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Abstract. Let α ∈ C be an exponential period. This is the first part
of a pair of papers where we show that the real and imaginary part of
α are up to signs volumes of sets definable in the o-minimal structure
generated by Q, the real exponential function and sin|[0,1]. This is a
weaker analogue of the precise characterisation of ordinary periods as
numbers whose real and imaginary part are up to signs volumes of Q-
semi-algebraic sets. Furthermore, we define a notion of naive exponential
periods and compare it to the existing notions using cohomological
methods. This points to a relation between the theory of periods and
o-minimal structures.

Introduction

Exponential periods are, roughly speaking, complex numbers of the form

(1)

∫
σ

e−fω

where ω is an algebraic differential form, f an algebraic function and σ a
domain of integration of algebraic nature. They have a conceptual interpre-
tation as entries of the period matrix between twisted de Rham cohomology
and rapid decay homology; more on this later.

This paper is the first of two parts on exponential periods and o-minimality.
The aim of these papers is to give several definitions that make (1) precise,
and to compare these different definitions. Together, the papers prove the
following main result.

Theorem 0.1 ([CH20, Theorem 13.4]). Let k ⊂ C be a subfield such that k
is algebraic over k0 = k ∩ R. The following subsets of C agree:

(1) naive exponential periods over k;
(2) cohomological exponential periods of triples (X,Y, f) where X is a

smooth variety over k, Y ⊂ X is a simple normal crossings divisor
and f ∈ O(X) is a regular function;

(3) periods of effective exponential motives over k.

Additionally, for every such number its real and imaginary part are up to
signs volumes of compact subsets of Rn definable over k0 in the o-minimal
structure Rsin,exp.

The most interesting case from the number theoretic point of view is
k = Q, or equivalently, Q or Q ∩ R.

Let us now explain the notions appearing in this theorem.
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0.1. Naive exponential periods. We propose the following very explicit
definition as one way of making (1) precise.

Definition 0.2. Let k ⊂ C be a subfield such that k is algebraic over k ∩R.
A naive exponential period over k is a complex number of the form∫

G
e−fω

where G ⊂ Cn is a pseudo-oriented (not necessarily compact) closed (k ∩ R)-
semi-algebraic subset, ω is a rational algebraic differential form on Ank that
is regular on G and f is a rational function on Ank such that f is regular and
proper on G and, moreover, f(G) is contained in a strip

Sr,s = {z ∈ C | <(z) > r, |=(z)| < s}.

A pseudo-orientation on G is the choice of an orientation on a (k ∩ R)-
semi-algebraic open subset whose complement has positive codimension (and
hence measure 0), see Definition 3.14.

We check that these integrals converge absolutely. In the case f = 0, we
recover the notion of an (ordinary) naive period as introduced by Friedrich in
[Fri04], see [HMS17, Definition 12.1.1]. The definition of a naive exponential
period is not identical to the definition given by Kontsevich–Zagier in [KZ01,
§4.3]. See Section 5.4 for more details about the difference.

0.2. On o-minimality. In his “Esquisse d’un Programme”, Grothendieck
set forth the need for, and the principles of, some form of “tame” topology.
O-minimality provides a good theory of “tame” subsets of Rn, avoiding
Cantor sets, fractals, the graph of a space-filling curve and sin(1/x). In
recent years, o-minimality has seen spectacular applications in algebraic
geometry, most notably as an important tool in the proof of the André–Oort
conjecture for Ag by Tsimerman following work of many people, see the
survey [KUY18].

The ‘o’ in “o-minimality” stands for “order”. The concept was first intro-
duced by in work of Van den Dries in [vdD84] and Pillay–Steinhorn [PS84]
at about the same time that Grothendieck was writing his “Esquisse d’un
Programme”. We recall the definition and some basic properties of o-minimal
structures in Section 2.

By work of Wilkie [Wil96], Van den Dries and Miller [vdDM94], the
structure of subsets of Rn defined using +, ·, <, the elements of k ∩ R, the
real exponential function exp, and the restriction of the analytic function
sin to the bounded interval [0, 1] is an example of an o-minimal structure.
We denote it by Rsin,exp,k.

Theorem 0.3 (See Theorem 5.12). Let α be a naive exponential period over
k. Then its real and imaginary part are up to signs volumes of compact
subsets of Rn definable in Rsin,exp,k.

This generalises a result for ordinary periods: their real and imaginary part
are volumes of compact semi-algebraic sets, see [HMS17, Proposition 12.1.6]
together with [VS15]. There is a significant difference though: in the case
of ordinary periods, we also have the converse implication. The volume
of a compact Q-semi-algebraic set is by definition a naive period. This is
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no longer clear or even expected in the exponential setting. The definable
subsets appearing in the theorem are of a special shape. For example, we do
not need to iterate the functions exp and sin|[0,1]. The number ee is definable
in the o-minimal structure and hence also appears as a volume. We do not
expect it to be an exponential period.

Question 0.4. Is there a natural way to charaterise definable sets whose
volumes are naive exponential periods?

0.3. Exponential periods and cohomology. The origins of the theory
of exponential periods lie in a version of Hodge theory for vector bundles
with irregular connections. To our knowledge such a theory was first con-
sidered by Deligne, see [DMR07, p. 17]. A systematic study of the period
isomorphism was started by Bloch and Esnault in [BE00], and fully devel-
oped by Hien [Hie07]. He establishes a period isomorphism between de
Rham cohomology of the connection and a suitable homology theory. The
special and central case of exponential connections is treated by Hien and
Roucairol [HR08]. If X is a smooth variety over a field k ⊂ C, f ∈ O(X) a
regular function, they consider the twisted de Rham complex Ω∗f with differ-
ential ω 7→ dω− df ∧ω. Its hypercohomology is twisted de Rham cohomology.
They define rapid decay homology of Xan (see Section 6.1) taking the role of
singular cohomology in the classical case and a period pairing

Hrd
n (X,Q)×Hn

dR(X, f)→ C

inducing a perfect pairing after extending scalars to C. The numbers in the
image of the pairing are the exponential periods. Their study in their own
right was proposed by Kontsevich and Zagier in [KZ01].

