
GALOIS GROUPS AND FUNDAMENTAL GROUPS

LUCA TERENZI

Introduction

The ultimate goal of Algebraic Number Theory is to study properties of the ring
of integers Z and the rational number field Q. One of the most general strate-
gies consists in studying equations with integer or rational coefficients. Given a
polynomial

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ Q[x]

we can construct its splitting field Ef : it is a finite Galois extension of Q, and every
such extension arises in this way. The arithmetic properties of f(x) are encoded
in the Galois group Gal(Ef/Q). Given a finite Galois extension E/Q, the main
theorem of Galois theory yields an order-reversing bijection

{subfields of E} ↔ {subgroups of Gal(E/Q)}
K → Gal(E/K) := {g ∈ Gal(E/Q) | g|K = idK}

EH := {a ∈ E | h(a) = a ∀h ∈ H} ← H.

The following questions arise naturally:

(1) given a finite group G, is there a finite Galois extension E/Q such that
Gal(E/Q) ' G?

(2) if so, in how many different ways can we find such an extension E, and how
are they related to each other?

This is the so-called inverse Galois problem for Q, an extremely difficult open
problem. In order to study it properly one has to consider at once the system of all
finite Galois extensions of Q, or better the corresponding system of all finite Galois
groups over Q. It is convenient to glue all these finite groups into a single object,
called the absolute Galois group of Q and denoted Gal(Q̄/Q): it is constructed as
the ”limit” of the above system of finite Galois groups and has a natural structure
ot topological group; its topology records the whole collection of finite Galois groups
as well as their relations. Now the problem becomes: how to get information about
the group Gal(Q̄/Q) concretely? This will be the main motivating question of the
present seminar.

The abstract framework of Galois theory occurs not only in the algebraic theory
of fields and field extensions, but also in several other mathematical areas. In all
these cases, Galois theory studies the groups Aut(Y/X) of automorphisms of a
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given object Y over another object X; it provides a bijection of the form

{objects intermediate between X and Y } ↔ {subgroups of Aut(Y/X)}
Z → Aut(Y/Z)

Y H ← H

analogous to the one of classical Galois theory. One of the most important examples
of such ”Galois phenomena” occurs in Topology with the theory of covering spaces.
It is intimately related to the theory of the fundamental group, which describes one
of the main algebraic invariants of topological spaces. In the end, Galois groups
and fundamental groups should two examples of the same theory. But does such a
theory exist in nature?

The answer is affirmative, in a suitable sense. The crucial task is to construct a
world where where fields and topological spaces naturally interact with each other;
typically, this means having certain topological spaces endowed with certain fields
of functions on them. In the present seminar we will introduce two main examples:

• Riemann surfaces with their fields of meromorphic functions;
• algebraic curves with their fields of rational functions.

As we will see, finite covering spaces of a Riemann surface correspond to suitable
finite extensions of its meromorphic function field, and the Galois theory of cover-
ings corresponds to the Galois theory of meromorphic functions. Compact Riemann
surfaces are examples of smooth proper algebraic curves: namely, they correspond
to smooth proper algebraic curves defined over C. In the world of algebraic curves
it is possible to define a purely algebraic notion of covering spaces. This leads to
an algebraic version of the fundamental group, called the étale fundamental group,
which agrees with the topological fundamental group in the case of Riemann sur-
faces.

But the étale fundamental group makes sense for curves defined over arbitrary
fields: not only C, but also Q or Q̄ for example. Given a curve X defined over Q,
the étale fundamental group of X interacts with the Galois group Gal(Q̄/Q) in a
very interesting way. This general fact, combined with the Hilbert Irreducibility
Theorem, allows to construct Galois extensions of Q starting from covering spaces
of X, thus providing new information around the inverse Galois problem for Q.
This is the final goal of the seminar.
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Preparing your talk

