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Introduction

The goal of this thesis is to work out the definition
and some properties of the Robba ring R. We want to
give some insight into the cohomology of certain chain-
complexes of (',�)-modules and characterize the one di-
mensional (',�)-modules over R.

Let L be a finite extension of Q
p

, the field of p-adic numbers. One of
the important problems in number theory is to understand the abso-
lute Galois group G

L

= Gal(L/L). Instead of looking at the group G
L

itself we can look at its representations. In his paper [Fon90] Fontaine
defined an equivalence of categories between the category of such repre-
sentations of G

L

and the category of étale (',�
L

)-modules for L = Q
p

.
Later a sketch of how to extend this theory to any finite extension L of
Q

p

was given by Kisin and Ren in [KR09].

A (',�
L

)-module is a free module over a ring R that is equipped with
a semilinear operation ' such that '(M) = M and a semilinear ac-
tion of �

L

that commutes with '. In this thesis we will work with
(',�)-modules over the Robba ring R

L

, the ring of all Laurent se-
ries over a finite extension L of Q

p

, that converge on some annulus
0 < v

p

(T )  r for r 2 R
>0. With this equivalence we can find out

something about the Galois group G
L

by looking at the (',�)-modules,
which gives us a new perspective on the category of representations of
G

L

and hence on G
L

itself.

The Robba ring is an important tool in the theory of p-adic di↵erential
equations and p-adic Galois representations. One aim of this thesis
will be to understand this ring and some of its properties. The main
question of this thesis was to characterize the rank 1 (',�)-modules
over R

L

. With the correspondence mentioned above one could then
also characterize the 1 dimensional Galois representations.

Unfortunately in answering the main question, a faulty line of argu-
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mentation was used which was discovered too late. This leaves a hole
in the last part of the last chapter of the thesis where we attempt to
characterize the rank (',�)-modules over R. There are other lines of
arguments by Colmez which can be used to answer the central ques-
tion. However this thesis is still a valuable reference for understanding
underlying theory of (',�)-modules.

We work mostly with di↵erent papers of Colmez, but also with papers
of Berger, Kedlaya and Lazard. Moreover we refer to a bit number of
books from various authors.

Summary of chapters

The first chapter will give all the necessary background knowledge
about p-adic analysis. This chapter is intended to give the reader a
summary of the results that are used in the rest of the thesis and not
as a complete introduction to p-adic analysis. Most results will not be
proven here, but the proofs can be found in the cited literature.

The second chapter gives an introduction to '-modules. These are
modules over a commutative unitary ring A equipped with a semi-linear
map '. We will show that the category of '-modules is abelian and
define the tensor product of two '-modules. Moreover we define étale
'-modules and show that they form an abelian category. At last we give
a brief definition of (',�)-modules over a ring A, originally given by
Fontaine. Later we will use a slightly di↵erent notion of (',�)-modules.

In the third chapter we define the Robba ring. We first discuss what
it means for a p-adic Laurent series to converge on some annulus and
define a valuation on the vector space of Laurent series. We define
the Robba ring R and give a Fréchet topology on R that is given by
a metric induced by the valuations mentioned before, such that R is
complete with respect to this metric.

In the fourth chapter we work out some properties of the Robba ring.
We define a Frobenius operator ' and an action of some group � on
R, that give the (',�)-modules over R their name. We give a decom-
position of the elements of x 2 R with bounded coe�cients, introduce
the notion of the di↵erential operator @ and the residue Res on R and
show that for certain elements the logarithm function is well defined.

In the last chapter we define the cohomology over a chain complex
of (',�)-modules and show that the first cohomology group H1(M)
is isomorphic to the group of extensions of M by R. We want to
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use the properties of chapter 4 and some cohomology to classify the
1 dimensional (',�)-modules over the Robba ring. The result should
be that any one dimensional (',�)-module over R is isomorphic to a
module R(�), where � : Q⇤

p

! L⇤ is a continuous character that twists
the Frobenius operator and the action of � on R. With help of the
0-th cohomology group we show that two di↵erent characters give rise
to di↵erent (',�)-modules. In the last section I wanted to prove that
all rank 1 (',�)-module are isomorphic to R(�) for some continuous
character �. The proof is based on an unpublished paper by Colmez,
available on his personal homepage at the time of writing. Too late I
found out that the proof has a mistake in it. The statement is true, but
it seems like another technique is necessary to prove this theorem. I left
the proof inside this thesis, but marked the steps where the mistake is
happening.

Further research

The foundations laid out in this thesis could be useful for answer-
ing further questions. They can serve as a starting point for work-
ing out 2 dimensional Galois representations, corresponding to rank 2
(',�)-modules. The tensor product of Q

p

with the Tate module T
p

(E)
of an elliptic curve E over L is such a 2-dimensional Q

p

-representation
of G

L

. It would be an interesting example to calculate the rank 2
(',�)-module corresponding to this representation.
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Chapter 1

Background on p-adic
analysis

In this chapter we want to give a brief introduction to the field of p-adic
numbers Q

p

and some p-adic analysis. In the following chapters we will
work with functions over some extension of Q

p

. This chapter can be
used as a reference in case of ambiguities in the later chapters. Most
theorems and propositions will remain unproven. Proofs can be found
in the cited literature. For some of the propositions I will give proofs,
mostly because I could not find them in the literature.

1.1 Norms and valuations

We fix a field k.

Definition 1.1 (Definition on page 31 of [Lan94]). An absolute value
on k is a real valued function | � | : x 7! |x| on k such that for all
x, y 2 k:

(i) |x| � 0 with equality if and only if x = 0

(ii) |xy| = |x| · |y|
(iii) |x+ y|  |x|+ |y|.
An absolute value | � | is called non-Archimedean if the ultrametric
triangle inequality

(iv) |x+ y|  max(|x|, |y|)
holds for all x, y 2 k.
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Definition 1.2 (Definition on page 3 of [Sch02]). The field k is called
non-Archimedean if we can define a non-Archimedean absolute value
on it such that k is complete with respect to this absolute value.

From now on let k be equipped with an absolute value |� |.
Definition 1.3 (Definition on page 6 and 9 of [Sch02]). Let V be a
k-vector space. A seminorm on V is a function q : V ! R such that for
all x, y 2 V , a 2 k:

(i) q(ax) = |a| · q(x),
(ii) q(x+ y)  q(x) + q(y),

(iii) q(x) � 0.

A seminorm on V is called a norm if additionally

(iv) q(x) = 0 () x = 0.

If k is non-Archimedean, then the seminorm (resp. norm) is called
non-Archimedean if

(v) q(x+ y)  max(q(x), q(y)).

Definition 1.4. A valuation of k is a map v : k ! R[1 such that for
any a, b 2 k:

(i) v(a) = 1 () a = 0,

(ii) v(ab) = v(a) + v(b),

(iii) v(a+ b) � min(v(a), v(b)).

A field k with a valuation defined on it is called valued field.

Remark. If v(a) > v(b), then

v(a+ b) � min(v(a), v(b)) = v(b) = v(b+ a� a) � min(v(b+ a), v(a))

hence v(a+b) = v(b). So if v(a) 6= v(b) in (iii) we can write “=” instead
of “�”.

Proposition 1.5. From any valuation v : k ! R[1 we can construct
a non-Archimedean absolute value on k by setting |a| = q�v(a) for a
fixed q 2 R

>1.

Proof. The axioms of a non-Archimedean absolute value follow quickly
from the axioms of a valuation.
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Definition 1.6. Let k be a valued field with valuation v and let V be
a k-vector space. We will call a function w : V ! R [1 valuation of
V if for any x, y 2 V , a 2 k:

(i) w(x) = 1 () x = 0,

(ii) w(ax) = v(a) + w(x),

(iii) w(x+ y) � min(w(x), w(y)).

Remark. A valuation of a vector space V induces a non-Archimedean
norm, just as a valuation of a field induced a non-Archimedean absolute
value in Proposition 1.5.

Proposition 1.7 (Statement on page 12 of [Sch02] ). In a vector space
with non-Archimedean norm |� |, which is complete with respect to this
norm, a series

P

i2N a
i

converges if and only if the coe�cients (a
i

)
i2N

form a null-sequence (i.e. a
i

! 0).

Proof. If a
i

is a null-sequence, then for any m > n:

|
m

X

i=0

a
i

�
n

X

i=0

a
i

| = |
m

X

i=n

a
i

|  max
nim

|a
i

|

hence for n,m ! 1 we have |Pm

i=0 ai �
P

n

i=0 ai| ! 0 and
P

m

i=0 ai
is a Cauchy sequence and therefore convergent. The other direction is
clear.

Proposition 1.8 (See chapter 4 of [Neu92]). Let (k, |� |) be a valued
field. Let

C := {(x
n

)
n

: (x
n

)
n

is a Cauchy sequence in k with respect to |� |}

be equipped with component wise addition and multiplication. This
makes C a commutative ring with unity. Furthermore the null sequences

N := {(x
n

)
n

2 C : lim
n!1

|x
n

| = 0}

form a maximal ideal of C. The completion (k̂, |� |) of k is defined by
the quotient k̂ = C/N and the extension of the absolute value by setting
|a| = lim

n!1 |a
n

|.

1.2 Fréchet spaces

Let k be a with absolute value |� |.
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Definition 1.9 (Definition IV 1.1 of [Con85]). A topological k-vector
space is a k-vector space V together with a topology such that the
addition +: V ⇥ V ! V and the scalar multiplication · : k ⇥ V ! V
are continuous maps, where V ⇥ V and k ⇥ V are equipped with the
product topology.

Proposition 1.10. Any normed vector space is a topological vector
space.

Proof. Let V be a vector space over k with norm ||� ||. If in V ⇥ V the
sequence (x

n

, y
n

) converges to (x, y), then with the triangle inequality
we get

||x
n

+ y
n

� (x+ y)||  ||x
n

� x||+ ||y
n

� y|| ! 0 + 0 = 0

for n ! 1. Similary for (↵
n

, x
n

) ! (↵, x) in k ⇥ V , with the triangle
inequality and the second norm axiom we get

||↵
n

x
n

� ↵x|| = ||↵
n

x
n

� ↵
n

x+ ↵
n

x� ↵x||
 ||↵

n

x
n

� ↵
n

x||+ ||↵
n

x� ↵x||
= |↵

n

|||x
n

� x||+ |↵
n

� ↵|||x|| ! 0 + 0 = 0

for n ! 1.

Proposition 1.11 ([Con85] after Definition IV 1.1 ). Let V be a vector
space and P a family of seminorms on V . We can define a topology T
by taking as subbase the sets {x 2 V : p(x� x0) < ✏} for p 2 P, x0 2 V
and ✏ > 0. This means T is the smallest topology containing all sets of
this form.

Thus as [Con85] states a subset U of V is open if and only if for every
x0 in U there are p1, ..., pn 2 P and ✏1, ..., ✏n > 0 such that

T{x 2
V : p

j

(x� x0) < ✏
j

} ✓ U .

Definition 1.12 (Definition IV 1.2 of [Con85]). A locally convex space
is a topological vector space, whose topology is defined by a family of
seminorms P such that

T

p2P{x : p(x) = 0} = {0}.
Proposition 1.13 (Proposition IV 2.1 of [Con85]). A locally convex
space is metrizable if and only if its topology is given by a countable
family of seminorms {p1, p2, ...}. For x, y 2 V the metric is then given
by

d(x, y) =
1
X

n=1

2�n

p
n

(x� y)

1 + p
n

(x� y)
.
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Proposition 1.14. Let V be a locally convex space, whose topology
T defined by a countable family of seminorms P. Then a sequence
converges with respect to T this if and only if it converges with respect
to each of the seminorms.

Proof. We denote P ⇢fin P for a finite subset of P. Every point y 2 V
has a basis of neighborhoods consisting of open balls around y, that is
B
y

= {{x : p(x� y) < ✏ 8p 2 P} : 8P ⇢fin P, ✏ > 0}. With this basis
of neighborhoods, a sequence x

n

2 V converges to y 2 V if for any
✏ > 0 and finite subset of seminorms P ⇢fin P, there is a N 2 N such
that for all n > N and all seminorms p 2 P we have p(x

n

� y) < ✏.

“)” Suppose that x
n

! y for T . For any p 2 P take P = {p} ⇢fin P,
then we find for any ✏ > 0 a N 2 N such that p(x

n

� y) < ✏.

“(” Now suppose that x
n

! y with respect to each of the seminorms
in P. Let ✏ > 0 and P ⇢fin P any finite subset of seminorms. For
each p 2 P we can find N

p

such that p(x
n

� y) < ✏ for any n > N
p

.
Take N = max

p2P {Np

} then for all p 2 P we get n > N � N
p

and so
p(x

n

� y) < ✏.

Definition 1.15 ([Con85] after Proposition IV 2.1). A metric d on V
is called translation invariant, if for all x, y, z 2 V

d(x+ z, y + z) = d(x, y).

Proposition 1.16. The metric defined in Proposition 1.13 is transla-
tion invariant.

Proof. Immediate by definition.

Definition 1.17 (Definition IV 2.4 in [Con85]). A Fréchet space is a
topological vector space V , whose topology is defined by a translation
invariant metric d such that (V, d) is complete.

Proposition 1.18. If V is a Fréchet space defined by a countable set
of seminorms P, then a function f : V ! W into another topological
space W is continuous if and only if it is sequentially continuous with
respect to every seminorm p 2 P.

Proof. A Fréchet space V is a metric space and hence first countable.
Therefore the function f : V ! W is continuous if and only if it is
sequentially continuous. By Proposition 1.14 a sequence x

n

converges
towards x if and only if x

n

converges towards x for all of the seminorms.
Therefore a function f : V ! W is sequentially continuous if and only if
it is sequentially continuous with respect to every seminorm p 2 P.
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1.3 Definition of the p-adic numbers

We fix a prime number p.

Definition 1.19 ([Kob84] Section 1.2, page 2). Define the p-adic val-
uation of a 2 Z as follows:

v
p

(a) =

(

the greatest integer m such that pm|a for a 6= 0

1 for a=0
.

For a rational number x = a

b

with a, b 2 Z coprime define the p-adic
valuation by

v
p

(x) = v
p

(a)� v
p

(b).

This defines a valuation of Q. Furthermore define a map |� |
p

on Q by

|x|
p

=

(

p�v

p

(x) if x 6= 0

0 if x = 0
.

Proposition 1.20 ([Kob84] Section 1.2, page 2). |� |
p

defines a non-
Archimedean absolute value on Q.

Definition 1.21 (Definition 3.2.9 of [Gou97]). We define the field of p-
adic numbers (Q

p

, |� |
p

) as the completion of the valued field (Q, |� |
p

).

Definition 1.22 (Definition 3.3.3 of [Gou97]). We define the ring of
p-adic integers Z

p

to be the valuation ring

Z
p

= {x 2 Q
p

: |x|
p

 1} .

Proposition 1.23 (Corollaries 3.3.11 and 3.3.12 of [Gou97]). Any el-
ement x of Z

p

can be uniquely written in the form

x =
1
X

i=0

b
i

pi for b
i

2 {0, 1, ..., p� 1}

and any element y of Q
p

can uniquely be written in the form

y =
1
X

i=N

b
i

pi for b
i

2 {0, 1, ..., p� 1} and some N 2 Z.

Proposition 1.24 (Proposition on page 5 of [Rob00]). The group Z⇤
p

of invertible elements of Z
p

is given by the elements of absolute value
zero,

Z⇤
p

= {x 2 Q
p

: |x|
p

= 1} =

( 1
X

i=0

a
i

pi : a0 6= 0

)

.
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Proposition 1.25 (Theorem 3.2.13 of [Gou97]). Q
p

has the following
properties:

(i) There is an embedding Q ! Q
p

and an embedding Z ! Z
p

,

(ii) Q is dense in Q
p

,

(iii) Q
p

is complete with respect to the absolute value |� |
p

.

1.4 The completion of the algebraic closure of

Qp

Let L be a finite extension of Q
p

.

Proposition 1.26. The absolute value |� |
p

can be uniquely extended
to an absolute value on L.

Proof. See [Rob00] chapter 2.3.3 for uniqueness and 2.3.4 for existence.

Remark. If we extend the norm |� |
p

from Q
p

to L, then the extended
norm agrees on Q

p

, in particular |p|
p

= p�1.

Proposition 1.27 (Proposition 5.3.1 of [Gou97]). A finite extension
L of Q

p

is complete with respect to the extended norm of |� |
p

.

Definition 1.28. Define Q
p

to be an algebraic closure of Q
p

.

Proposition 1.29 (See subsection 3.1.1 of [Rob00]). The norm | � |
p

on Q
p

uniquely extends to Q
p

.

Proposition 1.30 (Theorem 12 of [Kob84]). Q
p

is not complete.

Definition 1.31 (See page 72 of [Kob84]). Define C
p

as the completion
of Q

p

with respect to the norm |� |
p

.

Theorem 1.32 (Theorem 13 of [Kob84]). C
p

is algebraically closed.

1.5 Laurent series of p-adic numbers

In the following we will give some propositions regarding power series
and Laurent series over Q

p

. Any of these propositions holds as well for
power series and Laurent series over any finite extension of Q

p

with the
same kind of proof.
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Proposition 1.33 (Corollary 4.1.2 of [Gou97]). An infinite series
P1

n=0 an
with a

n

2 Q
p

is convergent if and only if |a
n

|
p

! 0 as n ! 1.

Proposition 1.34 (Proposition 4.3.1 of [Gou97]). Let f =
P1

n=0 anT
n

be a power series in Q
p

. We then can find some 0  ⇢  1 such
that for a 2 C

p

the series f(a) =
P1

n=0 ana
n converges if and only if

|a|
p

< ⇢. We call ⇢ the radius of convergence of f .

Notation. Since we mainly want to work with valuations, whenever we
talk about the radius of convergence in the context of valuations we
mean the to ⇢ corresponding r 2 R with ⇢ = p�r. So f converges for
any a with v

p

(a) > r.

Proposition 1.35 (Lemma 3.3 of [Sch11]). Let k be a non-Archimedean
field. Let

P1
n=1 an,

P1
n=1 bn be convergent series in k. Then the series

P1
n=1wn

with w
n

=
P1

l+m=n

a
l

b
m

is convergent and

1
X

n=1

w
n

= (
1
X

n=1

a
n

)(
1
X

n=1

b
n

).

Proposition 1.36 (See chapter 4.5 of [Gou97]). The logarithm power
series

log(1 + T ) =
1
X

n=0

(�1)n+1T
n

n

has radius of convergence ⇢ = 1 and the exponential power series

exp(T ) =
1
X

n=0

Tn

n!

has radius of convergence ⇢ = p�1/(p�1).

Proposition 1.37 (Proposition 4.5.8 of [Gou97]). For a 2 C
p

with
|a| < p�1/(p�1) we have that |exp(a) � 1| < 1 so that exp(a) is in the
domain of log and

log(exp(a)) = a.

Conversely for a 2 C
p

with |a| < p�1/(p�1) we have that |log(1 + a)| <
p�1/(p�1) so that log(1 + a) is in the domain of exp and

exp(log(1 + a)) = 1 + a.

Definition 1.38. Let c 2 C
p

with v
p

(c) > 0, b =
P1

i=0 aip
i 2 Z

p

and
(b

n

)
n2N with b

n

=
P

n

i=0 aip
i 2 N. We can define (1 + c)b by setting

(1 + c)b := lim
n!1

(1 + c)bn .
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Proposition 1.39. Let c, b and (b
n

)
n2N be as in Definition 1.38. Then

(1 + c)b is well-defined.

