Probeklausur zur Vorlesung "Erweiterungen der Analysis"

Teil I: Beweisen oder Widerlegen

Aufgabe 1:

Beweisen oder widerlegen Sie:

- 1. Jede beschränkte Menge $A \subseteq \mathbb{R}^3$ ist Jordan-messbar.
- 2. Es seien $A, B \subseteq \mathbb{R}^2$ sternförmig, dann ist auch $A \cap B$ sternförmig.
- 3. Für jede Funktion $f: \mathbb{R}^d \to \mathbb{R}$ und jede Jordan-messbare Menge A existiert das Integral

$$\int_A f(\underline{x}) \, \mathrm{d}\underline{x}.$$

- 4. Sei $f: \mathbb{R}^d \to \mathbb{R}$ eine Funktion, die über jeden Quader Q integrierbar ist, dann ist f auch stetig.
- 5. Es sei $A \subseteq \mathbb{R}^3$ ein \mathcal{C}^1 -Polyeder und es sei $f \in \mathscr{C}^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$, dann ist

$$\int_{\partial A} (\underline{\nabla} \times f)(\underline{x}) \cdot d\underline{x} = 0$$

6. Es sei $f \in \mathscr{C}^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$ holomorph, dann ist f ein Gradientenfeld.

Teil II: Vektoranalysis

Aufgabe 2:

Es sei $f \colon \mathbb{R} \to \mathbb{R}$ eine \mathscr{C}^{∞} -Funktion und es sei $B \subseteq \mathbb{R}^2$ ein Gebiet. Außerdem sei die Abbildung

$$\underline{\kappa} \colon B \ni (u, v) \mapsto (u, v, f(\sqrt{u^2 + v^2})) \in \mathbb{R}^3$$

gegeben, so dass $(u,v)\mapsto f(\sqrt{u^2+v^2})$ eine zweimal stetig differenzierbare Funktion ist.

- 1. Zeigen Sie, dass κ eine Einbettung ist.
- 2. Berechnen Sie das Einheits-Normalenfeld von $\underline{\kappa}(B)$.

Hinweis: Je nach Methode ist ein Zwischenergebnis

$$\underline{n}(u, v, f(\sqrt{u^2 + v^2})) = \frac{1}{\sqrt{1 + f'(\sqrt{u^2 + v^2})^2}} \left(-\frac{f'(\sqrt{u^2 + v^2})}{\sqrt{u^2 + v^2}}u, -\frac{f'(\sqrt{u^2 + v^2})}{\sqrt{u^2 + v^2}}v, 1\right)$$

3. Es sei nun $B = \{(u,v) \in \mathbb{R}^2 \mid u^2 + v^2 < R^2\}$ für ein $R \in \mathbb{R}^+$. Zeigen Sie, dass

$$\int_{\kappa} 1 \, \mathrm{d}\underline{x} = 2\pi \int_{0}^{R} r \sqrt{f'(r)^{2} + 1} \, \mathrm{d}r$$

und berechnen Sie das Integral explizit für $f(x) = x^2$ und $R = \sqrt{2}$.

4. Es sei nun $\underline{g}\in\mathscr{C}^\infty(\mathbb{R}^3,\mathbb{R}^3)$ gegeben durch g(x,y,z)=(0,x,0). Berechnen Sie

$$\int_{\kappa} (\underline{\nabla} \times \underline{g})(\underline{x}) \cdot d\underline{x}.$$

Aufgabe 3:

Für a, b > 0 sei $E_{ab} = \{(x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}$ die Ellipse die von der Kurve $\underline{\gamma} \colon [0, 2\pi] \ni \phi \mapsto (a\cos(\phi), b\sin(\phi)) \in \mathbb{R}^2$ berandet wird.

1. Benutzen Sie den Satz von Gauß für a=b=1 um zu zeigen, dass

$$\int_0^{2\pi} \cos^2(t) \, dt = \int_0^{2\pi} \sin^2(t) \, dt = \pi$$

gilt.

Hinweis: Finden Sie eine geeignete Funktion f mit $\operatorname{div}(f)=1$ und berechnen Sie

$$\int_{E_{11}} 1 \, \mathrm{d}\underline{x}$$

auf zwei verschiedene Weisen.

2. Benutzen Sie den Satz von Gauß nun erneut um mit den Ergebenissen aus Aufgabe 1.) die Formel

$$\int_{E_{ab}} 1 \, \mathrm{d}\underline{x} = ab\pi$$

zu zeigen.

Teil III: Funktionentheorie

Aufgabe 4:

Es sei $f: \mathbb{C} \to \mathbb{C}$ eine Funktion mit f(z) = f(x + iy) = u(x, y) + iv(x, y).

- 1. Wie lauten die Cauchy-Riemann'schen Differentialgleichungen für f?
- 2. Nun sei die Matrix gegeben

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}),$$

so dass $f(\underline{x}) = A\underline{x}$. Zeigen Sie, dass f genau dann holomorph ist, wenn a = d und b = -c ist.

3. Es sei nun

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}),$$

für $a, b \in \mathbb{R}$ und $f(\underline{x}) = A\underline{x}$. Zeigen Sie, dass

$$a - ib = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - \xi)^2} dz$$

für $\underline{\gamma}\colon [0,2\pi]\ni t\mapsto \xi+\mathrm{e}^{it}\in\mathbb{C}$ und für $\xi\in\mathbb{C}$ beliebig.