• Start early. Find out if you will get away with reading the texts specified
in the references or if you need additional literature to cover basics.
• Ask us. If you run into problems, aks the assistent or the professor. It is

our job to support you. This can concern mathematical questions, advice
on literature or the contents and structure of your talk.
• Find out what you are supposed to do. In doubt, ask. Sometimes your talk

provides preparation for subsequent talks that cannot be left out. It is a
good idea to coordinate with other speakers.
• We want to have 10 minutes for feedback, so your talk should end after 80

minutes. Expect that there are questions or a discussion during your talk.
You do not want this to derail your presentation. If you do a test without
audience, 70 minutes is a good aim.
• If the program contains more material than you can cover (actually this is

the norm), it is part of your job to make choices. Do not speed up instead.
• Think about timing. What will you leave out if time is running out? Are

there additional examples that you can add if there is still time? One option
is leaving a long proof for the end of the talk, so they can be cut short.
Make sure that the main message is not lost due to time problems.
• You are very welcome to use interactive ingredients, and overall do a better

job than an average lecture.
• We expect some kind of hybrid format for the seminar. It may be necessary

to switch on short notice.
• If you are giving a black board talk or a hand written talk on a tablet,

please prepare a hand out with the main points. If you are preparing a
presentation, we can use that instead.
• A week before your talk at the latest meet the assistent to discuss a draft

of your talk.
• Start early.

Contacts.

Prof. Dr. Annette Huber-Klawitter Luca Terenzi, M.Sc.
annette.huber@math.uni-freiburg.de luca.terenzi@math.uni-freiburg.de
Room 434 Room 418
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PART 1: GALOIS GROUPS

1. Profinite groups

Reference: [RibZal, § 1,2].

Aim. The aim of this talk is to introduce profinite groups, a certain class of topo-
logical groups generalising finite groups. Profinite groups can be defined as inverse
limits of finite groups: this yields a natural topology on them. It turns out that
they are characterised by certain topological properties.

1.1. Inverse limits. [RibZal, § 1.1]

Introduce the notion of inverse limit of an inverse systems of sets (or groups, or
topological spaces, ...) in terms of a universal property. Explain first how to
construct inverse limits of sets concretely, and give a sufficient consition in order
for the inverse limit to be non-empty (Proposition 1.1.4).

Then consider the special cases of groups and topological spaces:

• given an inverse system of groups and group homomorphisms, the inverse
limit (endowed with the component-wise multiplication and inversion maps)
is an inverse limit of groups;
• given a system of topological spaces and continuous maps, the inverse sys-

tem (endowed with the subspace topology of the product topology) is an
inverse system of topological spaces.

1.2. Profinite groups as inverse limits. [RibZal, §§ 2.1, 2.4, 3.2]

Recall the general notion of topological group; as a basic example, point out that
every group can be regarded as a discrete topological group. Define the notion of
topological generators of a topological group.

Introduce the notion of profinite group as inverse limit of a system of finite groups.
By the previous discussion, they are topological groups; moreover, every finite group
is canonically a profinite group with the discrete topology.

In order to give more examples, introduce the profinite completion of a group.
Discuss the following examples:

• the profinite completion of Z;
• the free profinite group on a set.

1.3. Topological characterisation of profinite groups. [RibZal, §§ 1-2]

Prove that every profinite group is compact, Hausdorff, and completely discon-
nected (Proposition 1.1.3); and conversely, every topological group with these prop-
erties is profinite (Theorem 2.1.3 (a) ⇐⇒ (b)).

Deduce the following consequences: first, in a profinite group, a subgroup is open
if and only if it is closed and has finite index (Lemma 2.1.2); second, every closed
subgroup of a profinite group is itself a profinite group with the induced topology.
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1.4. Continuous actions of profinite groups. [RibZal, § 5]

Recall the notion of action of a group on a set.

Then introduce the notion of continuous action of a topological group on a set (re-
garded as a discrete topological group). Explain the characterisation of continuous
actions in terms of openness of all stabilizers.

Deduce that, whenever a profinite group acts continuously on a set, all orbits are
finite. As a key example, discuss the action of a profinite group on the cosets of an
open subgroup.

2. Infinite Galois theory

Reference: [Sza, § 1]

Aim. We assume that the participants know about the main results of finite Galois
theory. The aim of this talk is to generalize these results to infinite field extensions.
This leads to the construction of the absolute Galois group of a field, which is
naturally a profinite group. The absolute Galois group will be our main object of
interest in this seminar.

2.1. Separable field extensions. [Sza, § 1.1]

Start by recalling the basic definitions about algebraic field extensions and alge-
braically closed fields, as well as the main properties of the algebraic closure (Propo-
sition 1.1.3).

