Exercises for the lecture
 "Commutative Algebra and Algebraic Geometry" SS 2019 Sheet 1, Submission Date: 06.05.2019

We let A, B denote commutative rings with unity. We let $A[x]$ denote the ring of polynomials in an indeterminate x with coefficients in A.

Exercise 1.

1. Prove that a proper ideal \mathfrak{p} of A is prime if and only if, for all ideals $\mathfrak{a}, \mathfrak{b}$ of A, $\mathfrak{a b} \subset \mathfrak{p}$ implies $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.
2. If \mathfrak{p} is a prime ideal and $\mathfrak{a}^{n} \subset \mathfrak{p}$ for an ideal \mathfrak{a} of A and for some $n \geq 0$, then show that $\mathfrak{a} \subset \mathfrak{p}$.

Exercise 2.

1. Let $\phi: A \rightarrow B$ be a ring homomorphism and let $I \subset B$ be an ideal of B. Then prove that $\phi^{-1}(I)$ is an ideal of A.
2. Let $B \neq 0$ and let $\phi: A \rightarrow B$ be a surjective ring homomorphism. Prove that $\operatorname{ker}(\phi):=\{a \in A: \phi(a)=0\}$ is a prime ideal of B if and only if B is an integral domain.
3. Prove that $\left\langle x^{2}+1\right\rangle \subset \mathbb{R}[x]$ is a prime ideal of $\mathbb{R}[x]$.
4. Show that $\left\langle x^{2}+1\right\rangle \subset \mathbb{C}[x]$ is not a prime ideal of $\mathbb{C}[x]$.

Exercise 3.

1. Show that $x\left(\bmod \left\langle x^{m}\right\rangle\right) \in \frac{\mathbb{C}[x]}{\left\langle x^{m}\right\rangle}$ is a nilpotent element while $a+x\left(\bmod \left\langle x^{m}\right\rangle\right) \in \frac{\mathbb{C}[x]}{\left\langle x^{m}\right\rangle}$ is a unit for all $a \in \mathbb{C} \backslash\{0\}$.
2. In general, prove that for a nilpotent element $a \in A$ and for a unit $u \in A$, the element $u+a$ is a unit of A.

Exercise 4.

Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in A[x]$. Then

1. Let $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in A[x]$ such that $f g=1 \in A[x]$. Show (by induction on r) that $a_{n}^{r+1} b_{m-r}=0$ for all $r=0,1, \ldots, m$.
2. Using Exercise 3, show that f is a unit in $A[x]$ if and only if a_{0} is a unit of A and a_{1}, \ldots, a_{n} are nilpotent elements of A.
3. Prove that f is nilpotent if and only if a_{0}, \ldots, a_{n} are nilpotent.
4. Show that if f is a zero-divisor then there exists $0 \neq a \in A$ such that $a f=0$.

$$
(1+2+2+3 \text { Points })
$$

