Algebraic Number Theory 2018 - Set 5

Tutor: Vivien Vogelmann, vivienvogelmann[at]web.de

Deadline: 12.00 on Friday, the 1st of June, 2018

Each exercise is worth 4 points. The bonus exercise is also worth 4 points. If you get more than 16 points, you can transfer the excess points to other exercise sets.

Exercise 1. Let $f \in \mathbb{Q}[X]$ be the polynomial $X^3 - 2X - 2$. Let α be a root of f, and let K denote $\mathbb{Q}(\alpha)$. In this exercise you may use that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Let p be a prime number (in \mathbb{Z}). The ideal (p) in \mathcal{O}_K can decompose as product of prime ideals in one of the following ways:

- 1. $(p) = p^3$
- 2. $(p) = \mathfrak{p}_1^2 \mathfrak{p}_2$
- 3. $(p) = \mathfrak{p}$
- 4. $(p) = \mathfrak{p}_1 \mathfrak{p}_2$
- 5. $(p) = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3$

Find an explicit prime number p for each of these five options. Prove that your answer is correct.

Hint: Compute the discriminant of \mathcal{O}_K , which tells you where to look for ramifying primes. This covers the first two cases. For the last three cases, factor f modulo small prime numbers p. You do not need more then the first 10 primes.

Exercise 2. Let $0 \to V_1 \to V_2 \to \ldots \to V_n \to 0$ be an exact sequence of vector spaces over some field. Prove: $\sum_{i=1}^{n} (-1)^i \dim(V_i) = 0.$

Exercise 3. Prove the remaining case of Satz 2.5.10 in the lecture notes: Let d be an integer congruent 1 (mod 4), and let \mathcal{O} be the ring $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Prove the following:

— If $d = 5 \pmod{8}$, then (2) is a prime ideal of \mathcal{O} .

— If $d = 1 \pmod{8}$, then 2 unramified in \mathcal{O} , and we have $(2) = \left(2, \frac{1+\sqrt{d}}{2}\right) \cdot \left(2, \frac{1-\sqrt{d}}{2}\right)$.

Exercise 4. Let $R \subseteq \mathcal{O}_K$ be a subring of \mathcal{O}_K with K = Quot(R). The *conductor* of R is

$$\mathfrak{f} = \{ x \in \mathcal{O}_K \mid (x) \subseteq R \}$$

(See also Satz 2.5.7.) Prove that (i) the set \mathfrak{f} is an ideal; (ii) it is the biggest ideal of \mathcal{O}_K that is contained in R; and (iii) show that $\mathfrak{f} \neq (0)$.

Exercise 5 (Bonus). In this exercise we will use Sage to collect numerical data on the splitting behaviour of primes in number fields. The goal is to formulate a statement on the asymptotic behaviour.

- (i) Let K be a number field of degree d. For computational purposes restrict to $d \leq 5$. Let N be a positive integer, say 1000. We denote with $\pi(n)$ the nth prime number. For $n \leq N$, compute how $p = \pi(n)$ splits in K. Count how many primes are inert, how many primes split completely; and more generally count how often each splitting type occurs.
- (ii) Let L be the Galois closure of K, and let G be the Galois group of L/Q. Then G acts on Σ = Hom(K, L). Note that #Σ = d. For each g ∈ G, we get a partition of Σ into orbits under multiplication by g. The lengths of these orbits are a partition of d. Use G.cycle_index() to compute how often each partition occurs as g ranges over the elements of G.

Compare these two computations, and formulate a conjecture relating the two.