Übungen zur Vorlesung "Kommutative Algebra und algebraische Geometrie" SS 2010 Blatt 3

Ausgabe: 06.05.2010, Abgabe: 14.05.2010

Informationen zur Vorlesung finden Sie unter:

http://home.mathematik.uni-freiburg.de/arithmetischegeometrie/lehre/ss10/kommalg.html

Alle Lösungen sind vollständig zu begründen.

Bonusaufgaben gehen nicht in die Pflichtwertung ein, sondern können benutzt werden, um zusätzliche Punkte zu erhalten.

Zur Abgabe am 14.05.: Am 13.05. findet keine Vorlesung statt. Die Abgabe der Übungszettel erfolgt entweder am 11./12.05. in der Übungsgruppe oder am 14.05. in den Karton vor Raum 434.

Aufgabe 3.1: Gegeben sei das folgende Diagramm von *R*-Modulhomomorphismen, in dem die beiden Zeilen exakte Sequenzen sind:

Zeigen Sie: Wenn b und d Isomorphismen sind, a surjektiv und e injektiv ist, dann ist c ein Isomorphismus.

(8 Punkte)

Aufgabe 3.2: Sei k ein algebraisch abgeschlossener Körper. Eine k-Algebra R ist genau dann Koordinatenring einer affinen Menge, wenn R als k-Algebra endlich erzeugt ist und das Nullideal in R reduziert ist.

(4 Punkte)

Aufgabe 3.3: Zeigen Sie, daß es eine Bijektion gibt zwischen den Punkten des \mathbb{R}^n und den maximalen Idealen \mathfrak{m} von $A = \mathbb{R}[X_1, \dots, X_n]$ für die gilt $A/\mathfrak{m} \cong \mathbb{R}$. Gehen Sie dabei wie folgt vor:

- (i) Jeder Punkt $p = (a_1, \ldots, a_n) \in \mathbb{R}^n$ liefert ein maximales Ideal $\mathfrak{m} = \langle X_1 a_1, \ldots, X_n a_n \rangle$ in A mit $A/\mathfrak{m} \cong \mathbb{R}$.
- (ii) Zeigen Sie, daß es maximale Ideale $\mathfrak{m} \subseteq A$ gibt, für die nicht $A/\mathfrak{m} \cong \mathbb{R}$ gilt.
- (iii) Zeigen Sie, daß ein maximales Ideal $\mathfrak{m} \subseteq A$ von der Form $\langle X_1 a_1, \ldots, X_n a_n \rangle$ für $p = (a_1, \ldots, a_n) \in \mathbb{R}^n$ ist, wenn $A/\mathfrak{m} \cong \mathbb{R}$ gilt.

(4 Punkte)

Aufgabe 3.4:

- (i) Bestimmen Sie den Abschluß (in der Zariski-Topologie) der Menge $\{(n,3n+3)\mid n\in\mathbb{N}\}$ in \mathbb{C}^2 .
- (ii) Bestimmen Sie den Abschluß (in der Zariski-Topologie) der Menge $\{(n, n\sqrt{n-1}) \mid n \in \mathbb{N}\}$ in \mathbb{C}^2 .
- Teil (i) ist Pflichtteil, Teil (ii) ist eine Bonusaufgabe.

(4 + x Punkte)