Proof. We need to show that the sequence (1 + c)bn converges.

(1 + c)bn = (1 + c)a0+a1p+...a

n

p

n

= (1 + c)a0(1 + c)a1p...(1 + c)anp
n

and therefore

(1 + c)bn+1 = (1 + c)bn(1 + c)an+1p
n+1

.

If v
p

(c) = r > 0 we have

v
p

((1 + c)bn+1 � (1 + c)bn) = v
p

((1 + c)an+1p
n+1

(1 + c)bn � (1 + c)bn)

= v
p

((1 + c)bn((1 + c)an+1p
n+1 � 1))

= v
p

((1 + c)bn) + v
p

(a
n+1p

n+1c+ ...+ cn+1)

� v
p

((1 + c)bn) + min((n+ 1) + r, (n+ 1)r)

so the sequence (1 + c)bn defines a Cauchy-sequence and therefore con-
verges, since C

p

is complete.

Remark. Instead of taking (b
n

) as in Definition 1.38 we could have
defined (1 + a)b as the limit of (1 + a)bn for any sequence (b

n

) in Z,
converging towards b. For v

p

(b
n

� b̃
n

) � m we have b
n

= c + pmd,
b̃
n

= c+ pmd̃, where c, d, d̃ 2 Z
p

, and we can conclude

v
p

((1 + a)bn � (1 + a)b̃n) = v
p

((1 + a)c+p

m

d � (1 + a)c+p

m

d̃)

= v
p

�

(1 + a)c(((1 + a)p
m

)d � ((1 + a)p
m

)d̃)
�

� v
p

(((1 + a)p
m

)d � ((1 + a)p
m

)d̃)

= v
p

(1 + pm(...)� 1 + pm(...)) � m.

Therefore if b
n

and b̃
n

converge to the same element in Z⇤
p

also (1+a)bn

and (1 + a)b̃n converge towards the same element in L and (1 + a)bn is
well-defined.

Remark. Equivalently we could define

(1 + a)b :=
1
X

k=0

✓

b

k

◆

ak with

✓

b

k

◆

=
k�1
Y

i=0

b� i

i+ 1
.

For b 2 Z this definition equals the usual definition of (1 + a)b =
P

b�1
k=0

�

b

k

�

ak.
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Definition 1.40. Let b 2 Z
p

, and (b
n

)
n2N a sequence in N converging

to b. We define
(1 + T )b := lim

n!1
(1 + T )bn

where the limit is taken coe�cient wise.

Proposition 1.41. The series (1 + T )b is a well-defined element of
Z
p

[[T ]].

Proof. Let (b
n

)
n2N be a sequence in N such that lim

n!1 b
n

= b. In
other words for any c 2 N there is a N > 0 such that for any n,m >
N 2 N we have v

p

(b
n

� b
m

) > c. We look at the coe�cients of (1+T )bn

and want to show that they converge to an element of Z
p

.

(1 + T )bn =
1
X

k=0

✓

b
n

k

◆

T k =
1
X

k=0

✓

k�1
Y

i=0

b
n

� i

i+ 1

◆

T k

The coe�cient of the k-th term then forms a Cauchy-sequence:

v
p

✓✓

b
n

k

◆

�
✓

b
m

k

◆◆

= v
p

✓

k�1
Y

i=0

b
n

� i

i+ 1
�

k�1
Y

i=0

b
m

� i

i+ 1

◆

= v
p

✓

k�1
Y

i=0

1

i+ 1

◆

+ v
p

✓

k�1
Y

i=0

(b
n

� i)�
k�1
Y

i=0

(b
m

� i)

◆

and since b
m

and b
n

agree modulo pc, so do the products
Q

k�1
i=0 (bn � i)

and
Q

k�1
i=0 (bm � i), hence

v
p

✓✓

b
n

k

◆

�
✓

b
m

k

◆◆

� �v
p

(k!) + v
p

(b
n

� b
m

) = �v
p

(k!) + c.

Since the sequence
��

b

n

k

��

n2N lives in Z and is a Cauchy-sequences with
respect to the norm induced by v

p

the limit is an element of Z
p

. Hence
(1 + T )b is an element of Z

p

[[T ]].

It remains to show that this is independent of the choice of b
n

. So let
b̃
n

be another sequence with lim
n!1 b̃

n

= b. Then by the same kind
of argumentation as we have used before (by replacing b

m

by b̃
n

) we

can show that the coe�cients
�

b

n

k

�

and
�

b̃

n

k

�

converge towards the same
element of Z

p

. Hence (1 + T )b is well-defined.

Proposition 1.42 (Chapter 6.1.7 of [Rob00]). Let f =
P1

n=�1 a
n

Tn

be a Laurent series in Q
p

and f+ 2 Q
p

[[T ]], f� 2 Q
p

[[T�1]] with f =
f+ + f�. Then f+ converges on |x|

p

< ⇢+ for some ⇢+ as defined in
Proposition 1.34, while f� converges on |x|

p

> ⇢� for some ⇢� 2 R. If
⇢� < ⇢+ then f converges precisely on the interval (⇢�, ⇢+).
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1.6 The composition of Laurent series

We fix a finite extension L of Q
p

.

Proposition 1.43 (See page 287-288 of [Rob00]). Let f =
P

i2N a
i

T i, g 2
L[[T ]] be two power series. If g(0) = 0 then we can define the composi-
tion

(f � g)(T ) =
X

i2N
a
i

(g(T ))i.

Proposition 1.44 (Proposition on page 288 of [Rob00]). Let f, g, h 2
L[[T ]] be power series with g(0) = h(0) = 0. Then

(f � g) � h = f � (g � h).
Proposition 1.45 (See page 289-290 of [Rob00]). If we compose the
series log(1 + T ) and exp(T ) as in Proposition 1.36 we get

(exp � log)(1 + T ) = 1 + T, (log � exp)(T ) = T.

Notation. We will now assume that the definition of | � |{r} and v{r}

from Definition 3.16 resp. 3.4 is known. In [Rob00] we have a di↵erent
notation, there M

r

(f) := |f |{r} is called growth modulus of f . We state
the proposition in terms of the valutation instead of the norm as in
[Rob00].

Proposition 1.46 (Theorem on page 294 of [Rob00]). Let f, g 2 L[[T ]]
be two power series with g(0) = 0 that are convergent on v

p

(T ) > r
f

,
resp. v

p

(T ) > r
g

. If v
p

(a) > r
g

and v{vp(a)}(g) > r
f

then the radius of
convergence is r

f�g < v
p

(a) and we can evaluate f � g at a by setting
(f � g)(a) = f(g(a)).

1.7 The cyclotomic character �

Let K be a finite extension of Q
p

. We fix an algebraic closure K and
denote by µ

m

the set of m-th roots of unity in this closure, µ
m

= {x 2
K : xm = 1}. We fix a sequence of primitive, pn-th roots of unity
(✏

n

)
n2N such that ✏p

n+1 = ✏
n

and let K
n

= K(✏
n

) and K1 =
S1

n=0Kn

.
The set of all pn-th roots of unity for n 2 N we denote by µ

p

1 =
S

n2N µ
p

n . Furthermore let G
K

= Gal(K/K).

Definition 1.47 (See page 4 of [Ber04]). The cyclotomic character

� : G
K

! Z⇤
p

is defined by �(⇣) = ⇣�(�) for every � 2 G
K

and ⇣ 2 µ
p

1 .
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Proposition 1.48 (Mentioned for example in section 0.1 of [Col10]).
The kernel of the cyclotomic character is H

K

= Gal(K/K1), and �
identifies �

K

= Gal(K1/K) = G
K

/H
K

with an open subgroup of Z⇤
p

.
If K = Q

p

the cyclotomic character gives an isomorphism � : �Q
p

!̃Z⇤
p

.

We will use this without proof or reference, however the statement
can be found in a lot of papers, like [Col08] and [Col10]. Since we will
only use, that � induces the isomorphism GQ

p

!̃Z⇤
p

, no more knowledge
about it will be necessary. By replacing every �(�) for � 2 �Q

p

with
a 2 Z⇤

p

we can avoid talking about this character all together. Since for
the theory of (',�)-modules working with �Q

p

is common, we keep on
using this notation in this thesis. We will also use without reference that
�Q

p

(resp. Z⇤
p

) is topologically cyclic. This is mentioned for example
in chapter 2.1. of [Col08].
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Chapter 2

'-modules

This chapter will give an introduction to the category of '-modules
over a commutative unitary ring A. This chapter is largely indepen-
dent of the previous chapter and builds a purely algebraic theory of
'-modules. In chapter 3 and 4 we will define the (unital) Robba
ring and its associated ' action. The (',�)-modules over this Robba
ring will be the focus of chapter 5 where we return to the theory of
(',�)-modules. In this chapter we want to get a feeling for the struc-
ture of the '-modules, which will help us to get used to the structure
of (',�)-modules. Because of lack of time the part concerning the cat-
egory theory for (',�)-modules is left out, although this would as well
be of great interest for the rest of this thesis.

We follow parts of the first chapter of [Fon90] and work out the details.

2.1 Modules over a ring A

All rings will be unitary but not necessarily commutative. We will
follow chapter 1.1 of [Fon90].

Notation. The category of left A-modules we will denote by AMod. For
the ring multiplication we will write

A⇥A ! A, (r, s) 7! r · s

and for any module operation

A⇥M ! M, (r,m) 7! r.m

18



The axioms for an A left module we will denote by

[M1] r.(x+ y) = r.y + r.x

[M2] (r · s).x = r.(s.x)

[M3] (r + s).x = r.x+ s.x

[M4] 1
A

.x = x

If A is commutative any left A-module is also a right A-module and
hence AMod is the category of A-modules.

Whenever we write |� | we mean the absolute value on R.

Example 2.1. Given a ring homomorphism ↵ : A ! B we can give B
the structure of an left A-module by setting a.b = ↵(a) · b. The axiom
[M1] follows directly from the distributivity of the ring multiplication,
and the other axioms are quickly shown using the fact that ↵ is a ring
homomorphism. We denote this A-module by B

↵

.

Example 2.2. We now can consider the tensor-product B
↵

⌦
A

M as a
B-module with module operation b.(

P

b
i

⌦m
i

) =
P

(b · b
i

)⌦m
i

. This
operation is well-defined, since it commutes with the addition of the
tensor product, so for example we have

b.(b1 ⌦m+ b2 ⌦m) = b · b1 ⌦m+ b · b2 ⌦m = (b · b1 + b · b2)⌦m

= b · (b1 + b2)⌦m = b.((b1 + b2)⌦m)

The module axiom [M1] follows directly from the definition of the op-
eration, [M2] and [M3] hold because of the associativity of the multi-
plication and distributivity in the ring B and [M4] holds, since we just
multiply with the unit element.

2.2 Definition of a '-module

We fix A a commutative ring with identity and � : A ! A a ring
endomorphism. Let M be an A-module.

Definition 2.3 (See subsection 1.1.1 of [Fon90]). A map ' : M ! M
will be called �-semi-linear, if it is additive and

'(�.m) = �(�).'(m)

for all � 2 A and m 2 M .

Definition 2.4 (See subsection 1.1.1 of [Fon90]). A '-module over
(A,�) is an A-module M endowed with a �-semi-linear morphism

' : M ! M.

19



Remark. In later chapters the endomorphism � : A ! A will be called
', better justifying the name '-module. The associated �-semi-linear
map for a module M will then be written '

M

or even just ' as well.
The reason for this current notation is that the ' map compatible with
� is not unique for a module M , making the later notation ambiguous.

In Example 2.2 we have seen how, given a ring homomorphism ↵ : A !
B, we can define an B-module B

↵

⌦
A

M . By taking B = A and ↵ = �
we get an A-module, A

�

⌦
A

M .

Definition 2.5 (See subsection 1.1.1 of [Fon90]). We define M
�

to be
the A-module A

�

⌦
A

M .

Proposition 2.6 (Statement in subsection 1.1.1 of [Fon90]). Given a
map ' : M ! M , define

� : M
�

! M, (�⌦ x) 7! �.'(x).

Then ' is a �-semi-linear if and only if � is an A-linear map.

Proof. For � 2 A and x 2 M we have

'(�.x) = 1
A

.'(�.x) = �(1
A

⌦ �.x) = �(�.1
A

⌦ x)

= �(�(�)⌦ x) = �(�).'(x)

and the linearity of � gives us for x, y 2 M

'(x+ y) = 1
A

.'(x+ y) = �(1
A

⌦ x+ y)

= �(1
A

⌦ x+ 1
A

⌦ y) = �(1
A

⌦ x) + �(1
A

⌦ y)

= 1
A

.'(x) + 1
A

.'(y) = '(x) + '(y).

Similarly, assuming the �-semi-linearity of ' we get that � is linear.

2.3 The category of '-modules

In the rest of this chapter we will work over a fixed ring A with mor-
phism �. If we say that M is a '-module, then we mean that M is an
A-module with �-semi-linear map, which we will denote '

M

.

Definition 2.7 (See subsection 1.1.1 of [Fon90]). A morphism of '-
modules ⌘ : M ! N is an A-linear map that commutes with ', i.e.
⌘ � '

M

= '
N

� ⌘.
Proposition 2.8 (Statement in subsection 1.1.1 of [Fon90]). The '-
modules form a category, that we will denote by �M

A

.
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Proof. The composition of two morphisms, ⌘1 : M1 ! M2 and ⌘2 : M2 !
M3 is again a morphism of '-modules, since

⌘2 � ⌘1 � 'M1 = ⌘2 � 'M2 � ⌘1 = '
M3 � ⌘2 � ⌘1.

We know that morphisms of A-modules are associative, thus morphisms
of '-modules are associative as well. The identity morphism id

M

: M !
M of A-modules is as well the identity morphism of '-modules, since
it clearly commutes with '.

To show that this category is abelian we use another perspective that
we get by considering the ring A

�

['] of formal sums

l

X

i=0

a
i,1'

n

i,1 · a
i,2'

n

i,2 · ... · a
i,j

i

'n

i,j

i

for a
i,j

2 A, n
i,j

2 N with the relation 'a = �(a)' for a 2 A. With
this relation we can push all the ' to the right hand side and so can
write any element of A

�

['] uniquely in the form
P

m

i=0 ai'
i for m 2 N.

Remark. This ring is commutative if and only if � is the identity mor-
phism. If we have a 2 A with �(a) 6= a, then ', a 2 A

�

['] do not
commute, since a · ' 6= ' · a = �(a)'.

Proposition 2.9 (Statement in subsection 1.1.2 of [Fon90]). Any '-
module over A can be seen as left-module over A

�

['] and vice versa.

Proof. [M1] of the A
�

['] left-module implies [M1] of the '-module as
well as that ' is additive. [M2] for the A

�

['] left-module implies [M2]
of the ' module and the semi-linearity of '. The third axioms are
equivalent to each other and the unit of A is also the unit of A

�

['].
On the other hand all the axioms of a ' module over A also imply the
axioms for a left module over A

�

['].

Corollary 2.10 (See subsection 1.1.2 of [Fon90]). The category �M
A

is abelian.

Proof. In [Wei94, 1.2.2] it is shown that the category of left-modules
over any ring A is abelian. With the identification from above it thus
follows that the category �M

A

is as well abelian.

Lemma 2.11. The kernel in the category of '-modules is just the kernel
in the category of A-module.
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Proof. Let M,N be '-modules and ⌫ : M ! N be a morphism of '-
modules. Let (K, k) be the Kernel of ⌫ as morphism of A-modules,
ie.

M
⌫

  

K

k

OO

0
KN

// N

commutes and has the universal property.

First note that (K, k) is given by the submodule of M defined by K =
{x 2 M |⌫(x) = 0} and the natural embedding k : K ! M . ' structure
on M therefore as well gives us a ' structure on K. Moreover k clearly
commutes with ', therefore k is a morphism of '-modules.

Now let (K 0, k0) be another pair of '-module and '-module morphism
making the diagram above commuting as well. Since (K, k) has the
universal property in AMod we get a unique u : K 0 ! K that makes
the following diagram commute in AMod.

M
⌫

  

K

k

OO

0
KN

// N

K 0

k

0

FF

u

==

0
K

0
N

66

It remains to show that u commutes with '.

So suppose ' does not commute with u, i.e. there is some a 2 K 0

with '
k

� u(a) 6= u � '
k

0(a). Then composing with k and using that k
commutes with ' we get '

m

� k � (a) 6= k � u � '
k

0(a). Therefore, with
the universal property k �u = k0, we have '

m

�k0(a) 6= k0 �'
m

(a) which
is a contradiction to k0 being a '-module morphism.

2.4 The tensor product of '-modules

Again we fix a ring A with a morphism �. If we say that M is a '-
module, then we mean that M is an A-module with �-semi-linear map
which we will denote '

M

and sometimes just '.

Definition 2.12 (See subsection 1.1.3 of [Fon90]). The category �M
A

is equipped with a tensor product. For two objects M and N we define
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the tensor productM⌦N byM⌦
A

N , the tensor product in A-modules,
together with

'(
k

X

i=1

m
i

⌦ n
i

) =
k

X

i=1

'(m
i

)⌦ '(n
i

).

Proposition 2.13. This morphism is well-defined and �-semi-linear.

Proof. For r 2 A we have

'(r ·m⌦ n) = '(r ·m)⌦ '(n) = (�(r)'(m))⌦ '(n) = �(r)('(m)⌦ '(n))

= '(m)⌦ �(r)'(n) = '(m⌦ r · n).
and that

'((m+m0)⌦ n) = '(m+m0)⌦ '(n) = ('(m) + '(m0))⌦ '(n)

= '(m)⌦ '(n) + '(m0)⌦ '(n)

is equal to

'(m⌦ n+m0 ⌦ n) = '(m)⌦ '(n) + '(m0)⌦ '(n).

With the same argument for the addition in the second argument we
find therefore that this morphism is well-defined and �-semi-linear.

Proposition 2.14 (See subsection 1.1.3 of [Fon90]). The tensor prod-
uct in �M

A

is associative, abelian and has unit object A, seen as an
A-module, together with ' = �.

Proof. The tensor product in the category of A-modules is associative
and abelian. Therefore the same holds in �M

A

. For any '-module M
if we tensor with A we get for any r ⌦m 2 A⌦

A

M

r ⌦m = 1
A

⌦ r.m

and
'(r ⌦m) = �(r)⌦ '(m) = 1

A

⌦ �(r).'(m)

so M ⌦
A

A identifies with M .

2.5

´

Etale '-modules

Definition 2.15 (See subsection 1.1.4 of [Fon90]). If A is Noetherian,
we call a '-module M étale, if it is finitely generated as A-module and
the corresponding � : M

�

! M is a bijection. Morphisms of étale '-
modules are just morphisms of '-modules.
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Lemma 2.16 (Statement in subsection 1.1.4 of [Fon90]). If � is an
automorphism then � is bijective if and only if ' is bijective.

Proof. First note that if � is bijective, we have �⌦x = 1⌦��1(�)x for
� 2 A, x 2 M and any element of A

�

⌦
A

M has a unique representative
of the form 1 ⌦ x (for � = 0 we have 0 ⌦ x = 0 = 1 ⌦ 0). Therefore
there is a bijection between the elements of A

�

⌦
A

M and M .