Then recall the notion of separable field extension and the separable closure of a
field. Explain how to characterise separable extensions in terms of embeddings in
an algebraic closure (Lemma 1.1.6).

Recall what a perfect field is. Point out that all fields of characteristic 0 are perfect
- we will be mostly interested in this case.

2.2. Galois extensions. [Sza, § 1.2]

Recall the general definition of a Galois extension: notice that this makes sense for
finite as well as infinite extensions. Discuss the main properties of Galois extensions
(Proposition 1.2.4).

Recall the main theorem of finite Galois theory (Theorem 1.2.5) and the main ideas
behind the proof.

Finally, introduce the so-called inverse Galois problem: given a field k, which finite
groups G occur as Galois groups of finite Galois extensions of k? A first general
piece of information about this question is given in Example 1.2.11.

2.3. The absolute Galois group of a field. [Sza, § 1.3]

Prove that the Galois group of a Galois extension is a profinite group (Proposition
1.3.5). Then prove the main theorem of infinite Galois theory (Theorem 1.3.11).

Define the absolute Galois group of a field k (p. 13, end of Example 1.2.3). Point
out that the Galois group of every other Galois extension of k is a quotient of it by
a closed subgroup.
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Point out that not every subgroup of Gal(Q̄/Q) is closed (Remark 1.3.12), hence
the closure condition in the main theorem is crucial. In fact, it turns out that not
every subgroup of finite index of Gal(Q̄/Q) is open (Remark 1.3.10(2)).

In order to see why absolute Galois groups are fundamental in the study of fields,
state the Neukirch–Pop Theorem (Remark 1.3.13); you can focus on the case of
fields of characteristic 0, when the result is more explicit. Deduce that, for example,
every automorphism of Gal(Q̄/Q) is induced by an automorphism of Q̄.

3. Grothendieck’s formulation of Galois theory

Reference: [Sza, § 1].

Aim. The aim of this talk is to give an alternative description of the absolute Galois
group Gal(ks/k) of a field as an automorphism group. This allows to express the
main theorem of Galois theory in terms of continuous actions of Gal(ks/k) and
characterise these actions concretely in terms of finite étale k-algebras.

3.1. Categories and functors. [Sza, § 1.4]

Introduce the general language of categories and functors, and give examples. De-
fine morphisms of functors, explain how to compose them, and define isomorphisms
of functors.

Then introduce the notion of representable functor and prove the Yoneda Lemma
(Lemma 1.4.2). This result is fundamental and will be used many times in the
seminar.

Finally, introduce equivalence of categories and explain how to characterise them
(Lemma 1.4.9).

3.2. The category of Galois sets. [Sza, § 1.5]

The results of this section give a first reformulation of Galois theory in cate-
gorical terms. Show that the functor represented by the separable closure ks
yields an equivalence between finite extensions of k and finite continuous transitive
Gal(ks/k)-sets (Theorem 1.5.2).

3.3. Finite étale algebras. [Sza, § 1.5]

Introduce finite étale k-algebras as a natural generalisation of finite separable field
extensions of k, and explain how to characterise them (Proposition 1.5.6).

Finally, generalise the result of Theorem 1.5.2 to non-necessarily transitive actions
using étale k-algebras (Theorem 1.5.4).
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PART 2: FUNDAMENTAL GROUPS IN TOPOLOGY

4. Real surfaces and their classification

Reference: [Mas, § I]

Aim. This is a survey talk about real surfaces their structure. The main results
are the classification theorem and the existence of canonical forms of compact real
surfaces. The notion of triangulation of a compact real surface plays a key role:
it allows to define numerical invariants such as the Euler characteristic and the
genus. It is also important for our purposes to extend the previous constructions to
those real surfaces obtained by removing a finite number of points from a compact
surface.

For sake of completeness, in this talk we will treat both orientable and non-
orientable surfaces; in the rest of the seminar we will only need orientable surfaces.

4.1. Generalities on compact real surfaces. [Mas, § I.1-I.4]

Recall the general notion of n-dimensional (real) manifold. The talk is only about
surfaces, i.e. 2-manifolds. Recall the notion of orientable surface.

Give examples of orientable and non-orientable compact connected surfaces, includ-
ing:

• the 2-sphere;
• the torus;
• the real projective plane.

Then define the connected sum of two disjoint surfaces. Explain what a connected
sum of tori looks like.