As in the classical case, the theory can be extended to singular varieties
and also relative cohomology. A full-fledged theory of exponential motives
is being developed by Fresán–Jossen in [FJ20]. Their books also contains
a very accessible account of the constructions and the proof of the period
isomorphism. They also give many examples of interesting numbers that
appear as exponential periods.

We prove:

Theorem 0.5 (Propositions 12.1 and 11.1 of [CH20]). A complex number α
is a naive exponential period over k if and only if there is a smooth variety
X over k, a simple normal crossings divisor Y , and f ∈ O(X) such that α
is in the image of the period pairing

Hrd
n (X,Y,Q)×Hn

dR(X,Y, f)→ C.

Again this generalises the result for ordinary periods, see [HMS17, Theo-
rem 12.2.1]. Actually, the theorem also holds for general X and Y or even
all periods of effective exponential Nori motives, see [CH20, Theorem 13.4].
The general proof is quite technical. In the present paper, we include the
arguments in the curve case, see Section 8. It is more accessible, yet already
contains the main ideas.

0.4. Method of proof. The strategy is very similar to the case of ordinary
periods. Algebraic varieties admit triangulations by semi-algebraic simplices.
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This allows us to represent homology classes by semi-algebraic sets. In the
simplest case the period pairing on cohomology has the shape

(σ, ω) 7→
∫
σ

e−fω,

suggesting the relation to naive periods. Conversely, the Zariski closure of a
semi-algebraic set G is an algebraic variety X, and the Zariski closure of its
boundary is a closed subvariety Y ⊂ X.

The main new tool compared to the classical case is the real oriented blow-
up of a smooth analytic variety at some divisor. In the simplest case of P1

and the divisor ∞, it is the compactification of C by a circle at infinity. The
points correspond to the directions of half rays. Its use is of long standing
in the theory of irregular connections. Hien and Roucairol and also the
exposition of Fresán–Jossen use it to establish the period isomorphism in
the exponential case. Indeed, rapid decay homology of X can be computed
as the homology of a certain partial compactification B◦(Xan, f) of Xan

relative to its boundary, see Proposition 6.5. For details on B◦(Xan, f) see
Definition 6.3 and Section 8.2. It is still semi-algebraic, more precisely, a
semi-algebraic manifold with corners.

However, this is not yet enough to bound the imaginary part of f(G),
something that is crucial in showing that

∫
G e−fω is the volume of a definable

set in the o-minimal structure Rexp,sin,k. Recall that the complex exponential
is not definable, only the real exponential and sin (or cos) restricted to
bounded intervals. We introduce a smaller semi-algebraic subset B](X, f)
of B◦(X, f). The actual key step in the proof of our main theorem is
the comparison between the homology of B](X, f) and B◦(X, f) in [CH20,
Proposition 11.4]. In the simplest case, they agree because a half-circle is
contractible to a single point.

There are two reasons for the considerable length of the present paper and
its companion: on the one hand, we aim for readers without a background
in o-minimality and/or in the classical theory of periods and have chosen to
reproduce definitions from the literature and to give detailed arguments and
references. We have also added a section on the case of curves that is not
needed for the proof of the main theorems, but should be more accessible
and still uses all of the main ideas.

On the other hand, we ran into many technical problems. The first two
are addressed in the present paper, the last in [CH20].

• For example, we do not know if the real oriented blow-up of a smooth
variety can be embedded into Rn preserving both the semi-algebraic
and differentiable structure. Instead we introduce the notion of a
semi-algebraic (or more general: definable) manifold, at the price of
having to extend results well-known for semi-algebraic subsets of Rn
to the manifold setting.
• The standard triangulation results in semi-algebraic geometry or for

sets definable in an o-minimal structure only give facewise differentia-
bility of the simplices. This is not strong enough for a straightforward
application of the Theorem of Stokes—something that we need for
a well-defined period pairing depending only on homology classes.
Our way out is by a result of Ohmoto–Shiota [OS17] who prove
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the existence of C1-parametrisations with applications to periods in
mind. We can then use a subtle version of Stokes’s theorem proved
by Whitney in [Whi57] for “regular” differentials on C1-manifolds.
• Finally, the period isomorphism has a simple description only in

the case of a smooth affine variety. The general case is handled by
hypercovers. This involves some checking of strict compatibilities
between our real oriented blow-ups and their subspaces and a check
that the abstract period pairing is still realised by integration.

0.5. Structure of the papers. The following diagram explains the global
structure of the two papers, and how the different theorems contribute to
the main comparison result.

Vol

Pnv Pgnv Pabs

Plog Pcoh PSmAff

Pmot

Theorem 5.12

Lemma 5.5

[CH20, Proposition 12.1]

Corollary 5.20

[CH20, Proposition 11.1]

triv triv

[CH20, Proposition 13.3][CH20, Proposition 13.1]

Section 8 proves part of the central triangle in the case of curves. In this
special case the main ideas of the proof are present, but several delicate
problems are avoided.