If now � is bijective, then ' is surjective, since for all m 2 M we can
find � 2 A and x 2 M such that

m = �(�⌦ x) = �.'(x) = �(��1(�)).'(x) = '(��1(�)x)

and injective, since using the bijection between A
�

⌦
A

M and M we
get

'(x) = �(1⌦ x) = 0 () 1⌦ x = 0 () x = 0

The other direction is immediate.

It is clear that the étale '-module build a subcategory of the category
of '-modules, that we denote by �Mét

A

.

Definition 2.17 (Definition 3.2.1 of [Wei94]). AnA-moduleM is called
flat if for any exact sequence of A-modulesN1 ! N2 ! N3 the sequence
M⌦

A

N1 ! M⌦
A

N2 ! M⌦
A

N3 is exact as well. The ring A is called
�-flat if the module A

�

is flat.

Proposition 2.18 (Proposition 1.1.5 of [Fon90]). Let A be Noetherian
and �-flat. Then the category �Mét

A

is abelian.

Proof. Following the proof of Proposition 1.1.5 in [Fon90]. The zero
object is given by the zero module together with the trivial morphism,
which clearly is étale. Also products and coproducts, together with
componentwise defined ' are easily seen to be étale. Let ⌘ : M ! N
be a morphism of étale '-modules. We want to use the �-flatness to
show that the kernel K and the cokernel L of ⌘ are étale. So we have
the exact sequence

0 // K //M
⌘

// N // L // 0

A is �-flat, therefore the sequence that we get by taking the tensor
product with A

�

is also exact. We get two exact sequences

0 // K
�

//

✏✏

M
�

✏✏

// N
�

//

✏✏

L
�

//

✏✏

0

0 // K //M
⌘

// N // L // 0
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where the vertical arrows are given by the linear maps �. The '-
modules M and N are étale, so �

M

and �
N

are bijective. By exactness
of the upper sequence we have K

�

= Ker(M
�

! N
�

) ⇠= Ker(M !
N) = K and L

�

= Coker(M
�

! N
�

) ⇠= Coker(M ! N) = L. There-
fore �

L

and �
K

are also bijective and K and L are étale.

2.6 The functor ↵⇤ : �MA1 ! �MA2

Let A1 and A2 be two commutative rings equipped with endomorphisms
�1 and �2. Given a ring-homomorphism ↵ : A1 ! A2 that commutes
with the endomorphisms we can construct a functor ↵⇤ : �M

A1 !
�M

A2 as follows:

Definition 2.19 (See subsection 1.1.8 of [Fon90]). For an (A1,')-
module M define ↵⇤(M) = (A2)↵ ⌦

A1 M and ' : M ! M by

'(
X

a⌦m) =
X

�2(a)⌦ '(m).

Proposition 2.20. ' is well-defined on ↵⇤(M) and this defines a '-
module.

Proof. ' commutes with addition

'((a+ ã)⌦m) = �2(a+ ã)⌦ '(m)

= �2(a)⌦ '(m) + �2(ã)⌦ '(m)

'(a⌦m+ ã⌦m) = �2(a)⌦ '(m) + �2(ã)⌦ '(m)

and is compatible with the structure of the modules, since the following
two expressions are equal:

'(↵(a1)a2 ⌦m) = �2(↵(a1)a2)⌦ '(m) = ↵(�1(a1))�2(a2)⌦ '(m)

= �2(a2)⌦ �1(a1).'(m)

'(a2 ⌦ a1.m) = �2(a2)⌦ '(a1.m) = �2(a2)⌦ �1(a1).'(m).

Moreover this map is by definition additive and �2-semi-linear

'(ã2(a2 ⌦m)) = '(ã2 · a2 ⌦m) = �2(ã2 · a2)⌦ '(m)

= �2(ã2).'(a2 ⌦m)

and therefore this defines a '-module over the ring A2.
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2.7 Fontaines (',�)-modules

Let (A,�) be defined as before and let A be equipped with an action
of some group �, that is compatible with the structure of the ring and
commutes with �.

We now will give the definition that Fontaine is giving in [Fon90]. Later
in chapter 6 we will give another, slightly di↵erent definition, which we
will be working with.

Definition 2.21 (See subsection 3.3.1 of [Fon90]). A (',�)-module
over A is given by a '-module that is equipped with a semi-linear
action of � that commutes with the action of '.

Suppose now that A and � are both equipped with Hausdor↵ and com-
plete topologies. Furthermore suppose that A is �-flat and Noetherian.
We can then define the notion of an étale (',�)-module.

Definition 2.22 (See subsection 3.3.2 of [Fon90]). We call a (',�)-module
étale over A if the underlying '-module is étale and if its action of � is
continuous.

Remark. It can be shown that the (',�)-modules form an abelian cat-
egory equipped with a tensor product. [Statement in 3.3.2 of [Fon90]]
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Chapter 3

The Robba ring R

In the following chapter we want to give an introduction to the theory
of Laurent series and more specifically to the Robba ring. We will
follow the first few chapters in [Laz62] and [Col08]. In [Laz62] there is
a detailed overview of the ring of Laurent series in one variable over a
complete valuation field. [Col08] gives the definitions of the Robba ring
and some more specific properties but without much detail. We will
work out what it means for a series to converge on some annulus in R.
After that we will define the Robba ring and equip it with a Fréchet
topology. Furthermore will show that the Robba ring is complete with
respect to the metric inducing the Fréchet topology.

3.1 Convergent Laurent series in one variable

Most of the definitions are from [Laz62]. We fix a prime number p 6=
2 and L, a finite extension of Q

p

and we define v
p

to be the p-adic
valuation on L with v

p

(p) = 1.

Notation. Let f =
P

n2Z anT
n be a formal series with coe�cients a

n

2
L. We will write f (i) for the i-th coe�cient of the series, f (i) := a

i

.
The set of all formal Laurent series with coe�cients in L we will denote
by L

L

. We say that f converges at a 2 C
p

if the evaluation of f at a
converges to some element in C

p

and we will write f(a) :=
P

n2Z ana
n

for this evaluation. We will write |� | for the normal absolute value on
R.

L is a valued field with non-Archimedean absolute value |�|
p

. The series
in L

L

form a infinite dimensional vector space with basis {T i}
i2Z.
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Proposition 3.1 (Statement in subsection I.1.2 of [Col10]).
Let f =

P

n2Z anT
n 2 L

L

and a 2 C
p

with v
p

(a) = r 2 R. Then f is
convergent on a if and only if v

p

(a
n

) + nr ! 1 as |n| ! 1.

Proof. We can split f into two series, one negative degree power series
f�, and one positive degree power series f+. Then f is convergent on a
if and only if both f+ and f� are convergent on a. By Proposition 1.33
the series converges if and only if the norm of the n-th term, |a

n

an|
p

goes
to 0 for |n| ! 1. This is by definition of the p-adic norm equivalent
with v

p

(a
n

) + nr ! 1 as |n| ! 1.

Remark. Proposition 3.1 tells us that whether a function converges
on an element of a 2 C

p

only depends on the p-adic valuation of a.
Therefore convergence on a 2 C

p

implies the convergence on the circle
centered around 0 with radius v

p

(a).

Definition 3.2. We will say that f 2 L
L

converges on radius r with
r 2 R if for any a 2 C

p

with v
p

(a) = r we have that f converges on a.
We say that f is convergent on radius 1 (resp. �1) if a

n

= 0 for all
n < 0 (resp. n > 0).

Notation. For the set of all r 2 R[ {±1} such that f converges on all
a 2 C

p

with v
p

(a) = r we will write Conv(f).

The following Lemma will show that the elements of C
p

on which f
converges form some annulus around 0.

Lemma 3.3 (Mentioned after 1.2 of [Laz62] ). The set Conv(f) is an
interval I ⇢ R [ {1}.

Proof. Suppose f converges on elements with valuation r1 2 R as well
as on elements with valuation r2 2 R with r1 < r2 and let r 2 R with
r1  r  r2. We clearly have

v
p

(f (k)) + r1k < v
p

(f (k)) + rk for k > 0

v
p

(f (k)) + r2k < v
p

(f (k)) + rk for k < 0.

Since for both i 2 {1, 2}

v
p

(f (n)) + nr
i

! 1 as |n| ! 1

the left hand side of the inequalities goes to 1 as |n| ! 1, hence
so does the right hand side. Therefore also v

p

(f (n)) + nr ! 1 as
|n| ! 1.
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Therefore the formal series we are considering can be seen as functions
on some annulus A

I

= {a 2 C
p

| v
p

(a) 2 I} for some interval I. If
I ⇢ Conv(f) we can evaluate f at any a 2 A

I

, hence these functions
are defined on this annulus.

Definition 3.4 (See subsection I.1.2 of [Col10]). For each r 2 R define
v{r}(f) as follows:

v{r}(f) = inf
n2Z

(v
p

(f (n)) + nr) 2 R [ {±1}.

Definition 3.5 (See subsection 1.7 of [Laz62]). Let f 6= 0 and r 2
Conv(f). For r 6= 1,�1 define n(f, r) (resp. N(f, r)) to be the
smallest (resp. biggest) integer i such that v{r}(f) = v

p

(f (i)) + ir, i.e.

n(f, r) = inf
n

i 2 Z | v{r}(f) = v
p

(f (i)) + ir
o

N(f, r) = sup
n

i 2 Z | v{r}(f) = v
p

(f (i)) + ir
o

.

These are well-defined, since for elements in Conv(f) we have that
v
p

(f (n)) + nr ! 1 as |n| ! 1 so the infimum and the supremum are
attained.

Definition 3.6. We call f 2 L
L

bounded at r 2 R if for a 2 C
p

with v
p

(a) = r the sequences (|f (n)an|
p

)
n2N and (|f (n)an|

p

)�n2N are
bounded, i.e. if there exists b 2 N such that

v
p

(f (n)an) = v
p

(f (n)) + nr > b

for all n 2 N. f is bounded on some interval I ⇢ R, if it is bounded at
any r 2 I.

Remark. If f converges on radius r, we have v
p

(f (n)) + nr ! 1 as
|n| ! 1 so f is bounded at r.

Proposition 3.7. A series f 2 L
L

is bounded at r if and only if
v{r}(f) > �1. Furthermore if f converges on radius r and v

p

(a) = r
we have v

p

(f(a)) � v{r}(f).

Proof. Clear by definition.

Notation. From now if we say that a series f is convergent on v
p

(T ) = r,
we mean that f converges for elements a 2 C

p

with v
p

(a) = r. So
v
p

(T ) = r means we substitute T by a with v
p

(a) = r.

Proposition 3.8.

(i) If x+ =
P1

i=0 aiT
i is bounded at r, then x+ converges on v

p

(T ) >
r.
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(ii) If x� =
P0

i=�1 a
i

T i is bounded at r, then x� converges on
v
p

(T ) < r.

(iii) If x =
P1

i=�1 a
i

T i is bounded at r1 and r2 with r1 < r2 then x
converges on r1 < v

p

(T ) < r2.

Proof. (i) x+ is bounded at r if there is a c 2 R such that for all i 2 N
we have v

p

(a
i

) + ir > c. Then for any r̃ > r:

v
p

(a
i

) + ir̃ � i(r̃ � r) > c () v
p

(a
i

) + ir̃ > i(r̃ � r) + c

Since r̃ � r > 0 if we let i ! 1 the right hand side of the inequality
goes to 1 and therefore also v

p

(a
i

) + ir̃ ! 1.

(ii) Similary if r̃ < r:

v
p

(a
i

) + ir̃ + i(r � r̃) > c () v
p

(a
i

) + ir̃ > �i(r � r̃) + c

so if i ! 1 also v
p

(a
i

) + ir̃ goes to 1.

(iii) We can split x = x++x� and use that x+ converges for v
p

(T ) > r1,
while x� converges for v

p

(T ) < r2.

Example 3.9. We want to calculate the v{r}(f) for f(T ) = (1+T )p�1.
This series will play an important role later on.

v{r}((1 + T )p � 1) = v{r}(
p

X

i=1

✓

p

i

◆

T i)

= inf
1<ip

{v
p

(

✓

p

i

◆

) + ir}

= min(v
p

(p) + r, v
p

(1) + pr)

= min(1 + r, pr)

=

(

r + 1 if r � 1
(p�1)

pr if r < 1
(p�1)

since v
p

(
�

p

i

�

) = 1 for all 1  i  p�1 and hence v
p

(p)+ r < v
p

(
�

p

i

�

)+ ir
for all 2  i  p� 1.

Example 3.10. Let r > 0. For �(T ) = (1 + T )a � 1 with a 2 Z⇤
p

we

calculate v{r}(�(T )) = r and n(�(T ), r) = N(�(T ), r) = 1:

v{r}(�(T )) = v{r}(
1
X

i=1

✓

a

i

◆

T i)

= inf{v
p

(

✓

a

i

◆

) + ir} = r

n(�(T ), r) = N(�(T ), r) = 1
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Definition 3.11 (See subsection I.1.2 of [Col10]). For r1 < r2 let

L
L

[r1, r2] := {f 2 L
L

convergent on r1  v
p

(T )  r2}
L
L

]r1, r2] := {f 2 L
L

convergent on r1 < v
p

(T )  r2}
L
L

(r1, r2] := {f 2 L
L

convergent on r1 < v
p

(T )  r2 and bounded at r1}.
Sometimes we will write L{r} instead of L[r, r].
Notation. We use a mix of the notation in [Col10], who is using L

L

(r1, r2]
for what we call L

L

]r1, r2] and does not regard bounded series, and
[Col04], where E(r1,r2] is the equivalent of our L

L

(r1, r2] and E ]r1,r2] is
the equivalent of L

L

]r1, r2].

Proposition 3.12 (Statement in subsection I.1.2 of [Col10]). The sets
given in Definition 3.11 together with formal addition and multiplication
are rings.

Proof. Let f =
P

i2Z aiT
i, g =

P

i2Z biT
i 2 L

L

. Clearly if f and g
converge on radius r, also their sum f + g and the additive inverse �f
are elements of L

L

that converge converge on radius r. Moreover the
unit element 1 converges anywhere.

Let f · g be the formal product
P

i2Z(
P

j2Z ajbi�j

)T i. We first need to
show that the coe�cients are well-defined elements of L. Suppose that
both f and g converge on some radius r > 0. For r = 0 the statement
is immediate and for r < 0 we can make a symmetric argument.

By Proposition 3.7 v{r}(f) is an element of R and v
p

(a
n

) � v{r}(f)�nr,
so v

p

(a
n

) ! 1 as n ! �1, since r > 0. In the same way v
p

(b
n

) ! 1
as n ! �1.

We want to show that v
p

(a
j

b
i�j

) ! 1 if |j| ! 1.

v
p

(a
j

b
i�j

) + ir = v
p

(a
j

) + jr + v
p

(b
i�j

) + (i� j)r

� v{r}(f) + v
p

(b
i�j

) + (i� j)r

If we take j ! 1 the right hand side goes to 1, hence also the left
hand side, which implies v{r}(a

j

b
i�j

) ! 1 if j ! 1. Similarly

v
p

(a
j

b
i�j

) + ir = v
p

(a
j

) + jr + v
p

(b
i�j

) + (i� j)r

� v
p

(a
j

) + jr + v{r}(g)

implies v
p

(a
j

b
i�j

) ! 1 if j ! �1. So the coe�cients of the series are
well-defined by Proposition 1.33.

By Proposition 1.35 the product f ·g converges on r, if f and g converge
on r.
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If f, g 2 L
L

are bounded in r by c 2 R resp. d 2 R, then the additive
inverse �f is bounded by c and the sum f + g is bounded by min(c, d),
since

v
p

(a
i

+ b
i

) + ir � min(v
p

(a
i

), v
p

(b
i

)) + ir � min(c, d).

We have

v{r}(fg) = inf
i2Z

{v
p

(
X

j2Z
a
j

b
i�j

) + ir}

� inf
i2Z

{inf
j2Z

{v
p

(a
j

b
i�j

)}+ ir}
= inf

i2Z
{inf
j2Z

{v
p

(a
j

) + jr + v
p

(b
i�j

) + ir � jr}}
� inf

j2Z
{v

p

(a
j

) + jr}+ inf
i,j2Z

{v
p

(b
i�j

) + r(i� j)}

= v{r}(f) + v{r}(g)

hence the product f · g is bounded by c+ d.

Proposition 3.13 (Proposition 1 of [Laz62]). Let r1 < r2. Then
L
L

[r1, r2], (resp. L
L

]r1, r2]) together with the addition and multipli-
cation of formal series defines an integral domain. Moreover for r 2
[r1, r2] (resp. r 2]r1, r2]), f, g 6= 0 2 L

L

I we have

v{r}(fg) = v{r}(f) + v{r}(g);

n(fg, r) = n(f, r) + n(g, r);

N(fg, r) = N(f, r) +N(g, r)

Proof. See proof of Proposition 1 of [Laz62].

Proposition 3.14. For f, g 2 L
L

bounded at r we have:

(i) v{r}(f) = 1 () f = 0

(ii) v{r}(f + g) � min(v{r}(f), v{r}(g))

(iii) v{r}(�f) = v
p

(�) + v{r}(f) for � 2 L

Proof. (i) Let f, g 2 L
L

bounded at r. For r = ±1 we can use that that
v
p

defines a valuation on L. So assume now r 2 R. Then v{r}(f) = 1
if and only if v

p

(f (n)) + nr = 1 for all n 2 Z. This is only the case if
v
p

(f (n)) = 1 for all n 2 Z, in other words if f = 0.
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(ii) We have

v{r}(f + g) = inf
n2Z

⇣

v
p

(f (n) + g(n)) + rn
⌘

� inf
n2Z

⇣

min(v
p

(f (n)), v
p

(g(n))) + rn
⌘

= inf
n2Z

⇣

min(v
p

(f (n)) + rn, v
p

(g(n)) + rn)
⌘

= min

✓

inf
n2Z

⇣

v
p

(f (n)) + rn
⌘

, inf
n2Z

⇣

v
p

(g(n)) + rn
⌘

◆

= min
⇣

v{r}(f), v{r}(g)
⌘

.

(iii) Let � 2 L.

v{r}(�f) = inf
n2Z

(v
p

(�f (n)) + rn)

= inf
n2Z

(v
p

(�) + v
p

(f (n)) + rn)

= v
p

(�) + inf
n2Z

(v
p

(f (n)) + rn)

= v
p

(�) + v{r}(f)

Remark. Suppose now f and g converge on radius r. Then for v{r}(f) 6=
v{r}(g) we have v{r}(f + g) = min(v{r}(f), v{r}(g)). To show this let
without loss of generality v{r}(f) < v{r}(g). Suppose first that the infi-
mum in the valuations is attained for the same n. As v

p

is a valuation,
the equality follows easily. If it is not attained at the same n, so if
v{r}(f) = v

p

(f (n)) + rn < v{r}(g) = v
p

(g(m)) + rm, then the infimum
in v{r}(f + g) is attained at n, and v

p

(f (n)) < v
p

(g(n)), so the equality
again follows immediately.

Proposition 3.15. Let I ⇢ R [ {±1} be a nonempty interval. For
any r 2 I the map v{r} defines a valuation on L

L

I.

Proof. If f converges on radius r we clearly have v{r}(f) > �1. To-
gether with Proposition 3.13 and 3.14 this shows that v{r} defines a
valuation on L

L

I.

Definition 3.16. Let I ⇢ R [ {±1} be a nonempty interval. For
any r 2 I the valuation v{r} induces a norm |� |{r} on L

L

I by setting

|f |{r} = p�v

{r}(f).

Notation. What we call |� |{r} is called growth modulus in [Rob00].
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Remark. We will usually work with the valuation rather than the norm.
This might feel a bit odd, but since we have the norm defined via the
valuation this will usually save us one step.