4.2. Triangulations and classification. [Mas, § I.5-I.7]

State the classification theorem for compact surfaces (Theorem 5.1).

Describe first the canonical form for a connected sum of tori or projective planes.
Then introduce triangulations of compact real surfaces and discuss the examples of
the torus and the projective plane.

Finally, sketch the main steps of the proof of the classification theorem. You do
not have to include detailed arguments, but rather explain the general ideas and
constructions stressing the role of triangulations.

It might be useful to illustrate everything with pictures, as done in the book.

4.3. Euler characteristic and genus. [Mas, §§ I.8]

Introduce the Euler characteristic of a compact real surface and show that it is well
defined.

Discuss how the Euler characteristic changes under connected sums (Proposition
8.1). Prove that a compact real surface is completely described by orientability and
Euler characteristic (Theorem 8.2).

Finally, define the genus of a compact real surface. In the orientable case, explain
how the genus changes under connected sums and interpret it geometrically.
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4.4. Non-compact real surfaces. [Mas, §§ I.9-I.11]

Introduce briefly manifolds with boundary. Discuss how to extend the previous
constructions and results to surfaces with boundary (see Theorems 10.1 and 11.1).

5. The topological fundamental group

Reference: [Mas, § II,IV]

Aim. The aim of this talk is to introduce an important algebraic invariant of
topological spaces called the fundamental group, and compute this invariant in the
case of orientable real surfaces. The definition of the fundamental group in terms
of homotopy classes of closed paths is not directly amenable to computations; in
practice, one has to use the Seifert–Van Kampen Theorem. This allows to find a
canonical presentation of the fundamental group of compact real surfaces (possibly
with some points removed) in terms of the canonical form described in talk 4.

5.1. Construction of the fundamental group. [Mas, §§ II.1-II.5]

Recall the notion of homotopy of paths in a topological space. Introduce the con-
catenation of paths and show that it is associative up to homotopy.

Then define the fundamental group of a topological space with respect to a chosen
base-point. Show that, if the space is path-connected, the definition does not
depend on the chosen base-point up to isomorphism.

Discuss the functoriality of the fundamental group with repsect to continuous maps
preserving the base-points.

Discuss the following basic examples:

• contractible spaces;
• the circle.

5.2. The Seifert–Van Kampen Theorem. [Mas, §§ IV.1-IV.4]

State the Seifert–Van Kampen Theorem (Theorem 2.1) and explain its concrete
meaning. Discuss the first applications of this result. If time permits, explain the
main ideas behind the proof.

5.3. The fundamental group of real surfaces. [Mas, § IV.5]

Combining the Seifert–Van Kampen Theorem with the canonical form of compact
real surfaces, compute the fundamental group of an orientable compact real surface
of genus g. Extend the computation to the case of a compact surface with n ≥ 0
points removed.

6. Covering spaces

Reference: [Sza, § 2].

Aim. The aim of this talk is to introduce the topological notion of covering spaces
and show that it gives rise to the same formalism as in the Galois theory of fields.
As we will explain in the following talks, this is by no means coincidence.
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6.1. Generalities on covering spaces. [Sza, § 2.1]

Introduce the general notion of covering space; explain the local triviality condition
and the structure of the fibres.

An important non-trivial situation is given by the even action of a group on a space
(Lemma 2.1.7). This allows to give many examples (Examples 2.1.8).

6.2. Galois covers. [Sza, § 2.2]

[From now on, assume all spaces are locally connected - this assumption is always
verified in the cases we are interested in.]

Discuss the rigidity properties of covering spaces with respect to continuous maps
(Proposition 2.2.2) and automorphisms (Proposition 2.2.3).

Determine the automorphisms of a covering space arising from an even group action
(Proposition 2.2.4). This leads to the general notion of Galois covers.

6.3. Galois theory of covering spaces. [Sza, § 2.2]

Prove the main theorem of Galois covers (Theorem 2.2.10) and point out the formal
analogy with the Galois theory of fields.

7. Fundamental groups and covering spaces

Reference: [Sza, § 2]

Aim. The aim of this talk is to establish a connection between the theory of the
fundamental group and the theory of covering spaces. This result provides a de-
scription of the fundamental group as the automorphism group of a fibre functor,
therefore strengthening the analogy between fundamental groups and Galois groups.