Pnv

Plog

Proposition 8.3
Proposition 8.4

0.6. Outlook. Our comparison results point to a deeper relation between
periods and o-minimal theory. While the case of ordinary periods—with their
incarnations as entries of periods matrices or as volumes of semi-algebraic
sets—might be seen as a coincidence, this second instance suggests that
this is not the case. Bakker, Brunebarbe, Klingler and Tsimerman have
been pursuing a project of making a systematic use of tame geometry in
Hodge theory and apply it successfully to questions related to the Hodge
conjecture. A central tool was their GAGA theory merging complex spaces
with o-minimal geometry. We hope that the period isomorphism can also be
extended to the o-minimal setting, providing a new point of view on period
numbers.
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1. Notation

1.1. Fields of definition. If z is a complex number, we write <(z) and
=(z) for its real and imaginary part. Let k ⊂ C be a subfield. We denote
by k0 the intersection k ∩ R, by k̄ the algebraic closure of k in C, and by
k̃ the real closure of k0 in R. Note that k is not automatically algebraic
over k0. (For example, let a, b ∈ R such that trdegQ(Q(a, b)) = 2, and
consider k = Q(a + bi). Then k0 = Q.) The following conditions on k are
equivalent:

k0 ⊂ k is alg. ⇐⇒ k0 ⊂ k̄ is alg. ⇐⇒ k̃ ⊂ k̄ is alg. ⇐⇒ [k̄ : k̃] = 2.

If k satisfies these conditions, so does every intermediate extension k ⊂ L ⊂ C
with k ⊂ L algebraic.

1.2. Categories of varieties. Let k ⊂ C be a subfield. By variety we mean
a quasi-projective reduced separated scheme of finite type over k. By Xan

we denote the associated analytic space on X(C).

1.3. Good compactifications. We say that a (X,Y ) is a log-pair if X is
smooth of pure dimension d, and Y a simple normal crossings divisor. A
good compactification of (X,Y ) is the choice of an open immersion X ⊂ X̄
such that X̄ is smooth projective, X is dense in X̄ and Ȳ +X∞ is a simple
normal crossings divisor where Ȳ is the closure of Y in X̄ and X∞ = X̄ rX.
If, in addition, we have a structure morphism f : X → A1, we say that X̄
is a good compactification relative to f if f extends to f̄ : X̄ → P1. Let
f : X → A1 be a morphism. Consider the graph of f in X ×A1 and take its
Zariski closure X̄ ′′ inside X̄ ′×P1, where X̄ ′ is a projective variety containing
X as a Zariski open and dense subset. We may consider X as a Zariski open
and dense subset of X̄ ′′. The projection X̄ ′′ → P1 is a morphism that extends
f . By applying Hironaka’s Theorem we see that a good compactification
relative to f exists.

1.4. Some semi-algebraic sets. Let k be as in Section 1.1. Let X be a
smooth variety, X̄ a good compactification, X∞ = X̄ rX. We denote by
BX̄(X) the oriented real blow-up of X̄an in Xan

∞ , for details see Definition 4.2.
It is a k0-semi-algebraic C∞-manifold with corners, see Proposition 4.3.

In the case X = A1, X̄ = P1, we write P̃1 = BP1(A1). This is a manifold
with boundary: the compactification of C ∼= R2 by a circle at infinity, one for



EXPONENTIAL PERIODS AND O-MINIMALITY I 7

each half ray. For s ∈ Cr{0}, we write s∞ for the point of ∂P̃1 corresponding
to the half ray s[0,∞). We say <(s∞) > 0 if <(s) > 0. We put

B◦ = P̃1 r {s∞ ∈ ∂P̃1 | <(s∞) ≤ 0} = C ∪ {s∞ | <(s) > 0},
∂B◦ = B◦ rC = {s∞ | <(s) > 0},

B] = P̃1 r {s∞ ∈ ∂P̃1 | s∞ 6= 1∞} = C ∪ {1∞},

∂B] = B] rC = {1∞}.
If G ⊂ Rn is k0-semi-algebraic, we will also denote by ∂G the complement

GrGint where Gint is the interior of G inside X(R) where X is the Zariski-
closure of G in Ank0 . If G is of dimension d, then ∂G is of dimension at most
d− 1.

This agrees with the notation above. Note that we do not assume that G
is closed.

1.5. C1-homology. In this paper, we denote by ∆n the standard simplex
as normalised in [War83]:

∆n =

{
(x1, . . . , xn) | xi > 0 and

∑
i

xi < 1

}
⊂ Rn.

It is open in the ambient space. We denote by ∆̄n its closure in Rn. We
fix the standard orientation. We define the face maps ki : ∆̄n−1 → ∆̄n as in
[War83, (2) p.142]. Moreover, for any topological space X and subspace Y ,
we let Hn(X,Y ;R) denote n-th singular homology with coefficients in the
ring R.

A manifold with corners is a second countable Hausdorff topological space
for which every point has a neighborhood that is homeomorphic to an open
subset of Rn × Rm≥0. Say p ≥ 1. We will assume that each manifold with
corners is equipped with a set of charts which need not be maximal; later on
this set will be finite. A map defined on a subset A of Rn with values in Rm
is called Cp if it extends to a Cp map on an open neighborhood of A in Rn
with values in Rm. A Cp-manifold with corners is a manifold with corners
such that all transition maps betweens charts are Cp. A map between two
Cp-manifolds with corners is called Cp if it is Cp on all charts.

Definition 1.1. A C1-simplex on X is a continuous map

σ : ∆̄n → X

such that for any chart φ : U → V ⊂ Rn × Rm≥0 with U open in X the

composition φ ◦ σ|σ−1(U) : σ−1(U) → V extends to a C1-map on an open

neighbourhood of σ−1(U) in Rn with target Rn+m.
Let Sn(X) be the space of formal Q-linear combinations of C1-simplices

of dimension n. For A ⊂ X closed, we denote Sn(A) ⊂ Sn(X) the subspace
spanned by simplices with image in A.

The restriction of σ to a face is again C1, hence the usual boundary
operator ∂ turns S∗(X) into a complex. The barycentric subdivision of a
C1-simplex is again C1.

Remark 1.2. If ω is an n-form of class C1, then σ∗ω = g dt1 ∧ · · · ∧ dtn for
a C0-function g on ∆̄n. Hence the Lebesgue integral converges (absolutely).
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Theorem 1.3. Let X be a C1-manifold with corners. Then the complex
S∗(X) of C1-chains computes singular homology of X and S∗(X)/S∗(∂X)
computes singular homology of X relative to its boundary ∂X.