Lemma 3.17 (Statement in I.1.2 of [Col10]). The topology induced by
v{r} makes L

L

{r} a Banach space.

Proof. Let (f
n

)
n2N be a Cauchy sequence in L

L

{r} with respect to
|� |{r}. Then v{r}(f

n

� f
m

) tends to 1 as n,m ! 1.

v{r}(f
n

� f
m

) = inf
i2Z

{v
p

((f
n

� f
m

)(i)) + ir} ! 1
=)v

p

((f
n

)(i) � (f
m

)(i)) + ir ! 1 8i 2 Z
=)v

p

((f
n

)(i) � (f
m

)(i)) ! 1 8i 2 Z

So for any i 2 Z the sequence ((f
n

)(i))
n2N is a Cauchy sequence in L.

But since L is complete this means that lim
n!1(f

n

)(i) 2 L. Therefore
(f

n

)
n2N converges to a Laurent series with entries in L. Furthermore

since f
n

converges for a 2 C
p

with v
p

(a) = r for all n we have f
n

(a) 2
C
p

. Then

v
p

((f
n

� f
m

)(a)) = v
p

(
X

i2Z
(f (i)

n

ai � f (i)
m

ai))

� inf{v
p

(f (i)
n

� f (i)
m

) + ir} ! 1
so (f

n

(a))
n2N defines a Cauchy sequence in C

p

and we get lim
n!1 f

n

(a) 2
C
p

, so the limit of f
n

converges on radius r.

Definition 3.18 (See subsection I.1.2 of [Col10]). Let r1 < r2 2 R [
{±1}. For f 2 L

L

(r1, r2] define

v[r1,r2](f) = min(v{r1}(f), v{r2}(f)).

Lemma 3.19. For f 2 L
L

(r1, r2] the function v[r1,r2](f) is well-defined.

Proof. This follows immediately from the fact that f is bounded at r1
and converges on radius r2.

Remark. In the literature we can also find the definition

v[r1,r2](f) = inf
r2]r1,r2]

v{r}(f)

. Let r 2 ]r1, r2]. Then if the infimum in v{r}(f) = inf
n2Z(vp(f (n))+nr)

is attained for positive n, we have that v
p

(f (n))+r1n < v
p

(f (n))+rn, so
v{r1}(f) < v{r}(f). If it (possibly simultaneously) is attained for some
negative n we have v

p

(f (n))+r2n < v
p

(f (n))+rn, so v{r2}(f) < v{r}(f).
Therefore the infimum inf

s2]r1,r2] v
{s}(f) is attained either at r1 or at

r2.

34



Proposition 3.20 (Statement in subsection I.1.2 of [Col10]). Let f, g 2
L
L

(r1, r2]. Then v[r1,r2] is a valuation as in Definition 1.6, so it has
the following properties:

(i) v[r1,r2](f) = 1 () f = 0,

(ii) v[r1,r2](f + g) � min(v[r1,r2](f), v[r1,r2](g)),

(iii) v[r1,r2](�f) = v
p

(�) + v[r1,r2](f) for � 2 L.

Proof. (i), (ii) and (iii) follow immediately from the corresponding
statements (i), (ii) and (iii) from Proposition 3.14.

Remark. Let f, g 2 L
L

(r1, r2]. Note that v[r1,r2] does not have the
stronger property v[r1,r2](fg) = v[r1,r2](f) + v[r1,r2](g). For example
v[0,1](TT�1) = 0, but v[0,1](T ) + v[0,1](T�1) = min(0, 1) +min(0,�1) =
�1.

Remark. Since L
L

[r1, r2] ⇢ L
L

(r1, r2] the same function v[r1,r2] also
defines a valuation on L

L

[r1, r2].

Definition 3.21. We define a function |�|[r1,r2] : L
L

(r1, r2] ! R by

|f |[r1,r2] := p�v

[r1,r2](f).

Lemma 3.22. For |�|[r1,r2] the ultrametric triangle inequality holds,
i.e.

|f + g|[r1,r2]  max(|f |[r1,r2], |g|[r1,r2]).

Proof.

|f + g|[r1,r2] = p�v

[r1,r2](f+g)

 p�min(v[r1,r2](f),v[r1,r2](g)) = max(p�v

[r1,r2](f), p�v

[r1,r2](g))

= max(|f |[r1,r2], |g|[r1,r2])

Corollary 3.23. The function |�|[r1,r2] defines a non-Archimedean
norm on L

L

(r1, r2].

Proof. |f |[r1,r2] = 0 i↵ f = 0 follows directly from Proposition 3.20 (i).
For � 2 L⇤ we have |�f |[r1,r2] = |�|

p

|f |[r1,r2] by Proposition 3.20 (iii).
The ultrametric triangle-inequality holds by Lemma 3.22.

Remark. Again since L
L

[r1, r2] ⇢ L
L

(r1, r2] this also gives us a norm
on this subspace.
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Lemma 3.24 (Statement in chapter 1.1.2 of [Col04]). The topology
induced by v[r1,r2] makes L

L

[r1, r2] a Banach space.

Proof. Let (f
n

)
n2N be a Cauchy sequence in L

L

. Then v[r1,r2](f
n

� f
m

)
tends to1 as n,m ! 1, which is equivalent with v{r}(f

n

�f
m

) tending
to 1 for every r 2 [r1, r2], by the remark after Lemma 3.19. As we have
seen in the proof of Lemma 3.17 this implies that ((f

n

)(i))
n

is a Cauchy
sequence in L for all i 2 Z and hence f

n

converges to an element in L
L

.
Moreover in the same proof we see that the limit of f

n

converges for
every a 2 C

p

with v
p

(a) 2 [r1, r2].

3.2 The Fréchet topology on LL]0, r]

We now want to define a Fréchet topology on L
L

]0, r]. Recall the notion
of a locally convex vector-space and of the Fréchet space from chapter
1.2.

Proposition 3.25. L
L

]0, r] together with the topology induced by the
norms P = {|� |[1/n,r] | n 2 N, n > 1/r} is a locally convex space.

Proof. The norms | � |[1/n,r] for N 3 n > 1/r form a countable fam-
ily of norms (hence seminorms) on L

L

]0, r]. By Proposition 1.11 this
family of norms induces a topology on L

L

]0, r]. In Proposition 1.10
we have seen that the addition and the scalar multiplication are se-
quentially continuous for the norms | � |[1/n,r]. With Proposition 1.14
therefore the addition and scalar multiplication are also continuous for
the topology defined by P. Hence L

L

]0, r] is a topological vector-
space. Since | � |[1/n,r] are not only seminorms but even norms we
have

T

n>1/r{x : |x|[1/n,r] = 0} = {0} by Definition 1.12 this defines a
locally convex space.

Proposition 3.26. L
L

]0, r] is complete with respect to the metric given
by P = {| � |[1/n,r] | n 2 N, n > 1/r} (for the metric see Proposition
1.13).

Proof. In Proposition 3.24 we have seen that L
L

[1/n, r] is complete
with respect to the norm | � |[1/n,r]. With the same argument as in
the proof of Proposition 1.14 we find that a sequences is Cauchy with
respect to the metric if and only if it is Cauchy with respect to every of
the seminorms. Hence with the same Proposition we find that L

L

]0, r]
is complete with respect to the metric.
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Proposition 3.27 (See Definition 2.5.1 of [Ked06]). The space L
L

]0, r]
is a Fréchet space with a topology induced by P = {|�|[1/n,r] | n 2 N, n >
1/r}. We will call this topology the Fréchet-topology.

Proof. In Proposition 3.25 we show that L
L

]0, r] is a locally convex
vector-space, which implies that it is a topological vector-space. Since
the topology is given by countable many norms the space is metrizable
by Proposition 1.13 and by Proposition 1.16 this metric is translation
invariant. Finally by Proposition 3.26 the space L

L

]0, r] is complete
with respect to this metric.

3.3 Definition of the Robba ring

We again fix a finite extension L of Q
p

. We want to define the Robba
ring R

L

over L. We will often just write R instead of R
L

if L can be
inferred from context.

Let E be the set of Laurent series
P

k2Z akT
k with a

k

2 L that are
bounded at 0 and with lim

k!�1 v
p

(a
k

) = 1.

Definition 3.28 (See subsection I.1.3 of [Col10]). The ring of super-
convergent elements of E , denoted by E†, and the Robba ring R are
defined as the unions

E† =
[

r>0

L
L

(0, r] R =
[

r>0

L
L

]0, r].

We denote by E+ the intersection of E† with L[[T ]] and by R+ the
intersection of R with L[[T ]].

Definition 3.29 (See Definition 2.5.1 of [Ked06]). We equip R and E†

with the direct limit of the Fréchet topologies on the L]0, r].
In other words a sequence (x

n

) inR converges if for r0 2 R
>0 su�ciently

small (x
n

) converges with respect to v{r} for all r 2]0, r0].
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Chapter 4

Properties of the Robba

Ring

In this chapter we will discuss some properties of the Robba ring, that
will used in proofs later. We define the Frobenius operator and an
action of � = Gal(Q

p

(µ
p

1)/Q
p

) on R and give a decomposition of
the elements x 2 E† into x = x0T k(x)x+x� with x0 2 L⇤, k(x) 2 Z,
x+ 2 1 + TO

L

[[T ]] and x� 2 1 + m

L

[[T�1]] \ E t. Also we define the
di↵erential operator @, and the notion of the logarithm and the residue
on R.

Again fix a finite extension L of Q
p

, and denote O
L

the ring of integers
of L and m

L

its maximal ideal.

Let � = Gal(Q
p

(µ
p

1)/Q
p

) and � : � ! Z⇤
p

be the cyclotomic character
(see chapter 1.7).

4.1 The Frobenius operator ' and the action

of � on R

We want to equip R with a Frobenius function and some action of
�. Later this we will use this to define the semi-linear structure of
(',�)-modules over R. The cited papers of Colmez, but also other pa-
pers about (',�)-modules over the Robba ring are giving the definition
of this operator and action but do not explicitly show why they are well
defined. We will work out in much detail why they are well defined,
which will be at some points a bit technical.

38



Definition 4.1. Let � 2 � be any element. By abuse of notation let

'(T ) = (1 + T )p � 1 2 L[T ], �(T ) = (1 + T )�(�) � 1 2 L[[T ]].

We want to define linear operators ' : R ! R with T 7! (1+T )p�1 and
� : R ! R with T 7! (1 + T )�(�) � 1. In other words for x 2 R we let
'(x) = x � '(T ) and �(x) = x � �(T ) for the just defined polynomials.
For positive power series this is easily seen to be well defined. For
negative power series we first need to define '(T�1) = '(T )�1. Since
the inverse of a power series is not necessarily unique this will need
some work.

Lemma 4.2. The polynomial '(T ) = (1 + T )p � 1 has p � 1 roots of
valuation v

p

(T ) = 1
p�1 and one root at T = 0.

We will use Newton polygons to proof this statement. The Theory of
Newton polygons can be found in [Gou97] in Chapter 6.4.

Proof. We will compute the Newton polygon of

(1 + T )p � 1 = T p + pT p�1 + ...+ pT = pT (p�1T p�1 + T p�2 + ...+ 1).

Clearly the valuation of the coe�cients v
p

(
�

p

i

�

/p) equals �1 for i = p
and i = 0. Therefore we get a polygon that consists of only one line seg-
ment with breaks (0, 0) and (p�1,�1) and Newton slopem = �1/(p�1)
of length p � 1. By Proposition 6.4.6 in [Gou97] the polynomial '(T )
has exactly p � 1 roots of valuation v

p

(T ) = �m = 1/(p � 1) and one
root at T = 0.

We want to show that ' is well-defined on the whole of R. However, as
we will see, something that seems odd occurs when we try to compute
'( 1

T

), i.e. when we want to invert the polynomial '(T ) as a Laurent-
series. There are di↵erent ways to invert a polynomial as a Laurent
series, that are defined on di↵erent annulus. We will first make another
example to make the case clear.

Example 4.3. We would like to invert the series 1�T . We can do this
on L

L

]0,1] by using the geometric series because for |T | < 1 we have
1

1�T

=
P1

i=0 T
i. But we can also transform 1

1�T

into a Laurent series

that converges on |T | > 1 namely 1
1�T

= �T�1 1
1�T

�1 = �P1
i=1 T

�i 2
L
L

]�1, 0[. So there are two di↵erent ways how we can regard 1
1�T

as
a Laurent series.

Proposition 4.4. Let p(T ) 2 L[T ] be a polynomial in L with roots
a
i

2 C
p

, v
p

(a
i

) = ↵
i

. Then we can find two Laurent series that define
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an inverse of p(T ), each on a di↵erent annulus of convergence v
p

(T ) >
max{↵

i

} resp. v
p

(T ) < min{↵
i

}.

Proof. This proof is the result of a discussion with Torsten Schoeneberg
on “math.stackexchange.com”. Let p(T ) = Tn0

Q

k

i=1(T �↵
i

)ni over C
p

with ↵
i

6= ↵
j

for i 6= j. With partial fractions we can then write

1

p(T )
=

p0,1(T )

T
+ ...+

p0,n0(T )

Tn0
+

k

X

i=1

✓

p
i,1(T )

(T � ↵
i

)
+ ...+

p
i,n

i

(T )

(T � ↵
i

)ni

◆

with p
i,j

2 L[T ]. If all of the summands are converging on r 2 R also

the sum is converging on r. So it remains to check where p

i,j

(T )
(T�↵

i

)j is

convergent for 1  j  n
i

. On the annulus v
p

(T ) > v
p

(↵
i

) we have
v
p

(T/↵
i

) > 0, so there we can transform

p
i,j

(T )

(T � ↵
i

)j
= p

i,j

(T )
(�1/↵

i

)j

(1� T/↵
i

)j

= p
i,j

(T )(�1/↵
i

)j
 1
X

k=0

✓

T

↵
i

◆

k

!

j

= p
i,j

(T )(�1/↵
i

)j
1
X

k=j�1

✓

k

j � 1

◆✓

T

↵
i

◆

k

.

Therefore if n0 = 0 on the annulus v
p

(T ) > max
i2{1,...,k} {vp(↵i

)}, the
Laurent series with summands as defined above is convergent. If n0 6= 0
we also have to invert Tn0 , so the annulus where this series converges
is 1 > v

p

(T ) > max
i2{1,...,k} {vp(↵i

)}.

On the other hand we can also express p

i,j

(T )
(T�↵

i

)j in the following way for

v
p

(T ) < v
p

(↵
i

):

p
i,j

(T )

(T � ↵
i

)j
= p

i,j

(T )T�j

1

(1� ↵
i

T�1)j

= p
i,j

(T )T�j

 1
X

k=0

(↵
i

T�1)k
!

j

= p
i,j

(T )T�j

1
X

k=j�1

✓

k

j � 1

◆

↵k

i

T�k.

Hence on the annulus v
p

(T ) < min
i2{1,...,k} {vp(↵i

)} the Laurent series
with summands as defined above is convergent.
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Remark. Let ↵ be a root of the polynomial p(T ). On the annulus
v
p

(T ) = v
p

(↵) clearly there is no inverse to the polynomial p(T ). If this
would be the case we could find an inverse of the 0, since p(↵)·p�1(↵) =
1 and p(↵) = 0.

So also for the case of the operator given by ' : T 7! (1 + T )p � 1 we
have two di↵erent possibilities to express '(T�1) as an element of L

L

.
We need to pick the right expression to make ' well-defined.

Proposition 4.5. We can invert '(T ) either on the annulus v
p

(T ) <
1

p�1 or on the annulus 1
p�1 < v

p

(T ) < 1.

Proof. In Lemma 4.2 we have calculated the valuations of the non-zero
roots of '(T ) to be 1/(p� 1). So with Proposition 4.4 this shows that
on v

p

(T ) < 1
p�1 we can find an inverse of '(T ) as well as on the annulus

1 > v
p

(T ) > 1
p�1 , since the zero is also a root of '(T ).

From now on define '(T )�1 to be the inverse defined on v
p

(T ) < 1
p�1 .

Proposition 4.6. Let x+ 2 L[[T ]] converge on v
p

(T ) > r 2 R for
r < p

p�1 , then '(x+) converges on v
p

(T ) > r/p.

Proof. Clearly '(0) = 0, so we can use Proposition 1.46 to calculate on
which annulus the series '(x+) = x+ � '(T ) converges. So using this
Proposition we see that '(x+) converges on any a 2 C

p

with v
p

(a) >
r
'(T ) = �1 and v{vp(a)}('(T )) > r̃

x

+ = 0. So combined with Example
3.9

v{vp(a)}('(T )) =

(

v
p

(a) + 1 if v
p

(a) � 1
(p�1)

pv
p

(a) if v
p

(a) < 1
(p�1)

so since r  p

p�1 this means v{vp(a)}('(T )) > r if v
p

(a) > r/p and hence
'(x+) converges on v

p

(T ) > r/p.

Lemma 4.7. A power-series series x =
P

i2N a
i

T i 2 converges on
v
p

(T ) = r if and only if x � T�1 =
P

i2N a
i

T�i 2 converges on v
p

(T ) =
�r.

Proof. x converges on r if and only of lim
i!1 a

i

+ ir ! 1. This is the
case if and only if lim

i!1 a
i

� i(�r) ! 1 in other words if x � T�1

converges on �r.

Proposition 4.8. On v
p

(T ) < 1
p�1 the inverse of '(T ) is an element

of T�p(1 + T�1
m

L

[[T�1]]).
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Proof. On v
p

(T ) < 1
p�1 we can calculate

'(T )�1 = ((1 + T )p � 1)�1 = (T p(pT�p+1 + ...+ pT�1 + 1))�1

= T�p(1 + a1T
�1 + ...) 2 T�p(1 + T�1

m

L

[[T�1]])

where the last step is not proven yet, but will be in Proposition 4.21.

Proposition 4.9. Let x� 2 L[[T�1]] converge on v
p

(T ) < r with r <
1

p�1 . Then '(x�) converges on v
p

(T ) < r/p.

Proof. We want to use Proposition 1.46, which tells us something about
the convergence of the composition of power series. x� is not a power
series, therefore we will restate the problem in a slightly di↵erent way.
Since r < 1

p�1 the series '(T )�1 is of the form

T�p(1 + b1T
�1 + b2T

�2...) 2 T�p(1 + T�1
m

L

[[T�1]])

by Proposition 4.8. Let

x̃� = x� � T�1 =
1
X

i=1

a
i

T i

and
'̃(T ) = (T�1 � '(T )) � T�1 = T p(1 + b1T

1 + b2T
2...)

such that

x� � '(T ) = x� � T�1 � T�1 � '(T ) � T�1 � T�1

= x̃� � '̃(T ) � T�1.

So by Lemma 4.7 the series x� � '(T ) converges on v
p

(T ) < r0 if and
only if x̃� � '̃(T ) converges on v

p

(T ) > �r0.

