+χ}+1

= (min{N + 1, N + χ}+ 1) (N + 3)

·
(

max
1≤k≤χ

{|n|2,degPk, degS + degRt}+ 1
)min{N+1,N+χ}+1

≤(N + 2)(N + 3)
(

max
1≤k≤χ

{|n|2,degPk,degS + |n|2d + 2}+ 1
)N+2

degS≥0
≤(N + 2)(N + 3)

(
max

1≤k≤χ
{degPk,degS + |n|2d + 2}+ 1

)N+2

≤(N + 2)(N + 3)
(

max
1≤k≤χ

{degPk,degS}+ |n|2d + 3
)N+2

≤(N + 2)(N + 3)

 max
1≤c≤ξ
1≤k≤χ

{degPk, degSc}+ |n|2d + 3


N+2

(2.17a)
≤ |n|2d(N+2)(N + 2)(N + 3)

 max
1≤c≤ξ
1≤k≤χ

{degPk,degSc}+ 4


N+2

=:|n|2d(N+2)C(P1, . . . , Pχ, S1, . . . , Sξ, N)

We know that a vector y made up of Ret viewed as a point in Q[x0, xt]e degRt together
with some polynomials which are used as coefficients to generate SeRet from the fi′j and
P1, . . . , Pχ is a non-trivial solution of the homogeneous linear system of equations MSy = 0.
With the bounds found in the claims above, we can now apply Lemma 2.5.4 to this linear
system of equations and (since Ret was non-trivial) get some non-trivial Polynomial B in
x0, xt (as well coefficients polynomials for some way to write SeB as a combination of the
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fi′j and P1, . . . , Pχ, which we will not need) such that

h(B)
2.5.4
≤ (p− 1) (log(p− 1) + h ([m11 : . . . : mpq]))
≤ max{1, p− 1}2 (1 + h ([m11 : . . . : mpq]))

(2.15)
≤

(
eN |n|2dNCp

)2
(1 + h ([m11 : . . . : mpq]))

Cp≥1= e2N |n|4dNC2
p (1 + h ([m11 : . . . : mpq]))

(2.11)
≤ e2N |n|4dNC2

p

(
1 +NhDa,b

(g) + eCMS

)
e,N≥1
≤ e2N+1|n|4dN (NC2

p)
(
hDa,b

(g) + (1 + CMS
)
)

CMs>0
≤ e2N+1|n|4dN (NC2

p)(1 + CMS
)
(
hDa,b

(g) + 1
)

(2.19)

(2.18)
≤

(
|n|2d(N+2)Ce

)2N+1
|n|4dN (NC2

p)(1 + CMS
)
(
hDa,b

(g) + 1
)

= |n|2d(N+2)(2N+1)+4dN
(
C2N+1
e (NC2

p)(1 + CMS
)
) (
hDa,b

(g) + 1
)

=: |n|2d((N+2)(2N+1)+2N)C(N,P1, . . . , Pχ, S1, . . . , Sξ, φ
(n)
0 , . . . , φ

(n)
N )

(
hDa,b

(g) + 1
)
.

The polynomial Bt therefore fulfils a height inequality of the form we want and is a
homogeneous polynomial in x0 and xt. Its degree is bounded by

degBt = degRet
= e degRt
≤ e(δ + 2)
≤ e(|n|2d + 2)

(2.18)
≤ |n|2d(N+2)Ce(|n|2d + 2)

|n|2d≥1
≤ |n|2d((N+2)+1)3Ce

(2.20)

The last inequality holds since δ ≤ |n|2d (for d dimension of G) due to Corollary 1.3.43.
Hence, for Bt to be a polynomial we can use to estimate the height of [x0(g) : xt(g)]
the only thing left to show is that Bt(g) = 0. But this the case since by construction
SeBt(g) = 0 and Se(g) ̸= 0. Therefore

h ([x0(g) : xt(g)])
(2.9)
≤ h(Bt) + 2 degBt (2.21)

≤h(Bt) + 6|n|2d((N+2)+1)Ce

≤|n|2d((N+2)(2N+1)+2N)
(
C2N+1
e (NC2

p)(1 + CMS
)
) (
hDa,b

(g) + 1
)