Proof. It is equivalent to prove the result in cohomology instead. The argu-
ment for the C∞-case and smooth manifolds is given in [War83, Section 5.31].
It works without changes in the C1-case, even for a manifold with corners.

The boundary ∂X is not a C1-manifold itself, but only a closed subset in
a C1-manifold with corners. The constructions of loc. cit. still apply. E.g.
the partition of unity needed on p. 193 is constructed on X, not on ∂X. On
p. 194/196, U is not an open ball (the manifold case) or the intersection of
an open ball with Rn1

≥0 × Rn2 (the case of a manifold with corners) but the
boundary of the latter. If σ is a simplex with values in the boundary, then
so does h̃p(σ) of Equation (21). �

Theorem 1.4 ([Whi57, Chapter III, §§16-17]). Let X be a C2-manifold with
corners. Let ω be an n-form of class C1 on X and let σ : ∆̄n+1 → X be a
C1-simplex. Then ∫

σ
dω =

∫
∂σ
ω.

Proof. We first recall the notion of regular differential form in Euclidean
space introduced by Cartan [Whi57, Section 16]. (Warning: this notion
is unrelated to the usual concept of regularity in algebraic geometry.) A
continuous r-form ω on an open subset U ⊂ Rn is regular if there exists a
continuous and necessarily unique (r+ 1)-form ω′ (then called dω) such that
for every oriented linear (r + 1)-simplex ∆ ⊂ U we have∫

∆
ω′ =

∫
∂∆

ω.

Let ω and σ be as in the hypothesis. After passing to a barycentric
subdivision we may assume that σ takes values in the domain of a chart
U → V ⊂ Rl × Rm≥0, with U ⊂ X open. Working in this chart, σ extends to

a C1-map on a open neighbourhood Ω ⊂ Rn+2 of ∆̄n+1 with target Rl+m.
We may identify ω with a C1-form on an open subset R ⊂ Rl+m containing
the image of Ω.

Note that Whitney’s notion of smooth means C1 in modern terms, see
loc. cit. p. 15. Thus ω is regular on R and ω′ is the usual dω by Stokes’s
Theorem for linear simplices, see [Whi57, Theorem 14A].

By [Whi57, Theorem 16B], the pull-back of a regular form under a C1-
map is again regular and commutes with d. So σ∗ω is regular on Ω with
dσ∗ω = σ∗dω. By definition of regularity, we have

∫
∆̄n+1

σ∗dω =
∫
∂∆̄n+1

σ∗ω

when considering ∆̄n+1 as a linear simplex in Rn+2 with the usual orientation.
So the formula of the Theorem holds. �

2. O-minimal structures

For the purposes of our paper it is helpful to think of o-minimal geometry
as a generalisation of semi-algebraic geometry. The canonical reference for o-
minimality is [vdD98]. Within the encyclopedia of mathematics, o-minimality
is firmly rooted in the field of mathematical logic and more particularly model
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theory. In this section we briefly survey the essentials in a fashion that is
geared towards geometers with no background in model theory. The reader
is warned in advance that some of the definitions presented below are severe
mutations of more general concepts in model theory.

Definition 2.1 (§2.1 of [vdD98]). A structure on a non-empty set R is a
sequence S = (Sm)m∈Z≥0

such that for each m ≥ 0

(1) Sm is a boolean subalgebra of the power set P(Rm): that is, ∅ ∈
Sm, and Sm is closed under complements and binary unions and
intersections;

(2) if A ∈ Sm, then R×A and A×R belong to Sm+1;
(3) {(x1, . . . , xm) ∈ Rm | x1 = xm} ∈ Sm;
(4) if A ∈ Sm+1, then π(A) ∈ Sm, where π : Rm+1 → Rm is the projec-

tion onto the first m coordinates.

We are actually only going to need the case R = R, but in this section we
will present the definitions in the general setting.

Definition 2.2. Let k ⊂ R be a subfield. An example of a structure that is
relevant to the topic of this paper is the structure of k-semi-algebraic sets
over R consisting of those subsets of Rm that are of the form{

x ∈ Rm | f1(x) = . . . = fk(x) = 0 and g1(x) > 0, . . . , gl(x) > 0
}

for some polynomials fi, gj ∈ k[X1, . . . , Xm].

It is a non-trivial fact that the collection of semi-algebraic sets satisfies
the final condition in Definition 2.1. This result is known as the Tarski–
Seidenberg theorem. The structure does not change when we replace k by
an algebraic subextension in R, hence we may assume k to be real closed.

A structure can often be “generated” by a smaller collection of sets. This
leads to the following concept (one that is more faithful to the model-theoretic
point of view). We follow the terminology of [vdD98].

Definition 2.3 (Def 5.2 of [vdD98]). A model theoretic structure R =
(R, (Si)i∈I , (fj)j∈J) consists of a set R, called its underlying set, relations

Si ⊂ Rm(i) (i ∈ I,m(i) ∈ N0), and functions fj : Rn(j) → R (j ∈ J, n(j) ∈
N0). If n(j) = 0, we call fj a constant and identify it with its unique value.

IfR = (R, (Si)i∈I , (fj)j∈J) is a model theoretic structure, and C ⊂ R a sub-
set, then we denote the model theoretic structure (R, (Si)i∈I , (fj)j∈J , (c)c∈C)
by RC . The elements of C are called parameters.

Definition 2.4 (§5.3 of [vdD98]). (1) Let R = (R, (Si)i∈I , (fj)j∈J) be
a model theoretic structure. We denote with Def(R) the smallest
structure on R that contains the Si, for i ∈ I, and the graphs of the
functions fj (for j ∈ J).