For calculating where x̃� � '̃(T ) converges we can use Proposition 1.46,
since x̃ and '̃(T ) are both power series and '̃(T ) = 0. By Lemma 4.7
the series x̃� converges on �r < v

p

(T ), while the series '̃(T ) converges
for v

p

(T ) > � 1
p�1 . Hence x̃� � '̃(T ) converges for any a 2 C

p

with

v
p

(a) > � 1
p�1 and v{vp(a)}('̃(T )) > �r. We have

1 = (T�1 � '(T )) · '(T )
() 1 = (T�1 � '(T ) � T�1) · ('(T ) � T�1)

= '̃(T ) · ('(T ) � T�1)
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and since v{vp(a)} is a valuation therefore

v{vp(a)}('̃(T )) = �v{vp(a)}('(T ) � T�1)

= �v{vp(a)}((1 + T�1)p � 1)

= � inf{1� v
p

(a), ..., 1� (p� 1)v
p

(a),�pv
p

(a)} = pv
p

(a)

since v
p

(a) > �r > � 1
p�1 .

v{vp(a)}('̃(T )) > �r () pv
p

(a) > �r () v
p

(a) > �r/p

Hence we can conclude that x̃� � '̃ converges on v
p

(T ) > �r/p which
implies that '(x�) = x� � ' = x̃� � '̃ � T�1 converges on v

p

(T ) < r/p.

Proposition 4.10. Let 0 < r 2 R < 1
p�1 . If x 2 L

L

]0, r] then '(x) 2
L
L

]0, r/p].

Proof. Recall Proposition 1.46. To use this Proposition we write x as
sum of two series, x+ 2 L[[T ]] and x� 2 TL[[T�1]], such that x++x� =
x. By Proposition 1.42 then the series are convergent on v

p

(T ) > r1,
resp. v

p

(T ) < r2. Since '(x) = '(x+ + x�) = '(x+) + '(x�) we can
calculate the interval, where the both series '(x+) and '(x�) converge
separately and the sum '(x) will converge on the intersection of the two
intervals. In Proposition 4.9 we have shown that '(x�) converges on
v
p

(T ) < r/p, while '(x+) converges on v
p

(T ) > 0 by Proposition 4.6.
Therefore '(x) = '(x+) + '(x�) converges on 0 < v

p

(T ) < r/p.

Remark. Whenever we used the notion x converges on [r1, r2] we do
not mean that x converges exclusively in this interval. It could be that
x converges on a bigger interval as well.

Lemma 4.11. �(T ) is invertible on 0 < v
p

(T ) < 1.

Proof.

�(T ) = (1 + T )�(�) � 1 =
1
X

i=1

✓

�(�)

i

◆

T i

= T�(�)(1 +
1
X

i=1

�(�)�1

✓

�(�)

i

◆

T i�1) with v
p

(

✓

�(�)

i

◆

�(�)�1) � 0

So as we will see in Proposition 4.21 we can invert �(T ) such that
�(T )�1 = �(�)�1T�1x+with x+ 2 1 + TZ

p

[[T ]] is convergent on 0 <
v
p

(T ) < 1.

43



From now we fix this inverse.

Proposition 4.12. If x =
P

i2Z aiT
i 2 L]0, r] then �(x) 2 L]0, r).

Furthermore if x is bounded at 0, then so is �(x).

Proof. We can decompose x = x+ + x� for x+ =
P1

i=0 aiT
i and x� =

P�1
i=�1 a

i

T i. Then

�(x) = x � �(T ) = x+ � �(T ) + x� � �(T )

converges if both x+ � �(T ) and x� � �(T ) converge.

v{r}(�(x+)) = v{r}(
1
X

i=0

a
i

�(T )i) � inf
i2N

{v{r}(a
i

�(T )i)}

= inf
i2N

{v{r}(a
i

T i(
1
X

j=1

✓

�(�)

j

◆

T j�1))}

= inf
i2N

{v
p

(a
i

) + ir + 0}
= v{r}(x+)

So if x+ converges on v
p

(T ) > 0 then also �(x+) converges on v
p

(T ) > 0
and if x+ is bounded at 0 then so is �(x+).

For x� note first that �(T )�1 by Proposition 4.11 is equal to �(�)�1T�1y+

for some y+ 2 1 + TZ
p

[[T ]] and hence converges on 0 < v
p

(T ) < 1.

v{r}(�(x�)) = v{r}(
1
X

i=1

a�i

�(T )�i) � inf
i2N

{v{r}(a�i

(�(T )�1)i)}

= inf
i2N

{v{r}(a�i

T�i(�(�))�1y+)}
= inf

i2N
{v

p

(a�i

)� ir + 0}
= v{r}(x�).

So if x� converges on v
p

(T )  r then �(x�) converges on v
p

(T ) < r by
proposition 3.8.

Definition 4.13 (See subsection I.2 of [Col10]). We define the opera-
tors ' : R ! R and � : R ! R by

' : T 7! '(T ) = (1 + T )p � 1,

� : T 7! �(T ) = (1 + T )�(�) � 1.

Corollary 4.14. These operators are well-defined.
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Proposition 4.15 (Statement in subsection I.2 of [Col10]). ' : R ! R
and � : R ! R are continuous.

Proof. Recall that a map is continuous for the Fréchet-topology on R,
if it is sequentially continuous for any v{r} with 0 < r < r0 for some
r0 > 0 su�ciently small. So let x

n

=
P

i2Z an,iT
i 2 L

L

]0, r0] be a series

that converges to x =
P

i2Z aiT
i 2 L

L

]0, r0] for all v{r} with 0 < r  r0.

v{r}(
X

i2Z
a
n,i

'(T )i �
X

i2Z
a
i

'(T )i)

= v{r}(
X

i2Z
(a

n,i

� a
i

)'(T )i)

� inf
i2Z

{v{r}((a
n,i

� a
i

)'(T )i)}
= inf

i2Z
{v

p

(a
n,i

� a
i

) + v{r}(T i(p+ ...+ T p�1)i)}
� inf

i2Z
{v

p

(a
n,i

� a
i

) + ir}
= v{r}((a

n,i

� a
i

)T i)

Therefore with lim
n!1 v{r}(a

n,i

� a
i

)T i = 1, also '(x
n

) converges to
'(x). For � we can make the same kind of argument.

Lemma 4.16 (See subsection I.2 of [Col10]). For � 2 � the induced
operators � : R ! R define a group action of � on R.

Proof. Let �, �0 2 � and id 2 � be the identity element.

(� � �0)(T ) = (1 + T )�(���
0) � 1 = (1 + T )�(�)�(�

0) � 1

�(�0(T )) = (((1 + T )�(�) � 1) + 1)�(�
0) � 1

= (1 + T )�(�)�(�
0) � 1

id(T ) = (1 + T )� 1 = T

Lemma 4.17. The action of � commutes with ' and 'n(T ) = (1 +
T )p

n � 1 for each n 2 N.

Proof. Let � 2 �.

�('(T )) = (((1 + T )�(�) � 1) + 1)p � 1

= (1 + T )�(�)p � 1

= '(�(T )).

By the same calculation with pn�1 instead of �(�) inductively we get
the second claim.
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4.2 The decomposition of elements of the Robba

ring

The goal of this subsection is to find a unique decomposition of elements
x 2 (E†)⇤ into a product of a positive degree power series and a negative
degree power series, both elements of (E†)⇤. More precisely we will
show that any x 2 (E t)⇤ uniquely factorizes into x = x0T k(x)x+x� with
x0 2 L⇤, k(x) 2 Z, x+ 2 1+TO

L

[[T ]] and x� 2 1+m

L

[[T�1]]\E t. This
is a result that is used by Colmez in [Col05] without reference. Similar
statements can be found in [Laz62] and in [Ked04], there with proof.
We will give a variation of the proof in [Ked04] where a more general
statement about matrices with entries in R is made.

Before this we need to make some observations about invertible series
in R.

Recall definition 3.5 for f 2 L
L

and r 2 Conv(f):

n(f, r) = inf
n

i 2 Z | v{r}(f) = v
p

(a
i

) + ir
o

N(f, r) = sup
n

i 2 Z | v{r}(f) = v
p

(a
i

) + ir
o

Lemma 4.18. (Proposition 4 of [Laz62]) Let �1 < r1  r2 2 R [
{1}. An element f 2 L

L

[r1, r2] is invertible in L
L

[r1, r2] if and only if
N(f, r1) = n(f, r2).

Proposition 4.19. An element x� 2 1 + m

L

[[T�1]] \ (E†)⇤ has the
property v{r}(x� � 1) > 0 for all r small enough.

Proof. Assume for any r > 0 there is 0 < r0 < r such that v{r
0}(x� �

1)  0. By Proposition 4.18 x� is invertible in L
L

]0, r] if and only if

there is an i 2 Z such that v{r
00} = v

p

(x�(i))+ ir for all r00 2]0, r]. Since
v
p

(1) = 0 therefore v{r}(x� � 1) < 0. Now we can let r go to 0 and
get that v

p

(a
i

)  0. This is a contradiction with v
p

(a
i

) > 0 because
x� 2 1 +m

L

[[T�1]].

Proposition 4.20. Any x+ 2 1 + TO
L

[[T ]] is an element of E†.

Proof. Let x+ =
P1

i=0 aiT
i with a0 = 1 and v

p

(a
i

) � 0 for all i 2 N so
the coe�cients are clearly bounded. Let r > 0.

lim
i!1

v
p

(a
i

) + ir � lim
i!1

ir = 1

so x converges for all r > 0.
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Proposition 4.21. The elements x+ 2 1 + TO
L

[[T ]] and x� 2 1 +
m

L

[[T�1]]\ (E†)⇤ as in Theorem 4.23 are are invertible in 1+TO
L

[[T ]],
resp. 1 +m

L

[[T�1]] \ (E†)⇤.

Proof. Let x+ = 1 +
P1

i=1 aiT
i with v

p

(a) � 0. Define (x+)�1 =
1+

P1
i=1 biT

i recursively by setting a0, b0 = 1 and b
i

= �Pi

k=1 akbi�k

.
Then

x+ · (x+)�1 =
1
X

i=0

i

X

k=0

a
k

b
i�k

T i = a0b0 +
1
X

i=1

(
i

X

k=1

a
k

b
i�k

+ b
i

)T i = 1.

If we suppose that v
p

(b
l

) � 0 for all l < i, we have

v
p

(b
i

) = v
p

(�
i

X

k=1

a
k

b
i�k

) � min
1ki

{v
p

(a
k

b
i�k

)}

� min
1ki

{v
p

(a
k

) + v
p

(b
i�k

)} � 0 + 0 = 0

So inductively we get v
p

(b
i

) � 0 for all i 2 N.

Let x� =
P1

i=0 aiT
�i with a

i

2 m

L

for all i > 0, in other words v
p

(a
i

) >
0, and v

p

(a0) = 0. Define again (x�)�1 =
P1

i=0 biT
�i recursively by

setting b0 = a�1
0 and again b

i

= �P1
k=1 akbi�k

for i > 0. With the
same calculation as above we get x� · (x�)�1 = 1. From Proposition
4.19 we know for r 2 R such that x� converges on radius r we have
v
p

(a
i

)� ir > v{r}(x� � 1) > 0 for all i > 0. Inductively

v
p

(b
i

) � min
1ki

{v
p

(a
k

) + v
p

(b
i�k

)} > min
1ki

{kr + (i� k)r} = ir

so v{r}((x�)�1) = 0 and therefore x� converges on v
p

(T ) < r by Propo-
sition 3.8.

Proposition 4.22. Let x 2 L]0, r0] such that for any r 2 (0, r0] we
can find c 2 R

>0 with v{r}(x � 1) � c > 0. Then there exist unique
u = 1 +

P1
i=1 uiT

i and v = 1 +
P1

i=0 viT
�i in R with v{r}(u � 1) > 0

and v{r}(v � 1) > 0 for all r 2 (0, r0], such that x = u · v.

Proof. The proof is a variation of the proof of Lemma 6.4 of [Ked04].

In the following we want to define sequences (b
j

)
j2N resp. (d

j

)
j2N that

converge to v resp. u � 1 with respect to the Fréchet topology. In
Proposition 1.14 we have shown that a sequence is convergent with
respect to the Fréchet topology if and only if it is convergent with
respect to any norm | � |[1/n,r0] with 1/n < r0. This is the case if and
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only if the function converges for any norm |� |{r} with r 2 (0, r0]. Let
r 2 (0, r0].

(I) The construction of the sequences (b
j

)
j2N and (d

j

)
j2N: We set b0 = 1

and define the sequences (b
j

)
j2N, (c

j

)
j2N and (d

j

)
j2N recursively by

writing xb�1
j

as xb�1
j

=
P1

i=�1 a
j,i

T i and setting

c
j

=
X

i0

a
j,i

T i

d
j

=
X

i>0

a
j,i

T i

b
j+1 = c

j

· b
j

.

We will see in (II) that b
j

is actually invertible and hence these se-
quences are well-defined.

(II) v{r}(c
j

� 1) � c and v{r}(d
j

) � c for all j 2 N: By definition c0
and d0 each consists of some of the terms of x, hence v{r}(c0 � 1) �
v{r}(x� 1) = c and v{r}(d0) � v{r}(x� 1) = c. Also we have

v{r}(xb�1
1 � 1) = v{r}(xb�1

0 c�1
0 � 1) = v{r}(c�1

0 (x� 1 + 1� c0))

� �v{r}(c0) + min(v{r}(x� 1), v{r}(c0 � 1))

� 0 + c = c

since v{r}(c0 � 1) � c so v{r}(c0) = v
p

(1) = 0. Supposing v{r}(xb�1
j

�
1) � c, v{r}(c

j�1 � 1) � c and v{r}(d
j�1) � c we get v{r}(c

j

� 1) �
v{r}(xb�1

j

� 1) � c and v{r}(d
j

) � v{r}(xb�1
j

� 1) � c and with this

v{r}(xb�1
j+1 � 1) = v{r}(xb�1

j

c�1
j

� 1) = v{r}(c�1
j

(xb�1
j

� 1 + 1� c
j

))

� �v{r}(c
j

) + min(v{r}(xb�1
j

� 1), v{r}(c
j

� 1))

� 0 + c = c.

So by induction this holds for all j > 0. v{r}(c
j

� 1) > c > 0, so
c
j

is invertible (see Proposition 4.21) and therefore inductively also
b
j+1 = b

j

c
j

is invertible for all j � 0.

(III) (c
j

)
j2N converges towards 1: More specific we show that v{r}(c

j

�
1) � (j + 1)c, again by induction. We have just seen that this is true
for j = 0. So suppose for j 2 N we have v{r}(c

j

� 1) � (j + 1)c given.
In c

j+1 � 1 we collect all terms with negative powers of T (and the
constant term) from

xb�1
j+1 � 1 = xb�1

j

c�1
j

� 1 = c�1
j

(c
j

+ d
j

)� 1 = d
j

c�1
j

= d
j

+ d
j

(c�1
j

� 1)
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and since d
j

only has terms with positive powers of T we get

v{r}(c
j+1 � 1) � v{r}(d

j

(c�1
j

� 1)) = v{r}(d
j

) + v{r}(c�1
j

(1� c
j

))

= v{r}(d
j

)� v{r}(c
j

) + v{r}(1� c
j

)

� c� 0 + (j + 1)c = (j + 2)c.

Hence the sequence (c
j

)
j2N converges towards 1.

(IV)(d
j

)
j2N defines a Cauchy sequence, i.e. v{r}(d

j+1 � d
j

) � (j + 2)c
for j � 0:

d
j+1 � d

j

= xb�1
j+1 � c

j+1 � d
j

= xc�1
j

b�1
j

� c
j+1 � d

j

= c�1
j

(c
j

+ d
j

)� c
j+1 � d

j

= 1 + d
j

c�1
j

� c
j+1 � d

j

= d
j

(c�1
j

� 1) + 1� c
j+1

and since d
j+1 and d

j

only consist of terms with positive powers of T ,
while c

j+1 and 1 have no positive powers of T , we have

v{r}(d
j+1 � d

j

) � v{r}(d
j

(c�1
j

� 1)) = v{r}(d
j

c�1
j

(1� c
j

))

= v{r}(d
j

)� v{r}(c
j

) + v{r}(1� c
j

)

� c+ 0 + (j + 1)c = (j + 2)c.

Hence (d
j

)
j2N defines a Cauchy sequence.

(V) Now we can define u and v and show that they have the desired
properties. Since the above holds for any r 2 (0, r0] the sequence (c

j

)
j2N

converges to 1 with respect to the Fréchet topology. This means that
the sequence (b

j

)
j2N is a Cauchy sequence with respect to the Fréchet

topology. As we have seen also (d
j

)
j2N defines a Cauchy sequence

with respect to the Fréchet topology. In Proposition 3.26 we have seen
that the space L

L

]0, r0] is complete. Hence (b
j

)
j2N and (d

j

)
j2N are

converging towards an element of L
L

(0, r0]. We set u := lim
j!1(d

j

)+1
and v := lim

j!1 b
j

.

By taking the limit, the equation xb�1
j

= c
j

+ d
j

converges towards

xv�1 = u, hence x = uv. Furthermore v{r}(v�1) � c and v{r}(u�1) �
c.

(VI) It remains to show that the so found elements are indeed unique.
So suppose there is another decomposition x = u0v0 with the required
properties. Then u, v, u0, and v0 are all invertible inR as we have seen in
Proposition 4.21 and u0v0 = uv implies u0u�1 = vv0�1. But u0u�1�1 has
only terms with positive powers of T , while vv0�1�1 has no terms with
positive powers of T . This can only be true if u0u�1�1 = vv0�1�1 = 0,
so if u = u0 and v = v0.
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Proposition 4.23 (Statement in the proof of Lemma 4.1 of [Col05]).
We can factorize any element x 2 (E t)⇤ uniquely into x = x0T k(x)x+x�

with x0 2 L⇤, k(x) 2 Z, x+ 2 1+TO
L

[[T ]] and x� 2 1+m

L

[[T�1]]\ E t.

Proof. First note that since x is invertible in E† we can find r0 2 R
such that x, x�1 2 L

L

(0, r0]. We have N(x, r1) = n(x, r2) for any 0 <
r1, r2  r0 by Proposition 4.18. From this we can derive that there is one
unique place n, where the infimum in v{r

0}(x) = inf
n2Z(vp(x(n)) + nr)

is attained for any 0 < r  r0. Let k(x) = n(x, r0) and x0 = x(k(x)),

the k(x)-th coe�cient of x. Take x̃ = xT�k(x)x0
�1

. Then we have
v
p

(x̃(0)) = v
p

(1) = 0, n(x̃, r0) = 0 = N(x̃, r0) and therefore, since the
coe�cients of x are elements of L, and hence have discrete valuation,
for all 0 < r0  r there is some c 2 R

>0 with v{r
0}(x̃� 1) � c > 0.

Now we can use Lemma 4.22 to find u = 1 +
P1

i=1 uiT
i and v =

P1
i=0 1 + v

i

T�i in R, such that v{r}(u� 1) > 0, v{r}(v � 1) > 0 for all
r 2 (0, r0] and x̃ = u · v. Then for all r 2 (0, r0]

v{r}(v � 1) > 0 () v
p

(v
i

)� ir > 0 for all i 2 N
() v

p

(v
i

) > ir � 0 for all i 2 N

hence v 2 1 +m

L

[[T�1]]. Similarly for all r 2 (0, r0]

v{r}(u� 1) > 0 () v
p

(u
i

) + ir > 0 for all i 2 N
>0

() v
p

(u
i

) > �ir for all i 2 N
>0

so by taking r ! 0 we get v
p

(u
i

) � 0, i.e. u 2 1 + TO
L

[[T ]]. Hence we
define x+ = u and x� = v.

Clearly x+ and x� are bounded at 0, since all the coe�cients are ele-
ments of O

L

and therefore bounded by 0. Hence x+, x� 2 E†.