7.1. The monodromy action. [Sza, § 2.3]

Define the monodromy action of the fundamental group of a topological space on
the fibres of a covering space (Construction 2.3.3).

State the main theorem on the equivalence between covering spaces of X and
π1(X,x)-sets (Theorem 2.3.4). Explain how to prove it assuming the representabil-
ity of the corresponding fibre functor. Point out the analogy with Grothendieck’s
formulation of Galois theory.

7.2. The universal cover. [Sza, § 2.4]

Construct the universal cover of a topological space (Construction 2.4.1). Show
that, if the space if path-connected, the result is independent of the choice of a
base-point up to isomorphism.

Then discuss the two intermediate results used in the proof of the main theorem
(Theorems 2.3.5 and 2.3.7).
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7.3. The case of real surfaces. [Mas, § V]

To give a concrete example, construct the universal cover of some (connected)
compact real surfaces, possibly with some points removed following the procedure
of Construcion 2.3.3. Include the following examples:

• the 2-sphere;
• the torus;
• the complex plane with n points removed.

7.4. The profinite completion of the fundamental group. [Sza, § 2.3]

Discuss the variant of the main theorem for finite covers of X (Corollary 2.3.9).
This yields a profinite version of the topological fundamental group that will be
interesting to consider in the following talks.

PART 3: RIEMANN SURFACES

8. Riemann surfaces

Reference: [Mir].

Aim. This is a survey talk on the general theory of Riemann surfaces. It will
provide the necessary background material for the next two talks.

8.1. Basic definitions. [Mir, § I]

Introduce the notion of complex chart on a topological space and compatible charts.
Introduce transition functions and show that they have non-vanishing derivative
(Lemma 1.7). Discuss some examples.

Introduce the notion of complex atlas as well as the equivalence relation on complex
atlases and the notion of complex structure.

Introduce the notion of Riemann surface. Remark that, from a topological view-
point, every Riemann surface is an orientable real surface. In particular, every
compact Riemann surface has a well-defined genus g ≥ 0.

8.2. Basic examples. [Mir, § I]

Discuss the following examples of non-compact Riemann surfaces:

• open subsect of the complex plane;
• graphs of holomorphic functions;
• smooth affine algebraic curves over C.

Discuss then the following examples of compact Riemann surfaces:

• the Riemann sphere, alias the projective line over C;
• complex tori;
• smooth projective plane curves.
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8.3. Holomorphic and meromorphic functions. [Mir, § II]

Introduce the notion of holomorphic function on a Riemann surface and give some
examples.

Introduce the classification of singularities of a function at a point. Introduce the
notion of meromorphic function and give some examples.

Define the order of a meromorphic function at a point and discuss its main prop-
erties. Discuss the case of the Riemann sphere in detail.

List the results on holomorphic and meromorphic functions inherited from the
theory of holomorphic functions of one variable (Theorem 1.33, Corollary 1.34,
Theorems 1.35, 1.36, 1.37).

8.4. Morphisms of Riemann surfaces. [Mir, § II]

Recall the basic facts about the topology of Riemann surfaces already discussed
in talk in the setting of real surfaces: in particular the results of Theorem 3.6.1,
Remark 3.6.2, Theorem 3.6.3.

9. Complex Elliptic Curves

References: [Kob], [Mir], [Silv].

Aim. The aim of this talk is to study in more detail an important class of Riemann
surfaces, namely complex tori, and realize them as particular algebraic curves known
as elliptic curves. We can classify complex tori up to isomorphism as Riemann
surfaces. On the side of elliptic curves, this classification is related to an algebraic
invariant called the j-invariant. This invariant has extremely important arithmetic
applications connected to Belyi’s Theorem.

9.1. Complex tori as elliptic curves. [Silv, § VI.1-VI.2]

Introduce the general Weierstrass equation of an elliptic curve over C and express it
in Legendre form. Define the holomorphic differential ω and the associated elliptic
integral. Explain how this gives rise to a complex torus.

Conversely, start from a complex torus. Introduce elliptic functions and the funda-
mental parallelogram associated to its lattice. Prove the basic properties of elliptic
functions (Theorem 2.2).