(2) A subset A ⊂ Rm is called definable in R if A ∈ Def(R)m. A
function f : Rm → Rn is definable in R if its graph Γ(f) = {(x, y) |
y = f(x)} ⊂ Rm ×Rn = Rm+n is definable in R. A point x ∈ Rm is
definable in R if the singleton {x} ⊂ Rm is definable in R.

(3) Let C ⊂ R be a subset. A subset/function/point is definable in R
with parameters from C or definable over C in R or C-definable in
R if it is definable in RC .
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The following Proposition serves two purposes: it makes the relation of the
previous definitions with logic apparent, and it is a useful result for showing
that certain sets are definable.

Proposition 2.5. If R = (R, (Si)i∈I , (fj)j∈J) is a model theoretic structure,
and C ⊂ R a subset, then a subset A ⊂ Rm is definable in R with parameters
from C if and only if there exists a formula φ[x1, . . . , xm, y1, . . . , yn] in “the
first-order language of R” and elements c1, . . . , cn ∈ C such that

A =
{

(a1, . . . , am) ∈ Rm | φ[a1, . . . , am, c1, . . . , cn]
}
.

Proof. See [vdD98, Exercise 1, Chapter 1.5]. �

Example 2.6. (1) From now on, we will denote by Ralg the model the-
oretic structure (R, <, 0, 1,+, ·) and (consistent with Definition 2.4)
for every subfield k ⊂ R we denote by Ralg,k the model theoretic
structure obtained from Ralg by adding elements in k as constants.
This is justified by the fact that the structure Def(Ralg,k) consists
precisely of the k-semi-algebraic sets introduced in Definition 2.2. In-
deed, they are defined by first-order formulas in the language of Ralg

with parameters from k.
(2) Let A ⊂ Rm be a k-semi-algebraic set. Using Proposition 2.5 it

becomes straightforward to show that the topological closure Ā ⊂ Rm
is semi-algebraic. Indeed

Ā =
{
x ∈ Rm | ∀ε ∈ R, ∃y ∈ A, ε > 0→ |x− y| < ε

}
,

which is clearly a first-order formula.

Remark 2.7. For our purposes it is essential to keep track of parameters.
For example, π is R-definable in Ralg but not Q-definable in Ralg. When
dealing with definable sets we usually explicitly mention the scope of our
parameters.

Definition 2.8. We say that a model theoretic structureR expands (R, <, 0, 1,+, ·)
if its underlying set is R, and if it contains the relation <, the constants 0, 1,
and the functions +, · with their usual interpretations.

Now we are finally ready for the central notion.

Definition 2.9 (See §3.2 and §5.7 of [vdD98]). A model theoretic structure
R expanding (R, <, 0, 1,+, ·) is o-minimal if the R-definable subsets of R are
exactly the finite unions of points and (possibly unbounded) open intervals
in R.

Remark 2.10. Note that in this definition, Van den Dries considers R-
definable subsets of R in R. In particular, it is not required that every
interval is definable in R without introducing additional parameters.

Example 2.11. Since the R-semi-algebraic subsets of the real line are exactly
finite unions of points and (possibly unbounded) open intervals, we see that
Ralg is an o-minimal structure.

Note that N and Z are not definable subsets in any o-minimal structure,
because of the finiteness condition in the definition. In particular, the
functions sin : R→ R and exp: C→ C (after identifying C with R2) cannot
be definable in any o-minimal structure.
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Definition 2.12. The model theoretic structure (R, <, 0, 1,+, ·, exp) will be
denoted by Rexp. Here exp: R→ R is the real exponential function (and not
the complex one, this is important!).

Definition 2.13. Let Fan be the collection of restricted analytic functions,
that is, functions f : Rm → R that are zero outside [0, 1]m and such that
f |[0,1]m can be extended to a real analytic function on an open neighbourhood
of [0, 1]m.

We denote by Ran the model theoretic structure (R, <, 0, 1,+, ·,Fan) and
by Ran,exp the model theoretic structure (R, <, 0, 1,+, ·,Fan, exp). Finally, we
denote by Rsin,exp the model theoretic structure (R, <, 0, 1,+, ·, sin|[0,1], exp).
For every subfield k ⊂ R, we denote Rsin,exp,k the model theoretic structure
where we adjoin all elements in k as parameters.

This is one of the protagonists in this paper.

Remark 2.14. The model theoretic structure Rsin,exp will be of most interest
to us. Note that if the interval I ⊂ R is definable with parameters in C,
then the functions sin|I and cos|I are definable in Rsin,exp with parameters
in C. Indeed, one may use the identity sin2(θ) + cos2(θ) = 1 to define
cos(θ) for θ ∈ [0, 1]. After that, cos(θ) can be arbitrarily extended using
cos(−θ) = cos(θ) and cos(2θ) = 2 cos2(θ) − 1. This allows one to define π:
it is twice the smallest positive zero of cos. Finally, one can define sin on
arbitrary bounded definable intervals by translating cos by π/2.

Theorem 2.15. The model theoretic structures Rexp, Ran, Ran,exp, and
Rsin,exp are o-minimal.

Proof. For Ran, the result was proven by Van den Dries in [vdD86]. Wilkie
proved that Rexp is o-minimal in [Wil96]. Building on Wilkie’s result (that
was already announced in 1991), Van den Dries and Miller [vdDM94] showed
that Ran,exp is o-minimal. Finally, Rsin,exp is o-minimal because its definable
sets are definable in the o-minimal structure Ran,exp and it expands Ralg. �

Remark 2.16. A fundamental fact about o-minimal structures is that each
definable set is a finite disjoint union of basic building blocks called cells. If
the set is defined over a subfield k ⊂ R, then so are the cells. This follows
from the Cell Decomposition Theorem [vdD98, Theorem 2.11, Chapter 3],
see also [vdD98, Chapter 3, Section 2.19, Exc. 4]. Using this theorem one
can introduce a good notion of dimension of definable sets that behaves
as one expects intuitively. For example, if X is a nonempty definable set,
then dim(X̄ rX) < dim(X). See [vdD98, Chapter 4] for details and other
properties of the dimension.