The uniqueness of this decomposition follows similarly to the unique-
ness of the decomposition in Proposition 4.22: Suppose we have two
decompositions x = x0T kx+x� = y0T k

0
y+y�. Then x� and y+ are

invertible in 1+m

L

[[T�1]]\E† resp. 1+TO
L

[[T ]]. Then compairing the
coe�cients of

x+(y+)�1 = y�(x�)�1(x0)�1y0T k

0�k = z0T k

0�kz�

where z0 2 L⇤, z� 2 1+m

L

[[T�1]]\ E†. We find z0 = 1, k0 � k = 0 and
x+(y+)�1 = 1 = y�(x�)�1. Hence the decomposition is unique.

Lemma 4.24. Let x = x0T k(x)x+x� be a decomposition as in Propo-
sition 4.23. Then we have
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(i) '(x0) = x0 = �(x0)

(ii) '(T k) ⇢ T pk(1 +m

L

[[T�1]])

(iii) �(T k) ⇢ �(�)kT k(1 + TO
L

[[T ]])

(iv) '(x+) ⇢ 1 + TO
L

[[T ]]

(v) '(x�) ⇢ 1 +m

L

[[T�1]]

(vi) �(x+) ⇢ 1 + TO
L

[[T ]]

(vii) �(x�) ⇢ 1 +m

L

[[T�1]]

Proof. By definition ' and � leave elements of L⇤ fixed. For the other
identities we do some calculations.

'(T k) = '(T )k = ((1 + T )p � 1)k

= (pT + ...+ pT p�1 + T p)k

= (T p(pT 1�p + ...+ pT�1 + 1))k

⇢ T pk(1 +m

L

[[T�1]]),

�(T k) = �(T )k = ((1 + T )�(�) � 1)k

= (�(�)T + ...+ �(�)T�(�)�1 + T�(�))k

= (�(�)T (1 + ...+ T�(�)�2 + �(�)�1T�(�)�1))k

⇢ �(�)kT k(1 + TO
L

[[T ]]),

where we used that �(�) 2 Z⇤
p

and therefore �(�)�1 2 Z⇤
p

⇢ O
L

.

'(1 + TO
L

[[T ]]) = 1 + '(T )O
L

[['(T )]]

= 1 + ((1 + T )p � 1)O
L

[[((1 + T )p � 1)]]

= 1 + T (p+ ...+ pT p�2 + T p�1)O
L

[[((1 + T )p � 1)]]

⇢ 1 + TO
L

[[T ]] ,

'(1 +m

L

[[T�1]]) = 1 +m

L

[['(T )�1]]

= 1 +m

L

[[((1 + T )p � 1)�1]]

= 1 +m

L

[[T�p(pT 1�p + ...+ pT�1 + 1)�1]]

⇢ 1 +m

L

[[T�1]],
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since (pT 1�p + ...+ pT�1 + 1) is invertible in m

L

[[T�1]].

�(1 + TO
L

[[T ]]) = 1 + �(T )O
L

[[�(T )]]

= 1 + ((1 + T )�(�) � 1)O
L

[[((1 + T )�(�) � 1)]]

= 1 + T (�(�) + ...+ �(�)T�(�)�2 + T�(�)�1)O
L

[[((1 + T )�(�) � 1)]]

⇢ 1 + TO
L

[[T ]],

�(1 +m

L

[[T�1]]) = 1 +m

L

[[�(T )�1]]

= 1 +m

L

[[((1 + T )�(�) � 1)�1]]

= 1 +m

L

[[T��(�)(�(�)T 1��(�) + ...+ �(�)T�1 + 1)�1]]

⇢ 1 +m

L

[[T�1]].

4.3 The logarithm function on x+ and x�

We want to extend the p-adic logarithm function log defined on a 2 C
p

with v
p

(a) > 0 to elements of the Robba ring of the form x = x0x+x�

with x0 2 L, x+ 2 1 + TO
L

[[T ]] and x� 2 1 + m

L

[[T�1]] \ E†. The
notion of this logarithm can be found in Colmez’ papers, for example in
[Col10], but without definition or statement about where this logarithm

is defined. Let log(T ) =
P1

i=1
T

i

i

.

Definition 4.25. Let x+ 2 1 + TO
L

[[T ]] and x� 2 1 + m

L

[[T�1]] \ E†.
We define log(x+) to be the formal series given by

log(x+) :=
1
X

n=1

(�1)n+1 (x
+ � 1)n

n
= log(T ) � (x+ � 1)

and equivalently

log(x�) :=
1
X

n=1

(�1)n+1 (x
� � 1)n

n
= log(T ) � (x� � 1).

For the product we define log(x0x+x�) = log(x0) + log(x+) + log(x�).

Proposition 4.26. Let x+ 2 1+TO
L

[[T ]]. Then log(x+) is an element
of R.

Proof. We want to use Proposition 1.46 about the radius of convergence
of the composition of two power series. Since (x+ � 1)(0) = 0 we find
that log(T )�(x+�1) is a well-defined power series that converges at any
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a 2 C
p

with v
p

(a) > 0 (since x+ converges there) and v{vp(a)}(x+�1) >
0 (since log(T ) converges for v

p

(T ) > 0. But since all coe�cients of x+

have positive valuation we clearly have v{vp(a)}(x+�1) � v
p

(a) > 0 and
hence the composition log(T ) � (x+ � 1) converges for v

p

(T ) > 0.

Proposition 4.27. Let x� 2 1+m

L

[[T�1]]\E† converge on 0 < v
p

(T ) 
r. Then log(x�) is an element of R.

Proof. We will use again Proposition 1.46 now combined with Lemma
4.7.

log(x�) = log � (x� � 1) = (log � ((x� � 1) � T�1)) � T�1

so if log�((x��1)�T�1) converges for v
p

(T ) > r then log(x�) converges
on v

p

(T ) < r. First note that x̃ = (x� � 1) �T�1 defines a power series
P1

i=1 aiT
i that converges on v

p

(T ) > �r. Furthermore x̃(0) = 0, so we
can precompose this serie with log(T ) and this composition converges
on any a 2 C

p

with v
p

(a) > �r and v{vp(a)}(x̃) > 0. From Proposition
4.19 we know that v{r}(x� � 1) > 0, which is equivalent to v

p

(a
i

) > ir
(in Proposition 4.23 we named x� = v). Hence

v{vp(a)}(x̃) = inf
i>1

{v
p

(a
i

) + iv
p

(a)} > 0 if v
p

(a) � �r.

So log� ((x��1)�T�1) converges on v
p

(T ) � �r and therefore log(x�)
converges on v

p

(T )  r.

So by Proposition 4.26 t := log(1 + T ) defines an element of R+.

Proposition 4.28 (Statement in subsection I.2 of [Col10]). We have
'(t) = p · t and �(t) = �(�)t for all � 2 �.

Proof.

'(t) = '(log(1 + T )) = log(1 + '(T )) = log(1 + (T + 1)p � 1)

= log((T + 1)p) = p · log(1 + T ) = p · t
For � equivalent.

For some elements we will later on also need the notion of the expo-
nential function. Let exp(T ) =

P1
i=0

T

i

i! .

Definition 4.29. For x =
P

i2Z aiT
i 2 R define the formal exponential

series

exp(x) := exp(a0)(exp �
�1
X

i=�1
a
i

T i) · (exp �
1
X

i=1

a
i

T i).
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Remark. This is well-defined by Proposition 1.46 since x+ and x� have
only positive resp. negative coe�cients.

Lemma 4.30. If on some annulus 0 < v
p

(a) < r we have v
p

(x(a)) >
1

p�1 then exp(x) is an element of R.

Proof. In Proposition 1.36 it is stated that the radius of convergence
of the p-adic exponential function equals p�(p�1), so it converges for
b 2 C

p

with v
p

(b) > 1
p�1 . Since v

p

(x(a)) > 1
p�1 also exp(x) converges

on a.

4.4 The di↵erential operator @ : R ! R

We will now define the di↵erential operator @ : R ! R, show some of
its properties and give examples that we are going to use in the proofs
later on.

Definition 4.31 (See page 37 of [Col08]). Let @ : R ! R be the dif-
ferential operator

@ =
d

dt
= (1 + T )

d

dT
.

Example 4.32.

@(T ) = (1 + T )
dT

dT
= 1 + T

@(T i) = (1 + T )
dT i

dT
= i(1 + T )T i�1

Proposition 4.33. Let f, g 2 R and f � g 2 R. Then

(i) @(f · g) = f@g + g@f ,

(ii) @(f � g) = ( df

dT

� g) · @g.

Proof. (i)

@(f · g) = (1 + T )
d(f · g)
dT

= (1 + T )(f
dg

dT
+ g

df

dT
)

= f(1 + T )
dg

dT
+ g(1 + T )

df

dT
= f@g + g@f

(ii)

@(f � g) = (1 + T )
d(f � g)

dT
= (1 + T )(

df

dT
� g) · dg

dT

= (
df

dT
� g) · @g
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Lemma 4.34 (Statement on page 37 of [Col08]). We have

@ � ' = p(' � @) and @ � � = �(�)(� � @).

Proof.

@ � '(
X

a
k

T k) = @(
X

a
k

((T + 1)p � 1)k)

= (T + 1)(
X

a
k

k((T + 1)p � 1)k�1p(T + 1)p�1)

= p(T + 1)p(
X

a
k

k((T + 1)p � 1)k�1)

' � @(
X

a
k

T k) = '(T + 1)'(
X

a
k

kT k�1)

= (T + 1)p(
X

a
k

k((T + 1)p � 1)k�1)

For � equivalent.

Example 4.35.

@'(T i) = @('(T )i) = i'(T )i�1@'(T )

= i'(T )i�1p'(@(T )) = ip'(T )i�1'(1 + T )

= ip'(T )i�1(1 + '(T ))

= ip('(T )i�1 + '(T )i)

@�(T i) = i�(�)(�(T )i�1 + �(T )i)

Example 4.36. Since by Lemma 4.24 '(T )
T

p

is an element of 1+m

L

[[T�1]]\
E†, by Proposition 4.27 the series log('(T )

T

p

) is a well-defined element of

R. We want to calculate the Di↵erential @ log('(T )
T

p

) by using the pre-
vious Lemmas.

@ log

✓

'(T )

T p

◆

=

✓

'(T )

T p

◆�1

@

✓

'(T )

T p

◆

=
T p

'(T )

✓

@'(T )

T p

+ '(T )@
1

T p

◆

=
T p

'(T )

✓

p'(@T )

T p

+ '(T )@T�p

◆

=
T p

'(T )

✓

p
'(1 + T )

T p

� p
'(T )(1 + T )

T p+1

◆

= p
1 + '(T )

'(T )
� p

(1 + T )

T

= p

✓

1

'(T )
+ 1� 1

T
� 1

◆

= p

✓

1

'(T )
� 1

T

◆
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Example 4.37. By Lemma 4.24 �(T )
T

is an element of �(�)(1+TO
L

[[T ]]).
Furthermore �(�) 2 Z⇤

p

, so the logarithms

log

✓

�(�)
�(T )

�(�)T

◆

= log(�(�)) + log

✓

�(T )

�(�)T

◆

is well-defined. As above we can calculate

@ log

✓

�(T )

T

◆

=
�(�)

�(T )
+ �(�)� 1

T
� 1.

4.5 The residue of an element of R

Also the residue is a tool, that we will use in the proofs later on. We will
again give examples that we will use later and show some properties.

Let x =
P

k2Z akT
k 2 R. Let the residue of the di↵erential form

! = xdT be defined as usual by res(!) = a�1.

Definition 4.38 (See page 37 of [Col08]). The residue Res(x) of an
element x 2 R is defined by Res(x) = res(x dT

1+T

).

Example 4.39. The formal series 1 + T 2 1 + TO
L

[[T ]] is invertible
in 1 + TO

L

[[T ]]. The inverse equals (1 + T )�1 =
P

i2N(�1)nTn =
1� T + T 2 � T 3 + ... Hence for all i � 0

Res(T i) = res

✓

T i

1 + T
dT

◆

= 0

and for �i < 0

Res(T�i) = res

✓

T�i

1 + T
dT

◆

= res(T�i � T�i+1 + T�i+2 � ...dT ) = (�1)i�1.

Lemma 4.40. Let x, y 2 R. Then

Res(x+ y) = Res(x) + Res(y).

Proof. We can use that res is additive:

Res(x+ y) = res((x+ y)
dT

(1 + T )
) = res(x

dT

(1 + T )
+ y

dT

(1 + T )
)

= res(x
dT

(1 + T )
) + res(y

dT

(1 + T )
) = Res(x) + Res(y)
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Proposition 4.41 (Proposition A.6 in [Col08]). ker @ = L and an
element x 2 R is in the image of the di↵erential operator @ if and only
if Res(x) = 0.

Proof. For the first statement we see

x 2 ker @ () (1 + T )
@x

@T
= 0 () @x

@T
= 0 () x 2 L.

For the second statement suppose x is an element in the image of @, in
other words there is a x̃ 2 R such that @x̃ = (1 + T ) dx̃

dT

= x. Then

Res(x) = Res((1 + T )
dx̃

dT
) = res(

dx̃

dT
)

and since d

dT

(
P

i2Z aiT
i) =

P

i2Z iaiT
i�1 we get ( d

dT

P

i2Z aiT
i)(�1) =

0, so the residue res( dx̃
dT

dT ) equals 0.

On the other hand, if Res( dx
dT

) = 0 then
�

x

1+T

�(�1)
= 0. Hence we can

find x̃ with dx̃

dT

= x

1+T

, which is equivalent with x = (1+T ) dx̃
dT

= @x̃

Lemma 4.42 (Statement on page 37 of [Col08]).

Res('(x)) = Res(x), Res(�(x)) = Res(x)

Proof. In Lemma 4.40 we have seen that Res is additive. By Definition
also ' and the action of � are additive. Therefore it is enough to show
that the statement is true for x = T i for all i 2 Z. First consider x = T i

with i � 0.
Res('(T i)) = res((1 + T )�1'(T )idT )

Since (1+T ) is invertible in 1+TO
L

[[T ]] and '(T ) 2 O
L

[[T ]], the series
(1+T )�1'(T )i does not have any negative powers of T , hence for i � 0

Res('(T i)) = 0

and by Example 4.39 also Res(T i) = 0.

For i = �1 we use Example 4.36. In this example we have calculated
that

@ log

✓

'(T )

T p

◆

= p

✓

1

'(T )
� 1

T

◆

.

By Proposition 4.41 this implies that

Res

✓

p
� 1

'(T )
� 1

T

�

◆

= 0
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and therefore by additivity of Res we have

Res('(T�1) = Res(T�1).

Now assume that
Res('(T�i) = Res(T�i)

for some �i < 0. So with Proposition 4.41 there is some f 2 R such
that @(f) = '(T�i)� T�i. We have by example 4.35

@

✓

1

�ip
'(T )�i � f

◆

=
1

�ip
(�ip)('(T )�i�1 + '(T�i))� '(T�i)� T�i

= '(T )�i�1 + T�i

and hence by Proposition 4.41

Res('(T )�i�1) = �Res(T�i) = Res(T�i�1).

By induction this holds for any �i < 0.

In the same way as before, we get the statement for � and T i with
i � 0. For i = �1, we use Example 4.37 and Proposition 4.41 and get

0 = Res

✓

@ log

✓

�(T )

T

◆◆

= Res

✓

�(�)

�(T )
+ �(�)� 1

T
� 1

◆

= �(�)Res

✓

1

�(T )

◆

� Res

✓

1

T

◆

.

And again assuming that the statement holds for T�i with �i < 0 we
have g 2 R with @(g) = �(T )�i � �(�)�1T�i and we get

0 = Res

✓

@

✓

1

�i�(�)
�(T )�i � g

◆◆

= Res(�(T )�i�1 + �(T )�i � �(T )�i + �(�)�1T�i)

= Res(�(T )�i�1) + �(�)�1Res(T�i)

= Res(�(T )�i�1)� �(�)�1Res(T�i�1).

So inductively the statement holds for any i 2 Z.

Lemma 4.43. Let x+ 2 1 + TO
L

[[T ]] and x� 2 1 + m

L

[[T�1]] \ E†.
Then

(i) Res(@x
+

x

+ ) = 0

(ii) Res(@x
�

x

� ) = 0

(iii) Res(@(x
+
x

�)
x

+
x

� ) = 0
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Proof. (i)

Res

✓

@x+

x+

◆

= Res

✓

(1 + T )dx
+

dT

x+

◆

= res

✓

dx

+

dT

x+
dT

◆

,

and since x+ is invertible in 1 + TO
L

[[T ]] neither (x+)�1 nor dx

+

dT

has
any negative coe�cients. Therefore the residue equals 0.
(ii)

Res

✓

@x�

x�

◆

= res

✓

dx

�

dT

x�
dT

◆

.

x� =
P

n0 anT
n is invertible in 1 +m

L

[[T�1]] \ E† and

dx�

dT
= �b1T

�2 � 2b2T
�3 � ... = T�2(�b1 � 2b2T

�1 � ...).

The product
dx

�
dT

x

� therefore has only coe�cients 6= 0 for Tn with n < 1.
(iii)

Res

✓

@(x+x�)

x+x�

◆

= res

✓

x� d(x+)
dT

+ x+ d(x�)
dT

x+x�
dT

◆

= res

✓

d(x+)
dT

x+
+

d(x�)
dT

x�
dT

◆

= Res

✓

@(x+)

x+

◆

+Res

✓

@(x�)

x�

◆

= 0.
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Chapter 5

(',�)-modules over R

In this final chapter we want to define (',�)-modules over the Robba
ring. The goal was to proof that the (',�)-module over R of rank 1
can be characterized by the modules R(�) for � : Q⇤

p

! L⇤ any con-
tinuous character. As a tool we define the cohomology of a certain
chain complex of (',�)-module and we calculate the cohomology group
H0(R(�)). A nice independent result is the isomorphism between the
groups Ext1(R,M) and H1(M) for a (',�)-module M .

This chapter will mostly follow [Col08] and [Col10] but also [Col04] and
[Col05]. The first two sources are published papers that have a similar
content than the other two. As I know now the two unpublished papers
are an abandoned preliminary version of the other papers and at least
[Col05] has some mistakes in it. As mentioned in the introduction this
leads to a mistake in the proof of proposition 5.26 and hence also in the
proof of theorem 5.29.

We fix a finite extension L of Q
p

and let R be the Robba ring R
L

equipped with the Frobenius-endomorphism 'R : T 7! (T + 1)p � 1
and the action of � = Gal(L1/L) (see section 1.7) on R, given by
�R(T ) = (1 + T )�(�) � 1. In Lemma 4.17 we have shown that 'R
commutes with the action of �.

Definition 5.1 (See subsection 0.3 of [Col08]). A (',�)-module over
R (resp. E†) is a free R-module (resp. E†-module) M that is equipped
with a 'R-semi-linear operation '

M

, such that if {e1, ..., e
d

} is a basis
of M , then so is {'

M

(e1), ...,'M

(e
d

)}, and with a �R-semi-linear op-
eration �

M

for any � 2 �, such that they define an action of � on M ,
that commutes with '.

Proposition 5.2. The ring R, seen as a R-module, together with 'R
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and the action of � on R defines a (',�)-module of rank 1.

Proof. 'R and �R clearly are semi-linear and commute as we have
shown before. It remains to show that if e is a base of R, so is '(e).
Clearly if e is a base, there is an element e�1 2 R such that e · e�1 =
1 2 R. But then we also have '(e) · '(e�1) = '(e · e�1) = 1 so '(e)
generates the whole ring as well.