Define the Weierstrass P-function and show that it is an even elliptic function
(Theorem 3.1 (b) and (c)). Express the ring of elliptic functions in terms of the
Weierstrass function and its derivative (Theorem 3.2) and state the algebraic rela-
tion between them (Theorem 3.5(b)).

In the end, we can realised every complex torus as a complex elliptic curve (Propo-
sition 3.6(b)).

9.2. Morphisms of complex tori. [Mir, § III]

Discuss the structure of holomorphic maps between complex tori (Propositions 1.11,
1.12, 1.13).
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9.3. The space of complex elliptic curves. [Kob, § III.1]

Introduce the action of the group SL2(R) on the Riemann sphere and its restriction
to the Poincaré upper half-plane. Explain how this is related to lattices and maps
of complex tori.

Explain the structure of a fundamental domain for this action (Proposition 1).
If time permits, deduce some consequences on the structure of the group SL2(Z)
(Propositions 2,3,4).

9.4. The j-invariant. [Silv, § III.1]

Define the j-invariant associated to a Weierstrass equation. This quantity classifies
complex elliptic curves up to isomorphism (Proposition 1.4(b)).

Moreover, the j-invariant plays an important arithmetic role: given a complex ellip-
tic curve E defined by a Weiestrass equation with coeffieints in Q̄, the j-invariant jE
is algebraic and the minimal field of definition of E is precisely Q(jE) (Proposition
1.4(d)).

10. Local structure of holomorphic maps

Reference: [Mir, § II.4].

Aim. This talk focuses on the local structure of holomorphic maps between Rie-
mann surfaces. The main result is that every such map is a ramified covering,
so it restricts to a topological covering map outside a finite set. The ramification
datum associated to a map of Riemann surfaces provides important global informa-
tion about the two surfaces involved: this is summarized by the Riemann–Hurwitz
formula relating their genera.

10.1. Local normal form and ramification. [Mir, § II.4]

Prove the local normal form of a non-constant holomorphic map of Riemann sur-
faces (Proposition 4.1). Define the notion of multiplicity at a point and use it to
define ramification points and branch points.

As a first example, explain how to compute multiplicities in the case of a non-
constant meromorphic function, seen as a map to the Riemann sphere (Lemma
4.7).

Define the degree of a map of Riemann surfaces and show that it is well-defined
(Proposition 4.8). Prove that degree behave multiplicatively under composition
of maps, and in particular isomorphisms have degree 1. Deduce a criterion for a
Riemann surface to be isomorphic to the Riemann sphere (Proposition 4.11).

10.2. The Riemann–Hurwitz formula. [Mir, § II.4]

Using the technique of triangulations introduced in 4, prove the Riemann–Hurwitz
formula on the variation of genera along holomorphic maps (Theorem 4.16).
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10.3. Examples. [Mir, § II.4]

In this seminar, we are especially interested in unramified coverings of Riemann
surfaces. As an application of the Riemann–Hurwitz formula, discuss the following
results:

• the only unramified covering of the Riemann sphere is the Riemann sphere
itself;
• the only unramified coverings of a complex torus come from complex tori.

11. Coverings of Riemann surfaces

References: [Sza, § 3].

Aim. In this talk we apply the local analysis of holomorphic maps in order to
study covering spaces of Riemann surfaces. The first main result is that every
topological covering space of a Riemann surface is itself a Riemann surface; even
better, the categories of topological and holomorphic covers of a Riemann surfaces
are equivalent. The second main result is that the topological fundamental group
of a Riemann surface is related to the absolute Galois group of the corresponding
meromorphic function field. This allows to solve some inverse Galois problems with
topological methods.

11.1. Holomorphic and topological covers. [Sza, § 3.2]

Deduce from the results of the previous talk that proper holomorphic maps of
Riemann surfaces yield topological covers outside the branch points (Proposition
3.2.6).

Then prove the equivalence between holomorphic covers and finite topological covers
of a Riemann surface (Theorem 3.2.7).

The main theorem allows to introduce the notion of Galois holomorphic cover of a
Riemann surface. Prove the properties of the automorphism groups of such covers
(Proposition 3.2.10).

11.2. Galois theory of meromorphic functions. [Sza, § 3.3-3.4]

Discuss the relation between non-constant holomorphic maps of Riemann surfaces
and extensions of meromorphic function fields (Proposition 3.3.5). Show that this
yields an equivalence of categories, with Galois covers corresponding to Galois ex-
tensions (Theorem 3.3.7).