Remark 2.17. For the reader well versed in o-minimality we remark that
for the remainder of this text, our o-minimal structures will always expand
(R, <, 0, 1,+, ·). In particular, a definable subset of Rn is connected if and
only if it is definably connected. Moreover, the word compact retains its
meaning from point set topology.

3. Definable manifolds

Fix an arbitrary o-minimal structure S expanding (R, <, 0, 1,+, ·). and
a subfield k ⊂ R. In the remainder of this section, all definable sets are
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understood to be definable in S with parameters from k unless otherwise
specified.

Definition 3.1. Let 0 ≤ p ≤ ∞.

(1) A definable Cp-manifold with corners M is a Cp-manifold with corners
together with the choice of a finite atlas (φi : Ui → Vi ⊂ Rni×Rmi

≥0)i∈I
such that the Vi are open in Rni×Rmi

≥0 and definable and the transition

maps φij = φj ◦ φ−1
i are definable and of class Cp on their domain.

Its boundary ∂M is the union of the preimages of the boundaries of
Rni × Rmi

≥0 ⊂ Rni+mi under the φi.

(2) A subset G ⊂M is called definable if φi(G ∩ Ui) is definable in Rni

for all i. We say G is an affine definable set if M = Rn, i.e., if it is a
definable set in the sense of Definition 2.4 and Proposition 2.5.

(3) A subset N of a definable Cp-manifold with corners M is called a
submanifold if there is a Cp-manifold M and a Cp-immersion M → N
that is a homeomorphism where N carries the subspace topology. I.e.
our submanifolds are embedded and have no corners.

(4) Let (M,φi), (N,ψj) be definable Cp-manifolds with corners. A map
of definable Cp-manifolds with corners is called a definable Cp map
if all ψj ◦ f ◦ φ−1

i are definable and Cp on their domain.

Remark 3.2. The definition of definable manifold includes the choice of
a finite atlas. The finiteness condition is important, as, for example, we
do not want manifolds with infinitely many connected components. So
we cannot work with a maximal atlas. However, we could work with an
equivalence class of finite atlases. Alternatively, one may rephrase the
definition in the language of locally ringed sites, using the Grothendieck
topology of definable open subsets and finite covers. The definition of a
definable manifold is inspired by and related to the semialgebraic spaces of
Delfs and Knebusch [DK81] and the complex analytic definable spaces of
Bakker–Brunebarbe–Tsimerman [BBT18]. See Chapter 10 §1 [vdD98] for an
introduction to general definable spaces.

Remark 3.3. Robson (see [Rob83]) showed that all semi-algebraic spaces
(the C0-case of the above definition) are actually affine. However, it is not
clear to us if this extends to the Cp-setting. The above notion is general
enough for our needs.

Example 3.4. Let ∆̄ ⊂ Rn be the closed simplex spanned by v0, . . . , vm ∈ kn.
Then ∆̄ is a definable Cp-manifold with corners for all p ≥ 0. As this example
shows, the boundary of a manifold with corners does not have an induced
structure of Cp-manifold for p 6= 0. We are particularly interested in the case
p = 1 because every affine definable set G has a triangulation such that the
maps ∆̄ → G are maps of definable C1-manifolds in the above sense. See
[OS17] and [CP18], and also Proposition 7.4, where we quote this result.

Another well-known example are cells. We refer to Chapter 3 of [vdD98]
for the definition and basic properties of C0-cells. Chapter 7.3 [vdD98]
introduces Cp-cells and proves the decomposition theorem for p = 1, the
general case is similar.



EXPONENTIAL PERIODS AND O-MINIMALITY I 13

Example 3.5. Let C ⊂ Rn be a definable Cp-cell of dimension d. It is
easy to see that there is a of coordinates {xi1 , . . . , xid} on Rn inducing a
definable homeomorphism φ = (xi1 , . . . , xid) : C → φ(C) ⊂ Rd. We give C
the structure of an affine definable Cp-manifold using the chart φ. Then the
inclusion C → Rn is a definable Cp-map of definable Cp-manifolds. In other
words, cells are definable Cp-submanifolds of Rn.

Definition 3.6. Fix an integer p ≥ 1, let d ≥ 0 be an integer, and let M be
a definable Cp-manifold with corners with G ⊂ M a definable subset. We
define Regd(G) to be the set of x ∈ G that admit an open neighbourhood U
in M such that G ∩ U is a submanifold of M of dimension d.

Remark 3.7. The set Regd(G) is open in G, it is empty if dimG < d. If
dim(G) = d, it is the maximal subset of G that is a submanifold of M having
connected components of dimension d. If G and H are disjoint definable
subsets of M , then in general there is no inclusion between the two sets
Regd(G ∪H) and Regd(G) ∪ Regd(H).

The following lemma adapts to our situation the fact that the p-regular
points of given dimension of a definable set constitute a definable set.

Lemma 3.8. Let M,G, and Regd(G) be as in definition 3.6. Then Regd(G)
is a definable subset of M and dimGr Regd(G) < d if dimG = d.

Proof. Assuming the first claim we begin by proving the last claim by
contradiction. Suppose H = Gr Regd(G) has dimension dimG = d. There
is a chart of M on which V ∩ H becomes a definable set of dimension d.
So we may assume H ⊂ G ⊂ Rn × Rm≥0. We fix a Cp-cell decomposition
of G partitioning H and G rH. One cell in H must have top dimension
dimH = dimG and this cell has a point not contained in the closure of any
other cell. This point lies in Regd(G), which is a contradiction.