The goal of this chapter will be to characterize all (',�)-modules of
rank 1 over R.

5.1 Rank 1 (',�)-modules

For any rank one R-module M there is a basis ⌫ such that M = R.⌫.
Hence for ' and � endomorphisms on M the elements '(⌫) and �(⌫)
take the form '(⌫) = r

'

.⌫ and �(⌫) = r
�

.⌫ for some r
'

, r
�

2 R.

Remark. Here we denote both 'R and '
M

simply by ', as it will be
clear which one we are referring to (similarly for �).

Proposition 5.3. Let M be a rank one R-module with such a basis ⌫.
Then M is a (',�)-module if and only if

'(r
�

)r
'

= �(r
'

)r
�

for all � 2 �.

Proof. Since the action of � commutes with ' the following are equal
for any r 2 R:

'(�(r.⌫)) = '(�(r)r
�

.⌫) = '(�(r))'(r
�

).'(⌫) = '(�(r))'(r
�

)r
'

.⌫

�('(r.⌫)) = �('(r)r
'

.⌫) = �('(r))�(r
'

).�(⌫) = �('(r))�(r
'

)r
�

.⌫

Since on R the action of ' and � commute this is equivalent to

'(r
�

)r
'

= �(r
'

)r
�

.

Let now � : Q⇤
p

! L⇤ be a continuous character. Let 1: Q⇤
p

! L⇤ be the
character sending any element of Q⇤

p

to 1 2 L⇤ .

Definition 5.4 (See subsection 2.2 of [Col08]). We note R(�) the one
dimensional (',�)-module that we get by twisting the actions of � and
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' on R by �. So R(�) has a basis ⌫ such that for all x 2 R and � 2 �
we have

'
�

(x⌫) = �(p)'(x)⌫ and �
�

(x⌫) = �(�(�))�(x)⌫

where � is the cyclotomic character.

Notation. If it is clear what is meant, we will sometimes just write '
or � instead of '

�

or �
�

.

Proposition 5.5. R(�) actually defines a (',�)-module.

Proof. It is clear that the morphism '
�

and the action of � are �(p)�-
resp. �(�(�))�-semi-linear. With '(⌫) = �(p)⌫ = r

'

⌫ and �(⌫) =
�(�(�))⌫ = r

�

⌫ we have �(r
'

) = r
'

and '(r
�

) = r
�

, so these operations
commute by Proposition 5.3. Furthermore if ⌫ is a basis of R(�) then
'(⌫) = �(p)⌫ is also a basis since �(p) is invertible in L⇤.

In the following we want to proof that any rank one (',�)-module is
of this form. We will first look into some cohomology of (',�)-module-
complexes that we will use to proof this statement.

5.2 Cohomology for (',�)-modules over R

Note that � is topologically cyclic, since Z⇤
p

is topologically cyclic. This
is mentioned in chapter 2.1 of [Col08]. We will use this without a refer-
ence or proof. Let � be a generator of � and let M be a (',�)-module
over R.

Definition 5.6 (See subsection 2.1 of [Col08]). We define M• to be
the sequence

0
d0 //M

d1 //M �M
d2 //M

d3 // 0

where d1(x) = ((� � 1)x, ('� 1)x) and d2(x, y) = ('� 1)x� (� � 1)y.
For any other i 2 N we let d

i

be the zero map.

Definition 5.7 (See subsection 2.1 of [Col08]). We define Bi(M) to be
the image of d

i

and Zi(M) to be the kernel of d
i+1(M). The quotient

defines the cohomology group H i(M) = Zi(M)/Bi(M). For i > 2 we
get H i(M) = 0.

Proposition 5.8. Bi(M) ⇢ Zi(M) hence M is a chain complex and
H i(M) is well-defined.
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Proof. The only interesting case is i = 1.

d2 � d1(x) = d2((� � 1)x, ('� 1)x)

= ('� 1)(� � 1)x� (� � 1)('� 1)x

= 0

since ' and � commute per definition of a (',�)-module.

5.3 The isomorphism Ext

1(R,M)!̃H1(M)

In this chapter we want to construct an isomorphism between the group
of extensions of the (',�)-module M by R and the first cohomology
group H1(M). First we will define extensions of R-modules for a com-
mutative ring R with unity. We take the definitions and propositions
from [Wei94] and extend them to (',�)-module modules over R. Af-
terwards we set R = R, explicitly construct the group homomorphism
and show that it is bijective. The motivation for this section comes
from chapter 2.1 of [Col08], where the isomorphism between these two
groups is mentioned.

Fix a commutative ring commutative R with unity.

Definition 5.9 (See page 76 of [Wei94]). Let M,N be R-modules. An
extension of N by M is a short exact sequence of R-modules

⇠ : 0 //M // E // N // 0 .

Two extensions

0 //M // E // N // 0

0 //M // E0 // N // 0

are called equivalent if the diagram

0 //M //

=

✏✏

E //

⇠

✏✏

N //

=

✏✏

0

0 //M // E0 // N // 0

commutes. An extension is split if it is equivalent to

0 //M // N �M // N // 0 .
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Definition 5.10 (Definition 3.3.4 of [Wei94]). Let

⇠ : 0 //M
↵ // E

�

// N // 0

⇠0 : 0 //M
↵

0
// E0 �

0
// N // 0

be two extensions of N by M . Let E00 be the pullback {(e, e0) 2 E⇥E0 |
�(e) = �0(e0)} and X = E00/{(↵(m), 0) � (0,↵0(m)) | m 2 M}. Then
we define the Baer sum of the two extensions ⇠ and ⇠0 to be the short
exact sequence

⇠ + ⇠0 : 0 //M
↵

00
// X

�

00
// N // 0

where ↵00 : m 7! [(↵(m), 0)] = [(0,↵0(m)] and �00 : (e, e0) 7! �(e) =
�0(e0).

Proposition 5.11. The equivalence classes of extensions of N by M ,
together with the Baer sum form an abelian group that we will call
Ext1(N,M).

Proof. The proof can be found in [Wei94], Corollary 3.4.5. The zero
element is given by the class of the split extensions. Note that usu-
ally Ext1(N,M) is defined di↵erently, but Theorem 3.4.3 and Corollary
3.4.5 in [Wei94] show that the two definitions are equivalent.

We want to look at extensions of (',�)-modules. Hence from now
if we say ⇠ is an extension of (',�)-modules we mean that it is an
extension of R-modules such that any module is equipped with the
additional structure of a (',�)-module and such that all the morphisms
are morphisms of (',�)-modules.

Proposition 5.12. If extensions ⇠ and ⇠0 in Definition 5.10 are exten-
sions of (',�)-modules then also the Baer sum ⇠ + ⇠0 is an extension
of (',�)-modules.

Proof. Let N , and M be (',�)-modules and the extensions ⇠ and ⇠0

be denoted as in Definition 5.10. We want to give X a (',�)-module
structure. We use the structure on E and E0. So let '

X

: X ! X
be defined by (e, e0) 7! ('(e),'(e0)) and �

X

: X ! X be defined by
(e, e0) 7! (�(e), �(e0)). These maps are clearly module morphisms and
semilinear, since ' and � are semilinear endomorphisms for E (resp.
E0). With the same reason � and ' commmute. Also if {(e

i

, e0
i

)}
i2I ⇢ X

is a basis, then as well {'(e
i

, e0
i

)}
i2I is a basis of X.
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It remains to show that ' and � are well-defined and that ↵00 and �00

are morphisms of (',�)-modules. We have

�00('(e, e0)) = �00('(e),'(e0)) = �('(e))

= '(�(e)) = '(�00(e, e0))

and

↵00('(m)) = (↵('(m)), 0) = ('(↵(m)), 0)

= '(↵(m), 0) = '(↵00(m)),

for � equivalent. This shows that ' and � are well-defined as well as
that ↵00 and �00 commute with ' and �.

Proposition 5.13. If N and M are (',�)-modules, then Ext1(N,M),
the set of extensions of (',�)-modules, together with the Baer-sum still
defines a group.

Proof. In the previous Proposition we have seen that Ext1(N,M) is
closed under addition. The neutral element is defined by the split se-
quence with ' and � defined component wise on N �M . All morphism
commute with these morphisms ' and �, so the split sequence is as well
a sequence of (',�)-modules. Furthermore the inverse of an extension
is just given by the same sequence but with �� instead of �. This
clearly as well is a sequence of (',�)-modules.

Proposition 5.14 (Statement in subsection 2.1 of [Col08]). We can
identify the elements of Ext(R,M) with the cohomology classes in H1(M).

Proof. Let 0 //M
↵ // E

�

// R // 0 be an extension of R by
M . We have the following commuting diagram:

0

✏✏

0

✏✏

0

✏✏

0 //M //

↵

✏✏

M �M //

↵�↵

✏✏

M //

↵

✏✏

0

0 // E //

�

✏✏

E � E //

���

✏✏

E //

�

✏✏

0

0 // R //

✏✏

R�R //

✏✏

R //

✏✏

0

0 0 0
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Then � is surjective, hence we can find e 2 E, a preimage of 1 2 R.
Since (�(1) � 1,'(1) � 1) = (0, 0) we have d1(e) 2 ker(� � �) hence
there is an element (m0,m00) 2 M �M with (↵�↵)((m0,m00)) = d1(e).
Furthermore clearly d2�d1(e) = 0, so since ↵ is injective d2((m0,m00)) =
0 so we have (m0,m00) 2 Z1(D). Hence we can identify e with an
element of Z1(M). Now we want to show that this identification is
independent of the choice of e. So let e, e0 2 E be two preimages of
1 2 R. We will show that they identify with the same element in the
cohomology group, in other words that e� e0 identify with an element
of B1(M). Since �(e � e0) = 1 � 1 = 0 we can find a m 2 M with
↵(m) = e. Hence the element of M �M that identifies with e� e0 lies
in the image of d1

M

and therefore in B1(M). So the cohomology class
is independent of the choice of e and therefore this gives a well-defined
morphism Ext1(R,M) ! H1(M).

It is clear that equivalent extensions are getting mapped to the same
cohomology class, since if e0 is a preimage of 1 in the extension

0 //M // E0 // R // 0

under the isomorphism E0 ! E it has to be mapped to a preimage
e 2 E of 1.

Proposition 5.15 (Statement in subsection 2.1 of [Col08]). This iden-
tification defines a group homomorphism.

Proof. Let

⇠ : 0 //M
↵ // E

�

// R // 0

⇠0 : 0 //M
↵

0
// E0 �

0
// R // 0

be two extensions. We take a preimage of 1 2 R in ⇠ + ⇠0 by taking
a pair of a preimage of the 1 2 R in ⇠ and in ⇠0, so ẽ = (e, e0) for
e 2 E, e0 2 E0. Suppose that e corresponds to (m1,m2) 2 M � M
and e0 corresponds to (m0

1,m
0
2) 2 M �M . For the (m00

1,m
00
2) 2 M �M

corresponding to ẽ the equation d1(e, e0) = (↵00(m00
1),↵

00(m00
2)) holds.

Furthermore

d1(e, e
0) =

�

(� � 1)(e, e0), ('� 1)(e, e0)
�

=
�

((�(e), �(e0))� (e, e0)), (('(e),'(e0))� (e, e0))
�

=
�

(�(e)� e, �(e0)� e0), ('(e)� e,'(e0)� e0)
�

=
�

(↵(m1),↵
0(m1)

0), (↵(m2),↵
0(m2)

0)
�

=
�

(↵(m1) + ↵(m0
1), 0), (↵(m2) + ↵(m0

2), 0)
�
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and on the other hand

(↵00(m00
1),↵

00(m00
2)) =

�

(↵(m00
1), 0), (↵(m

00
2), 0)

�

so ↵(m1 + m0
1) = ↵(m00

1) and ↵(m2 + m0
2) = ↵(m00

2). But since ↵ is
injective this already implies m1 + m0

1 = m00
1 and m2 + m0

2 = m00
2, so

the sum ⇠+⇠0 corresponds to the sum of the corresponding cohomology
classes.

Proposition 5.16 (Statement in subsection 2.1 of [Col08]). The identi-
fication as in Proposition 5.14 is an isomorphism Ext1(R,M)!̃H1(M).

Proof. Injectivity: The neutral element in the group Ext1(R,M) is
given by the extension with E ' M �R and component wise structure
of (',�)-modules. Suppose that the extension

0 //M // E // R // 0

corresponds to the 0-class in H1(M). We want to show that then the
extension splits. Fix a preimage e 2 E of the 1 2 R. This e corresponds
then to an element in the image of d1

M

. Hence there is a m 2 M with
d1

E

↵(m) = d1
E

(e), so

(� � 1)e = (� � 1)↵(m) () �(e� ↵(m)) = e� ↵(m)

('� 1)e = ('� 1)↵(m) () '(e� ↵(m)) = e� ↵(m)

So take f : R ! E with 1 7! e � ↵(m). This is a (',�)-module mor-
phism since

�(f(1)) = �(e� ↵(m)) = e� ↵(m) = f(�(1))

'(f(1)) = '(e� ↵(m)) = e� '(m) = f('(1)).

Hence the sequence splits because clearly �(f(1)) = �(e�↵(d)) = 1�0.

Surjectivity: Let (m1,m2) 2 Z1(M). We define the module R � M
together with the endomorphisms �(r,m) = (�(r), �(m) + �(r).m1)
and '(r,m) = ('(r),'(m) + '(r).m2). This defines a (',�)-module
because of the semi-linearity of �

M

and �R. For a 2 R we have:

�(a.(r,m)) = �(ar, a.m) = (�(ar), �(a.m) + �(ar).m1)

= (�(a)�(r), �(a).�(m) + �(a)�(r).m1)

= �(a).(�(r), �(m) + �(r).m1) = �(a).�(r,m).

for ' equivalently. Also ' and � commute

'(�(r,m)) = '(�(r), �(m) + �(r).m1)

= ('(�(r)),'(�(m) + �(r).m1) + '(�(r)).m2)

= ('(�(r)),'(�(m)) + '(�(r)).m1 + '(�(r)).m2)
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since ' and � commute in M and R. Let now

⇠ : 0 //M
↵ // R�M

�

// R // 0

be the extension with ↵ : m 7! (0,m) and � : (r,m) 7! r. Clearly this
sequence is exact as sequence of R-modules. Furthermore ↵ and � are
morphisms of (',�)-modules, since

(� � ↵)(m) = �(0,m) = (0, �(m)) = (↵ � �)(m)

(� � �)(r,m) = �(�(r), �(m) + �(r).m1) = �(r) = (� � �)(r,m).

Hence ⇠ is an extension of (',�)-modules.

Now we want to show that this extension corresponds to the class of
(m1,m2) 2 H1(M). So we take a preimage of the 1 2 R, say (1, 0) 2
R�M . Then

((� � 1)(1, 0), ('� 1)(1, 0))

= ((�(1)� 1, �(0) + �(1).m1 � 0), ('(1)� 1,'(0) + '(1).m2 � 0))

= ((0,m1), (0,m2)).

Clearly (↵ � ↵)(m1,m2) = ((0,m1), (0,m2)), so the class of (m1,m2)
is corresponding to the extension ⇠ and hence for any class we can find
an extension that corresponds to it.

5.4 The cohomology group H0(R(�))

We calculate now the cohomology group H0(R(�)). We will use this
group to proof that R(�) and R(�0) are isomorphic as (',�)-modules
if and only if � = �0.

Let � : Q
p

! L⇤ again be a continuous character and M = R(�) be the
one dimensional (',�)-module as defined in Definition 5.4.

Notation. We will sometimes write H i(�), Zi(�) or Bi(�) for H i(R(�)),
Zi(R(�)) or Bi(R(�)) respectively.

Recall the expression t := log(1 + T ) from Chapter 4.3.

Lemma 5.17 (Statement in the Proof of Lemma I.5 of [Col10]). We
can decompose R+ =

L

k�1
i=0 L · tiLT kR+, where t = log(1 + T ).

Proof. We can write

t = log(1 + T ) =
1
X

n=1

(�1)n+1T
k

n
= T +

1
X

n=2

(�1)n+1T
k

n
.
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Therefore ti is of the form T i+
P1

n=i+1 akT
n. This gives us the desired

decomposition.

Lemma 5.18 (Lemma I.5 of [Col10]).

(i) If ↵ 2 L⇤ is not of the form p�i with i 2 N, then ↵'� 1: R+ !
R+ is an isomorphism.

(ii) If ↵ = p�i with i 2 N, then the we have ker(↵'� 1) = L · ti and
P1

k=0 akt
k is in the image of ↵'� 1 if and only if a

i

= 0.

Proof. The idea behind the proof can be found in the proof of Lemma
I.5 in [Col10]. Let k > �v

p

(↵). We will show that on T kR+ the
morphism �P1

n=0(↵')
n defines a inverse of ↵'� 1.

Let r 2 R
>0. We will begin with showing that there exists N 2 N such

that for all n > N and some constant C
r

2 R we have v{r}('n(T )) =
n+ C

r

> 0.

With the same kind of argument as in Proposition 3.9 we see that

v{r}('n(T )) = v{r}((1 + T )p
n � 1)

= v{r}(pnT +

✓

pn

2

◆

T 2 + ...+ T p

n

)

= inf
1<i<p

n

{v
p

(

✓

pn

i

◆

+ ir)}

= min(v
p

(pn) + r, v
p

(1) + pnr) = min(n+ r, pnr)

So for n big enough it is v{r}('n(T )) = n+ r. Define C
r

= r.

Let now x =
P1

i=k

a
i

T i 2 T kR. First note that (↵')n(x) = ↵n(x �
'n(T )) is a well-defined element of R+, since x converges on the whole
v
p

(T ) > 0 and hence so does 'n(x). We want to show that the series
�P1

n=0(↵')
n(x) as well is an element of R+. This is the case if for any

r > 0 the sequence ((↵')n(x))
n2N is a zero sequence with respect to

v{r}, since then the series
P1

n=0(↵')
n(x) converges in R by Proposition

1.7.
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Let now n > N such that v{r}('n(T )) = n+ C
r

.

v{r}(↵n'n(x)) = v{r}(↵n) + v{r}(
1
X

i=k

a
i

'n(T )i)

= nv
p

(↵) + v{r}(
1
X

i=k

a
i

T i · 'n(T )i · T�i)

� nv
p

(↵) + inf
i>k

{v{r}(a
i

T i · 'n(T )i · T�i)}
= nv

p

(↵) + inf
i>k

{v{r}(a
i

T i) + v{r}('n(T )i) + v{r}(T�i)}
� nv

p

(↵) + inf
i>k

{v{r}(x) + iv{r}('n(T ))� iv{r}(T )}
= nv

p

(↵) + v{r}(x) + inf
i>k

{i(n+ C
r

)� ir}
= nv

p

(↵) + v{r}(x) + k(n+ C
r

� r)

= n(v
p

(↵) + k) + v{r}(x) + k(C
r

� r)

where we used that n+ C
r

� r > 0 for n su�ciently large. So if we let
n ! 1, since v

p

(↵) + k > 0, also v{r}(↵n'n(x)) ! 1 and therefore
P1

n=0(↵')
n(x) converges in R.

So �P1
n=0(↵')

n is well-defined on T kR and clearly is the inverse of
↵'� 1. Therefore ↵'� 1 defines an isomorphism on T kR.