Deduce a precise description of Riemann surfaces in terms of Galois theory (Corol-
laries 3.3.10 and 3.3.12).

Finally, discuss the relation between Galois groups of meromorphic functions and
fundamental groups of Riemann surfaces (Theorem 3.4.1)

State Theorem 3.4.1 and prove it in detail, including Lemma 3.4.2. Discuss Remark
3.4.3.
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11.3. The absolute Galois group of C(t). [Sza, § 3.4]

Prove Douady’s Theorem on the absolute Galois group of C(t) (Theorem 3.4.8).
Deduce the answer to the inverse Galois problem for C(t) (Corollary 3.4.4).

PART 4: THE ETALE FUNDAMENTAL GROUP OF CURVES

12. Dedekind domains and Algebraic curves

Reference: [Sza, § 4].

Aim. This is a survey talk on the language of Dedekind domains and valuation
rings. Dedekind domains correspond to smooth affine curves; these can be glued
together to form smooth proper curves. These notions and results will be exploited
to define étale coverings of algebraic curves and the étale fundamental group in the
next talk.

12.1. Dedekind domains and prime factorisation. [Sza, § 4.1]

Introduce the notion of integral ring extension and integral closure, and state their
main properties (Facts 4.1.1 and 4.1.4). Introduce decomposition groups and inertia
subgroups associated to a Galois extension and state their main properties (Facts
4.1.3).

Introduce Dedekind domains and give some examples, including principal ideal do-
mains. Explain why the integral closure of a Dedekind domain in a finite separable
field extension is again a Dedekind domain.

State the fundamental property of prime decomposition in Dedekind domains (Facts
4.1.5). Explain how prime decompose along an extension of Dedekind domains
(Proposition 4.1.6) and define the ramification indices. Discuss the case of Galois
extensions (Corollary 4.1.7).

12.2. Affine curves. [Sza, § 4.3]

Introduce the abstract notion of ringed space. Explain how to construct the ringed
space associated to a ring (Construction 4.3.2).

Define morphisms of ringed spaces and explain their relation with ring homomor-
phisms (Proposition 4.3.6).

Introduce the notion of base-change of curves and define geometrically integral
curves (Construction 4.3.7).

Discuss the correspondence between maps of normal affine curves and extensions
of rational function fields (Theorem 4.3.10).

12.3. Proper normal curves. [Sza, § 4.4]

Explain the characterisation of local rings of an affine normal curve (Lemma 4.4.1).

Discuss the example of the affine line (Example 4.4.2); using this as a motivation,
construct the proper normal curve attached to a field (Construction 4.4.3).

Extend the results of the previous section (Propositions 4.4.5 and 4.4.6)
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Introduce the notion of finiteness and explain its role in the theory of proper normal
curves (Proposition 4.4.7 and Corollary 4.4.8).

13. The fundamental group of an algebraic curve

Reference: [Sza, § 4].

Aim. The aim of this talk is to introduce the étale fundamental group of an alge-
braic curve. This notion generalizes on the one hand the absolute Galois group of
a field, on the other hand the (profinite completion of the) topological fundamental
group of a topological space.

13.1. Finite branched covers of normal curves. [Sza, § 4.5]

Introduce the notion of separable morphism and étale morphism of integral affine
curves, and characterise them (Lemma 4.5.2). Discuss the example of the n-th
power map (Example 4.5.4 and Remark 4.5.5).

Prove that every finite separable morphism of curves is étale outside a finite number
of points (Proposition 4.5.9).

This motivates the notion of finite branched cover and Galois cover of curves.
Characterise étaleness over a point in terms of inertia subgroups (Proposition 4.5.11
and Corollary 4.5.12).

13.2. The étale fundamental group of algebraic curves. [Sza, § 4.6]

Establish the fundamental relation between étale covers of an algebraic curve and
certain Galois extensions of the corresponding function field (Proposition 4.6.1).
Using this result as a motivation, define the algebraic fundamental group of an
algebraic curve.

Prove the description of étale morphisms to a curve in terms of its étale fundamental
group (Theorem 4.6.4 and Corollary 4.6.5). Stress the analogy with previous similar
results obtained in the setting of Galois groups of fields and fundamental groups of
topological spaces.