To show that Regd(G) is definable it suffices to work in a single chart. So
without loss of generality G is a definable subset of Rn×Rm≥0 of dimension d.
We use the classical theory of differential manifolds to characterize submani-
folds locally as graphs of functions. I.e., Regd(G) is the set of points of G
that have an open neighbourhood in M in which G is the graph of a Cp map
defined on an open subset of a projection of Rn+m to d different coordinates.
The argument laid out in [vdDM96, B.9] applies directly to our slightly more
general situation, and implies the definability of Regd(G). �

Lemma 3.9. Let G ⊂ Rn be a definable subset of dimension d. Let π : Rn →
Rd denote the projection to the first d coordinates. There are pairwise disjoint
definable open subsets G0, G1, . . . , GN of Regd(G) with dimGr (G0 ∪ · · · ∪
GN ) < d such that all fibres of π|G0 have positive dimension and such that
π|Gi : Gi → π(Gi) is a chart for all i ∈ {1, . . . , N}.
Proof. Without loss of generality G = Regd(G). Let G′ be the set of points
of G that are isolated in their fibre of π|G. It is definable, see Corollary 1.6,
Chapter 4 [vdD98]. Each fibre of π|G′ is discrete and thus finite with
uniformly bounded cardinality, see Corollary 3.7, Chapter 3 [vdD98]. Let N
be largest cardinality of a fibre.

By definable choice, Proposition 1.2(i) Chapter 6 [vdD98], applied to the
graph of π|G′ there is a definable section ψ1 : π(G′)→ G′ of π|G′ , i.e. π◦ψ1 is
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the identity. The image ψ1(π(G′)) is a definable set. It lies in G′ but possibly
missing some branches. The set of missing points G′1 = G′ r ψ1(π(G′)) is
also definable. Now π|G′1 certainly still has finite fibres, but the maximal
fibre count dropped to N − 1. We repeat this step and find a section
ψ2 : π(G′1) → G′1 and again the fibre count of π on G′2 = G′1 r ψ2(π(G′1))
drops by one.

After N steps, all fibres are exhausted. We obtain definable maps
ψ1, . . . , ψN defined on subsets of π(G′) whose images cover G′ and are
pairwise disjoint.

But the ψi may fail to be continuous. By the Cell Decomposition Theorem,
[vdD98, Chapter 3, Theorem 2.11] applied to the domain of each ψi, we get,
after adjusting N and renaming, finitely many continuous definable maps
ψi : Ci → G′ on cells Ci ⊂ Rd with

⋃
i ψi(Ci) = G′ and with π ◦ ψi the

identity for all 1 ≤ i ≤ N . Observe that the ψi(Ci) remain pairwise distinct.
Suppose dimCi = d, then Ci is open in Rd. As G is a manifold, invariance

of domain implies that ψi(Ci) is open in G and ψi : Ci → ψi(Ci) is a
homeomorphism. Thus π|ψi(Ci) : ψi(Ci) → Ci is a chart. We can safely
ignore cells Ci with dimCi < d; the union H =

⋃
i:dimCi<d

ψi(Ci) is definable

of dimension at most d− 1. Fix a cell decomposition of GrG′ and let G0 be
the union of all d-dimensional cells; then G0 is open, and possibly empty, in
the submanifold G. We add the remaining cells to H. We retain dimH < d
and the lemma follows from G = G0 ∪

⋃
i:dimCi=d

ψ(Ci) ∪H. �

Lemma 3.10. Let p ≥ 1 and (M,φi), (N,ψj) be definable Cp-manifolds
with corners. The the bundles TM , T ∗M and their exterior powers have a
natural structure of a definable Cp−1-manifold with corners. Moreover, a
definable Cp-map f : M → N induces definable Cp−1-maps df : TM → TN
and d∗f : T ∗N → T ∗M .

Proof. We only have to verify definability. This holds because the derivative
of a definable differentiable function is definable. Indeed, in the 1-dimensional
case the graph Γ(f ′) of the derivative is given by the formula{

(x, y)

∣∣∣∣ ∀ε > 0, ∃δ > 0,∀x′, |x′ − x| < δ →
∣∣∣∣f(x′)− f(x)

x′ − x
− y
∣∣∣∣ < ε

}
. �

Many properties of affine definable sets extend immediately to the non-
affine case. This is in particular the case for the notion of dimension and
the stratification by submanifolds. We want to use these facts in order to
integrate differential forms.

Definition 3.11. Let p ≥ 1. Let (M,φi) be a definable Cp-manifold with
corners and G ⊂M a definable subset. A differential form ω of degree d on
G is a continuous section

ω : G→ ΛdT ∗M.

It is called definable, if it is definable as a map in the sense of Definition 3.1 (4).

In the affine case, we can give an explicit description: Let x1, . . . , xn be
the standard coordinates on Rn. For I = {i1, . . . , id} ⊂ {1, . . . , n} a subset
with i1 < i2 < · · · < id we write as usual

dxI = dxi1 ∧ · · · ∧ dxid .
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A differential form on G can be written uniquely as

ω =
∑
I

aI dxI

with aI : G→ R continuous. It is definable if and only if the aI are definable.

Remark 3.12. Note that we do not put differentiability conditions or require
that ω extends to a neighbourhood of G.

Lemma 3.13. Let p ≥ 1, and f : M → N be a definable Cp-map of definable
manifolds with corners. Let G ⊂ M and H ⊂ N be definable subsets
with f(G) ⊂ H. Then the pull-back of a differential form on H defines a
differential form on G. If ω is definable, so is f∗ω|G.

Proof. By definition, f∗ω|G : G→ ΛdT ∗M is the composition

G→ H → ΛdT ∗N → ΛdT ∗M

of continuous maps. In particular, it is definable if ω is definable. �

As usual, we can only expect a well-defined integration theory for differen-
tial forms on oriented domains.

Definition 3.14. Fix an integer p ≥ 1, let d ≥ 0 be an integer, and let M
be a definable Cp-manifold with corners with G ⊂M a definable subset of
dimension d.