+ 6|n|2d((N+2)+1)Ce

≤|n|2d((N+2)(2N+1)+2N)
(
C2N+1
e (NC2

p)(1 + CMS
) + 1

) (
hDa,b

(g) + 1
)

88



Using (2.8) we get

h(g)
(2.8)
≤

N∑
i=1

xi(g)̸=0

h ([x0(g) : xi(g)])

(2.21)
≤

N∑
i=1

xi(g)̸=0

|n|2d((N+2)(2N+1)+2N)
(
C2N+1
e (NC2

p)(1 + CMS
) + 1

) (
hDa,b

(g) + 1
)

≤ N
(
|n|2d((N+2)(2N+1)+2N)

(
C2N+1
e (NC2

p)(1 + CMS
) + 1

) (
hDa,b

(g) + 1
))

= |n|2d((N+2)(2N+1)+2N)
(
NC2N+1

e (NC2
p)(1 + CMS

) + 1
) (
hDa,b

(g) + 1
)

=: |n|C(d,N)C(N,S1, . . . , Sξ, P1, . . . , Pχ, φ
(n)
0 , . . . , φ

(n)
N )

(
hDa,b

(g) + 1
)

which is the desired inequality.

Remark 2.5.6. The above proof differs from the one in [Wüs89] in the definition of Rt
and the S. Wüstholz takes Rt to be the product of the coordinates of all g(1), . . . , g(δ) and
chooses µ := x0 · · ·xN as S for any g.

The idea of applying the fact that there is a homogeneous polynomial in two variables
can be used to bound the height of its zeros to a polynomial obtained like Bt was suggested
by Professor Habegger.

Corollary 2.5.7 ([Wüs89], compare Proposition 2.0). Let G be a commutative connected
algebraic group defined over Q and E a very ample divisor on G. For any n ∈ Z \ {0} there
are constants C1, C2 > 0 such that for any m ∈ N0 and g ∈ G(Q)

hE(g) ≤ C1|n|mC2(hE([nm]Gg) + 1).

Proof. The case n = 1 is trivial. Hence assume |n| ≥ 2. Let C̃1, C̃2 be the constants
C1, C2 obtained from Proposition 2.5.5. Set

C1 := max(C̃1, 1)
C2 := C̃2 + C ′ + 1

Here C ′ > 0 is a constant chosen such that |n|C′ ≥ C1.
m = 0: In this case [n0]Gg = [1]Gg = g. The statement follows from

h(g) = h([n0]Gg) < h([n0]Gg) + 1 ≤ C1|n|0·C2(h(g) + 1)

m = 1: This is the statement of Proposition 2.5.5

h(g) ≤ C̃1|n|C̃2 (h([n]Gg) + 1) ≤ C1l
1·C2

(
h([n1]Gg) + 1

)
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m ≥ 2 : Assume the statement holds for a given m ≥ 1.

h(g)
IH
≤ C1|n|mC2(h([nm]Gg) + 1)

2.5.5
≤ C1|n|mC2(C̃1|n|C̃2(h([nm+1]Gg) + 1) + 1)

= C1C̃1|n|mC2+C̃2h([nm+1]Gg) + C1|n|mC2(C̃1|n|C̃2 + 1)
C̃1≤|n|C′

≤ C1|n|C
′ |n|C̃2+mC2h([nm+1]Gg) + C1|n|mC2(|n|C′ |n|C̃1 + 1)

= C1|n|C
′+C̃2+mC2h([nm+1]Gg) + C1|n|mC2

(
|n|C′+C̃1 + 1

)
|n|>1
≤ C1|n|C

′+C̃2+mC2h([nm+1]Gg) + C1|n|mC2 |n|C′+C̃1+1

≤ C1|n|C2+mC2h([nm+1]Gg) + C1|n|mC2+C2

= C1|n|(m+1)C2(h([nm+1]Gg) + 1)

Corollary 2.5.8. Let G be a commutative connected algebraic group defined over Q and
E a very ample divisor on G. For any n ∈ Z \ {0} there are constants C1, C2 > 0 only
dependent on the prime factors of n such that for any g ∈ G(Q)

hE(g) ≤ C1|n|C2(hE([n]Gg) + 1).

Proof. This follows immediately from the previous corollary.
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