Point out that there is no such notion as universal cover in the world of algebraic
curves. However, one can partially remedy this issue using the formalism of pro-
points and pro-étale covers (Remark 4.6.6).

13.3. Structure theorem for complex algebraic curves. [Sza, § 4.6-4.7]

In the case of a curve over C, discuss the equivalence between algebraic covers,
holomorphic covers, and extensions of the function field. Using this, we can give a
presentation of the étale fundamental group of such curves in terms of the under-
lying topological space (Theorem 4.6.7).

14. Arithmetic and geometric aspects of the fundamental group

Reference: [Sza, § 4].
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Aim. The aim of this talk is to explore some key properties of the étale fundamental
group of an algebraic curve. It is important to understand what happens changing
the field of definition of the curve: this leads to important connections with number
theory in the case of curves defined over Q̄.

14.1. Invariance under extensions of algebraically closed fields. [Sza, § 4.6]

Explain the base-change construction for separable and étale covers of curves (Con-
struction 4.6.9). State the invariance property of the étale fundamental group under
extensions of algebraically closed fields (Theorem 4.6.10).

Combining this with the information already available for complex curves, it is
possible to deduce a presentation of the étale fundamental group of general curves
in characteristic 0 (Corollary 4.6.11).

A crucial example is that of the projective line with n points removed (Example
4.6.12).

14.2. The arithmetic and the geometric fundamental group. [Sza, § 4.7]

Introduce the arithmetic and geometric fundamental groups of a geometrically in-
tegral curve U/k. Establish the fundamental short exact sequence relating them
with the absolute Galois group of k (Proposition 4.7.1).

Define the outer action of Gal(k̄/k) on π1(Uk̄). Define the inertia groups of pro-
points, and describe them as stabilizers (Lemma 4.7.2 and Corollary 4.7.3).

14.3. Belyi’s Theorem. [Sza, § 4.7]

Belyi’s Theorem (Theorem 4.7.6) is a truly surprising result connecting the arith-
metic properties of algebraic curves with the existence of morphism to the projective
line with three ramification points. Prove it carefully and introduce the notion of
Belyi functions.

14.4. Faithfulness of the outer Galois action. [Sza, § 4.7]

As an important application of Belyi’s Theorem, prove that the outer action of
Gal(Q̄/Q) on the fundamental group of the projective line minus three points
is faithful (Theorem 4.7.7). This uses the facts about elliptic curves and the j-
invariant discussed in talk 9 (see Facts 4.7.8).

15. The inverse Galois problem for Q(t)

References: [Ser, § 7], [Sza, § 4].

Aim. In the course of talk 11 we solved the inverse Galois problem for C(t). The
inverse Galois problem for Q is much more difficult. The aim of this talk is to
consider an intermediate case, namely the field Q(t). The machinery developed in
the previous talks allows to construct interesting Galois extensions of Q(t) starting
from certain covers of the projective line: the main purpose of this talk is to compute
some explicit examples. One can pass from Q(t) to Q using Hilbert’s Irreducibility
Theorem.
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15.1. Regular extensions of Q(t) and Q-covers of P1. [Sza, § 4.8]

Introduce the notion of regular Galois extension of Q(t), and state the modified
version of the inverse Galois problem (Problem 4.8.1). Explain how to exploit an
answer to this problem in the direction of the inverse Galois problem for Q (Fact
4.8.2).

15.2. The criterion of rigid conjugacy classes. [Sza, § 4.8]

Discuss a first technical result about extension of continuous homomorphisms (Lemma
4.8.3). Using this as a motivation, introduce the notion of rigid tuples of conjugacy
classes and of rational conjugacy class.

Prove the main theorem on regular Galois extensions (Theorem 4.8.7). Discuss
carefully the role of rationality (Remark 4.8.8).

15.3. Examples. [Sza, § 4.8]

Discuss some examples of application of the main theorem. Besides the case of
PSL2(Fp) (Example 4.8.10) there are other interesting cases in [Ser], such as the
symmetric group Sn ([Ser, § 7.4.1]) and the alternating group An ([Ser, § 7.4.2]).

Notice that in the example of PSL2(Fp) one cannot apply the criterion of Theorem
4.8.7 directly but has to use the variant of Remark 4.8.8.
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