So with the decomposition R+ = �k�1
i=0 L · ti�T kR+ it remains to check

how ↵'� 1 is is operating on ti for 0  i  k � 1. We have

(↵'� 1)(ti) = ↵piti � ti = (↵pi � 1)ti = 0 () ↵ = p�i

Therefore if ↵ is not of the form p�i the kernel of ↵' � 1 is trivial,
while for ↵ = p�i the kernel is equal to L · ti. In the last case with the
isomorphism theorem we get the image consists of all elements with
a
i

6= 0.

Remark. In [Col10] the calculation of the valuation v{r}('n(T )) is done
slightly di↵erent. There it is shown as well that for n big enough the
valuation equals n + C

r

. But while in my calculation C
r

equals r in
[Col10] it equals v{r}(log(1+T )). Since those two values are not equal,
there must be a mistake in either of the calculations, probably in mine,
that I can not find. For the rest of the proof the value of C

s

does not
matter.

Lemma 5.19. (Proposition 2.1 of [Col08])

i If � is not of the form x�i with i 2 N then H0(�) = 0.

ii If i 2 N then H0(x�i) = L · ti.
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Proof. Let ⌫ be a basis of R(�) as in Chapter 5.1 and x 2 R. We have
'
�

(x⌫) = �(p)'(x).⌫. The image of d0 is trivial, therefore B0(R(�)) =
0. To calculate H0(R(�)) = Z0(R(�)) we need to calcualte the kernel
of the map d1 = (�

�

� 1,'
�

� 1) = (�(�(�))�� 1, �(p)'� 1). In Lemma
5.18 we have seen that the kernel for the map �(p)' � 1 is given by
L · ti in the case that �(p) = p�i and it is trivial otherwise. Therefore
H0(x�i) ⇢ L · ti and H0(�) = 0 for any � not of this form. Furthermore
with �(t) = �(�)t by Proposition 4.28

(�
x

�i

� 1)(ti) = (�(�))�i�(ti)� ti = �(�)�i�(�)iti � ti = 0.

and hence ker(�
x

�i

� 1) ⇢ L · ti. Therefore H0(x�i) = L · ti.
Lemma 5.20 (Corollary 2.2 of [Col08]). R(�) and R(�0) are isomorphic
as (',�)-modules if and only if � = �0.

Proof. We first proof that an isomorphism f : R(�) ! R(�0) induces
an isomorphism between R(��0�1) and R, where �0�1 describes the
character Q⇤

p

3 a 7! 1/�0(a).

So let f : R(�) ! R(�0) be an isomorphism with f(⌫) = x0.⌫ 0, where ⌫
and ⌫ 0 are bases as in 5.1.

f('
�

(⌫)) = f(�(p).⌫) = �(p).f(⌫) = �(p)x0.⌫ 0

'
�

0(f(⌫)) = '
�

0(x0.⌫ 0) = �0(p)'(x0).⌫ 0

and since f as a morphism of (',�)-modules and therefore commutes
with ',

�(p)x0.⌫ 0 = �0(p)'(x0).⌫ 0.

Hence we have �(p)(�0(p))�1x0 = '(x0).

Now if ⌫̃ is a basis as in 5.1 of R(��0�1) let g : R(��0�1) ! R be the
morphism given by ⌫̃ 7! x0. Let x 2 R. The '-structure induced by g
is then given by

'
ind

(xx0) = '
ind

(g(x⌫̃)) = g('
��

0�1(x⌫̃)) = g((�(�0)�1(p))'(x)⌫̃)

= (�(�0)�1)(p)'(x)x0 = '(x)'(x0) = '(xx0)

where we used that �(p)(�0(p))�1x0 = '(x0). So g induces indeed the
”normal” ' structure on R. On the same way we observe that the
action of � on R induces by g (and therefore by f) is just the ”normal”
action. Therefore R(��0�1) and R are isomorphic as (',�)-modules.

Suppose now R(�) is isomorphic to R = R(1). We then also have
H0(�) = H0(R) = L. But Lemma 5.19 shows that H0(�) = L if and
only if � = 1. HenceR(��0�1) is isomorphic toR if and only if ��0�1 = 1.
So R(�) and R(�0) are isomorphic if and only if � = �0.
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5.5 The characterization of all (',�)-modules

of rank 1 over R

In this section I wanted to give a proof that any rank 1 (',�)-module
over R can be given byR(�) for some continuous character � : Q⇤

p

! L⇤.
As source I was using Lemma 4.1 and Proposition 4.2 in [Col05]. I
wanted to work out the details such that with the theory developed
before one could read and understand the proof of this theorem. There
was always one piece missing at the very end of the proof, that I thought
I just could not yet understand because of the lack of some theory, so
I left it open in the hope to figure it out after reading some more in
other papers. This one step turned out to be wrong, which makes this
chapter kind of pointless. Maybe one could fix the proof by adding
some theory, maybe this is just not the way to go. I will leave this part
in the thesis, because still every lemma should be correct on its own,
just not relevant to prove the theorem. I marked the point where the
mistake is happening.

Recall that in Proposition 4.23 we have shown that any element x 2 E t

can be written uniquely in the form x = x0T k(x)x+x�, where x0 2 L⇤,
x+ 2 1 + TO

L

[[T ]] and x� 2 1 +m

L

[[T�1]] \ E t.

Lemma 5.21 (Statement in Lemma 4.1 of [Col05]). Let a, b 2 (E t)⇤

with a�1'(a) = b�1�(b) and a0, b0 2 L⇤ as in Proposition 4.23. Then
we can find s 2 Z such that ã = (a0)�1T s�(T�s)a and b̃ = (b0)�1T s'(T�s)b
satisfy the following properties:

(i) There are ã+, b̃+ 2 1 + TO
L

[[T ]] and ã�, b̃� 2 1 + m

L

[[T�1]] \ E t

with ã = ã+ã� and b̃ = b̃+b̃�.

(ii) ã�1'(ã) = b̃�1�(b̃).

Proof. Since ' and � operate trivial on elements of L⇤ we can multiply
a and b by (a0)

�1
and (b0)

�1
and the equation still holds.

((a0)
�1

a)�1'((a0)
�1

a) = a�1'(a) = b�1�(b) = ((b0)
�1

b)�1�((b0)
�1

b)

Also if we take a0 = a · T�1�(T ) and b0 = b · T�1'(T ) the equation
a0�1'(a0) = b0�1�(b0) still holds true:

b0
�1

�(b0) = b�1T'(T )�1�(b)�(T�1)�('(T ))

= b�1�(b)T�(T�1)'(T�1�(T ))

a0�1'(a0) = a�1'(a)T�(T�1)'(T�1�(T ))

72



where we used that the action of � commutes with '. So a�1'(a) =
b�1�(b) holds if and only if b0�1�(b0) = a0�1'(a0).

Now suppose that a0 = b0 = 1. Using '(x) = '(x0)'(T k(x))'(x+)'(x�)
with Lemma 4.24 we have k('(x)) = pk(x) and k(�(x)) = k(x). With
k(a�1'(a)) = k(b�1�(b)) this means

�k(a) + pk(a) = k(a)(p� 1) = �k(b) + k(b) = 0

and therefore k(a) = 0. Hence a is of the form a = a+a�.

Now we look at a�1'(a) = b�1�(b) modulo the maximal ideal m
L

. Then
a� and b� equal 1. Moreover we have seen that a+, b+ and '(a+), �(b+)
are all elements of 1 + TO

L

[[T ]]. Also a+ and b+ are invertible in 1 +
TO

L

[[T ]]. Furthermore by Lemma 4.24 (T k(b))�1�(T k(b)) ⇢ �(�)k(b)(1+

TO
L

[[T ]]). So comparing the constant coe�cients (b�1�(b))
(0)

and

(a�1'(a))
(0)

we see that �(�)k(b) ⌘ 1 (mod m

L

). This means, since
�(�) 2 Z⇤

p

, that �(�)k(b) ⌘ 1 (mod p). We have chosen � to be a gen-
erator of �, therefore this is only the case if p � 1|k(b) in other words
k(b) = s · (p� 1) for some integer s 2 Z.

So let b̃ = (b0)�1T s'(T�s)b and ã = (a0)�1T s�(T�s)a, then k(ã) = 0,
ã0 = 1 = b̃0 and

k(b̃) = k(b) + k(T s) + k('(T�s)) = k(b) + s� sp = k(b)� s(p� 1) = 0.

Lemma 5.22 (Statement in Lemma 4.1 of [Col05]). For a = a+a� and
b = b+b� with a�1'(a) = b�1�(b) we can find c0 2 R such that

(
@a

a
,
@b

b
) = ((�(�)� � 1)c0, (p'� 1)c0).

Proof. In Definition 4.25 we have defined a logarithm on the elements
a+a� and b+b�. In Proposition 4.26 and 4.27 we have seen that these
logarithms are well-defined elements of R. So (log(a), log(b)) is a well-
defined element of R�R.

('� 1) log a� (� � 1) log b = log'(a)� log a� log �(b) + log b

= log

✓

'(a)

a

b

�(b)

◆

= log 1 = 0.

Hence it is an element of the cocycles Z1(1) as defined in Chapter
5.4. Now we use Proposition 3.8 (ii) in [Col05], which states that
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@ : H1(1) ! H1(x) is the zero map. Therefore @(log a, log b) ⌘ (0, 0)
modulo B1(x). This means there exists c0 2 R such that

@(log a, log b) =

✓

@a

a
,
@b

b

◆

= (0, 0) + ((�
�=x

� 1)c0, ('
�=x

� 1)c0)

= ((�(�)� � 1)c0, (p'� 1)c0).

Suppose for c0 2 R as in the previous lemma there is some c1 2 R
such that @c1 = c0. Let 1

p�1 + 1 > r > 0 such that c1 converges on

0 < v
p

(T )  r. Take n 2 N such that on the annulus p�2r  v
p

(a)  r
we have n+ v

p

(c1(a)) > 1 and let c2 = exp(pnc1).

Lemma 5.23 (Statement in Lemma 4.1 of [Col05]). Let 0 < r < 1+ 1
p�1

and x =
P

i2Z aiT
i such that

(i) x converges for p�2r  v
p

(T )  r

(ii) there is b 2 (E†)⇤ with x = b'(x).

Then x converges already on 0 < v
p

(T )  r.

Proof. We know that x converges on p�2r  v
p

(T )  r, so by Proposi-
tion 1.42 we can split x = x++x� with x+ 2 L[[T ]] and x� 2 T�1L[[T�1]]
such that x+ converges on v

p

(T ) > p�2r and x� converges on v
p

(T ) < r.
By Propositions 4.6 and 4.9 then '(x) = '(x+) + '(x�) converges on
p�3r  v

p

(T )  p�1r. Hence both x and '(x) converge on p�2r 
v
p

(T )  p�1r. With x = b'(x) then also b converges on this interval.
Therefore b 2 L

L

(0, p�1r]. Hence with x = b'(x) the elements x must
already converge on the interval p�3r  v

p

(T )  r. By induction we
then get that x converges on 0 < v

p

(T )  r.

Lemma 5.24 (Statement in Lemma 4.1 of [Col05]). c2 as defined above
fulfills the equation c2 = b�p

n

'(c2) and is an element of (E†)⇤.

Proof. The p-adic exponential function converges for elements with val-
uation bigger than 1/(p � 1). Since v

p

(pnc1) = n + v
p

(c1) > 1 on the
annulus p�2r  v

p

(T )  r we have that c2 converges there. To show
that c2 fulfills the equation c2 = b�p

n

'(c2) we start with the equation

@(log b) = (p'� 1)c0 = (p'� 1)@c1 = @('(c1)� c1).

Taking the antiderivative and multiplying by pn we get

pn log b = log bp
n

= pn('� 1)c1 + k for some k 2 L.
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Comparing the constant coe�cients on both sides shows that k = 0,
since log(b) = log(b+) + log(b�) does not have a constant coe�cient

and '(c1)(0) = c
(0)
1 . Finally we take the exponent

bp
n

= exp(pn'(c1))/exp(p
nc1)

= '(exp(pnc1))/exp(p
nc1) = '(c2)/c2.

With Lemma 5.23 this gives us that c2 is analytic on 0 < v
p

(T )  r.
To show that c2 is bounded at 0 note that inductively for m 2 N we
have

c2 = b�p

n

'(c2) = b�p

n

'(b�p

n

'(c2)) =
�

m

Y

i=0

'i(b�p

n

)
�

'm(c2)

=
�

m

Y

i=0

'i(b�p

n

)
�

X

j2Z
c
(j)
2 ((1 + T )p

m � 1)j

=
�

m

Y

i=0

'i(b�p

n

)
�

X

j2Z
c
(j)
2 (pmT + ...+ pmT p

m�1 + T p

m

)j .

Since b+ and b� are invertible in 1 + TO
L

[[T ]] resp. 1 +m

L

[[T�1]] \ E†

we get v
p

(b(j)) � 0 for all j 2 Z and hence also v
p

('i(b)(j)) � 0 for all

i 2 N, j 2 Z. The coe�cients of
P

j2Z c
(j)
2 (pmT + ...+pmT p

m�1+T p

m

)j

are converging towards 0 (their valuation tends to 1) if m goes to 1.
Hence c2 is bounded at 0 and therefore c2 2 (E t)⇤.

Lemma 5.25 (Statement in Lemma 4.1 of [Col05]). For a, b, c 2 (E†)⇤

such that

(i) b = c�1'(c),

(ii) a�1'(a) = b�1�(b),

there is a l̃ 2 L⇤ with a = l̃c�1�(c).

Proof. We substitute b = c�1'(c):

a�1'(a) = b�1�(b)

= (c�1'(c))�1�(c�1'(c))

= c�(c)�1'(c�1�(c)).

Therefore by rearranging the equation

'(c�(c)�1a) = c�(c)�1a.

The only nonzero elements that are fixed by ' are elements of L⇤, hence

c�(c)�1a = l̃ 2 L⇤
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in other words
a = l̃c�1�(c).

At the end of the following proof there is the mistake that we have
already mentioned.

Lemma 5.26. (Lemma 4.1 in [Col05]) For a, b 2 (E†)⇤ with a�1'(a) =
b�1�(b) there exist ↵,� 2 L⇤, c 2 (E†)⇤ with a = ↵c�1�(c) and b =
�c�1'(c).

Proof. We follow the proof of Lemma 4.1 of [Col05]. In Lemma 5.21 we
have seen that we can find s 2 Z such that ã = (a0)�1T s�(T�s)a and
b̃ = (b0)�1T s'(T�s) are of the form ã = ã+ã� and b̃ = b̃+b̃� and fulfill
the equation ã�1'(ã) = b̃�1�(b̃). So it su�ces to find ↵̃, �̃ and c̃ for
b̃ = b̃+b̃� and ã = ã+ã� with ã = ↵̃c̃�1�(c̃) and b̃ = �̃c̃�1'(c̃) because
then we can take ↵ = a0↵̃, � = b0�̃ and c = T sc̃ and get the desired
equations, since

ã = ↵̃c̃�1�(c̃) = (a0)�1T s�(T�s)a

b̃ = �̃c̃�1'(c̃) = (b0)�1T s'(T�s)b

and hence by rearranging

a = a0↵̃(T sc̃)�1�(T sc̃) = ↵c�1�(c)

b = b0�̃(T sc̃)�1'(T sc̃) = �c�1'(c).

So from now let a = a+a� and b = b+b�. With Lemma 5.22 we find
c0 2 R with (@a

a

, @b
b

) = ((�(�)� � 1)c0, (p'� 1)c0).

In Lemma 4.43 we have shown that Res(@b
b

) = 0, which implies that
Res(c0) = 0, since with Lemma 4.42 and Lemma 4.40

Res(
@b

b
) = Res(p'(c0)� c0) = pRes('(c0))�Res(c0) = (p�1)Res(c0).

Therefore by Proposition 4.41 there is some c1 2 R such that @c1 = c0.

So let r > 0 such that c1 converges on 0 < v
p

(T )  r. Take n 2 N such
that on the annulus p�2r  v

p

(T )  r we have n+v
p

(c1) > 1. Let c2 =
exp(pnc1). Lemma 5.24 tells us that c2 2 (E†)⇤ and c2 = b�p

n

'(c2).

Here is where the argumentation in [Col05] is going wrong. Colmez
states that for b 2 (E t)⇤ there exists some c 2 Bt such that '(c) = bc.
But as Laurent Berger pointed out for me on mathoverflow.net that is
not true for b = p.
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If this was true we could proceed as follows:

'(c�p

n

c2) = '(c)�p

n

'(c2)) = b�p

n

c�p

n

c2b
p

n

= c�p

n

c2.

The only elements of the Robba ring that are fixed by ' are elements
of L. So since c2 and c are non zero, c2 = lcp

n

for some scalar l 2 L⇤

and cp
n 2 E t. The extension Bt over E t is unramified (this is something

which is still not clear to me whether it is true or not), therefore c was
already in E t.

With Lemma 5.25 there is a l̃ 2 L⇤ such that a = l̃c�1�(c).

Remark. Proposition 3.1 of [Col10] shows the statement with an al-
ternative proof. Here the equivalence between the category of étale
(',�)-module and the category of L-representations of GQ

p

is used.

Proposition 5.27. Let x, y 2 R, z 2 (E†)⇤ with x · y = z. Then
x, y 2 (E†)⇤.

Proof. I got a hint from Laurent Berger on mathoverflow.net to proof
this with the theory of Newton polygons. Because of lack of time for
now this Proposition remains unproven.

Lemma 5.28. Let e 2 R be a basis of the rank one ' module R. Then
e is an element of (E†)⇤.

Proof. Clearly e needs to be invertible to be a basis. So there is e�1 2 R
with e�1 · e = 1. Moreover by Proposition 5.27 we have for a 2 R that
a · e 2 E† if and only if a, e 2 E†. Hence e is element of E†.

Theorem 5.29 (Proposition 4.2 of [Col05]). If M is a (',�)-module
of rank one over R, then there is a continuous character � : Q⇤

p

! L⇤

such that M is isomorphic to R(�).

Proof. We follow the proof of Lemma 4.2 in [Col05]. Let ⌫ be a basis
of the module M over R. Then by definition '(⌫) = r

'

.⌫ is a basis as
well. Hence there must exist an element r 2 R such that r

'

· r = 1.
This can only be the case if r

'

2 (E†)⇤. Therefore E†e is stabel under
'. With Chapter 1.1 and 1.2, especially Proposition 1.4 in [Col08] (or
Proposition 2.4 in [Col05]), since M is of rank one, E†e is as well stable
under the action of �, i.e. there exists r

�

2 (E†)⇤ such that �(⌫) = r
�

⌫.
We have seen that in 5.1 that the property that ' and � commute
translates to '(r

�

) · r�1
�

= �(r
'

) · r�1
'

. So with Lemma 5.26 there are
↵
�

,� 2 L⇤ and c 2 (E t)⇤ with r
�

= ↵
�

c�1�(c) and r
'

= �c�1'(c).

77



Switching the basis ⌫ to e = c�1⌫ we get

'(e) = '(c�1⌫) = '(c�1)r
'

⌫ = '(c�1)�c�1'(c)⌫ = �e

�(e) = �(c�1⌫) = �(c�1)r
�

⌫ = �(c�1)↵
�

c�1�(c)⌫ = ↵
�

e

Define
� : Z⇤

p

! L⇤, p 7! �, �(�) 7! ↵
�

.

We have
↵
���0 = ↵

�

· ↵
�

0

because

� � �0(e) = �(�0(e)) = �(↵
�

0e) = �(↵
�

0)�(e) = ↵
�

· ↵
�

0e.

Hence � defines a character that we can extend to � : Q⇤
p

! L⇤.
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