(1) A pseudo-orientation on G is the choice of an equivalence class of a
definable open subset U ⊂ Regd(G) such that dim(Gr U) < d and
an orientation on U . Two such pairs are equivalent if they agree on
the intersection. We thereby obtain an equivalence relation.

(2) Given a pseudo-orientation on G with U as in (1) and a differential
form ω of degree d on G, we define∫

G
ω :=

∫
U
ω

if the integral on the right converges absolutely.

Remark 3.15. The same definition also allows us to integrate a d-form ω
over a G of dimension smaller than d: in this case Regd(G) = ∅ and the
integral is set to 0. Such integrals occur in our formulas and are to be read
in this way.

Lemma 3.16. Let p ≥ 1. Let G be a definable subset of a definable Cp-
manifold with corners M .

(1) The integral is well-defined, i.e., independent of the choice of repre-
sentative for the pseudo-orientation.

(2) By restriction a pseudo-orientation on G also induces the choice of
a pseudo-orientation on every definable subset G′ ⊂ G with dimG =
dimG′.

(3) The choice of a pseudo-orientation on G induces a choice of a pseudo-
orientation on every definable superset G ⊂ G′′ such that dim(G′′ r
G) < d, in particular on Ḡ.
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(4) Let π : G′ → G be a definable modification, i.e., there is an open
definable subset U ⊂ Regd(G) with dim(G r U) < d such that
π|U ′ : U ′ = π−1(U)→ U is an isomorphism of definable C1-manifolds
and dim(G′ r U ′) < d. Then the choice of a pseudo-orientation on
G induces a pseudo-orientation on G′.

Proof. If U1, U2 ⊂ Regd(G) are definable open such that dim(G \ Ui) < d,
then the same is true for U1 ∩ U2. Hence it suffices to consider the case
U1 ⊂ U2. By assumption the orientation on U2 restricts to U1. We have∫

U2

ω =

∫
U1

ω

because U2 r U1 has measure 0. The left hand side converges absolutely if
and only if the right hand side does.

We fix a pseudo-orientation on G, i.e., an orientation on some U ⊂ Regd(G)
such that dim(Gr U) < d.

Let G′ ⊂ G, U ′ = U ∩ Regd(G
′). The orientation on U restricts to an

orientation on U ′. We have dim(G′ r U ′) < d, hence this data defines the
pseudo-orientation on G′.

Let G ⊂ G′′, U ′′ = U ∩ Regd(G
′′). The orientation on U restricts to an

orientation on U ′′. As dim(G′′ r G) < d, we also have dim(G′′ r U ′′) < d,
hence again this data defines a pseudo-orientation on G′′.

The case of a modification combines the two operations. �

Corollary 3.17. Let G,H ⊂M be definable subsets of dimension at most
d of a definable manifold with corners, equipped with a pseudo-orientation
on G∪H. Let ω be a definable differential form of degree d on G∪H. Then
with the restricted pseudo-orientations∫

G∪H
ω =

∫
G
ω +

∫
H
ω −

∫
G∩H

ω

and the left hand side is finite if and only if all terms on the right are.

Proof. We may assume dimG = dimH = d. We can decompose G ∪H into
the disjoint subsets G ∩ H,G r H,H r G. Hence it suffices to check the
formula in the case where the two sets are disjoint.

We start with an orientation on a definable open subset U ⊂ Regd(G∪H)
with dim(G ∪ H) r U < d. The pseudo-orientations on G and H are
represented by the restricted orientations on V = U ∩ Regd(G) and W =
U ∩Regd(H), respectively. Then V ∪W represents our pseudo-orientation on
G ∪H. By definition and by the standard computation rules for integration
on manifolds, we find∫

G∪H
ω =

∫
V ∪W

ω =

∫
V
ω +

∫
W
ω =

∫
G
ω +

∫
H
ω. �

Remark 3.18. (1) As in the case of ordinary orientations, the value of
the integral depends on the choice of pseudo-orientation. Note that
even a simple definable set like an interval U , admits infinitely many
different pseudo-orientations. If U has n connected components,
there are 2n possible orientations and we can cut up U as much as
we like.
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(2) For each G the choice U = Regd(G) is canonical if it is possible
to choose an orientation on this set. However, the behaviour of
Regd(G) under standard topological operations is complicated. It is
not true that the choice of an orientation on Regd(G) also induces
an orientation on Regd(Ḡ) (take G = R r {0}). Neither is it true
that Regd(G

′) ⊂ Regd(G) if G′ ⊂ G (take the x-axis in the union of
the coordinate axes in R2). Our more flexible notion sidesteps these
problems.

(3) Note also that every non-empty definable set G admits a pseudo-
orientation because open cells are orientable and G admits a cell
decomposition.

(4) The restriction operation described in the proof of Lemma 3.16(2) is
well-defined in the following sense. Two representatives of a pseudo-
orientation on G restrict to representatives of the same pseudo-
orientation on G′. Moreover, the same holds true for the extension
operation described in the proof of part (3). Finally, extending a
pseudo-orientation from G to G′′ and then restricting it back to G
recovers the original pseudo-orientation. So the extension in part (3)
of the lemma is unique.

Remark 3.19. If G ⊂ Rn is a definable open with the standard orientation
and ω = dx1 ∧ · · · ∧ dxn, then

∫
G ω = vol(G). This number is always finite

if G is bounded.

We will see that the example of the volume form is really the general case,
but before that we need to establish a technical lemma.

Lemma 3.20. Let (M,φi) be a definable manifold with corners, x ∈ M .
Then there is a definable open neighourhood Ux ⊂M with compact closure
and such that Ūx ⊂ Ui for some i.

Proof. We fix i such that x ∈ Ui. Recall that Vi = φi(Ui) is open in
H := Rn × Rm≥0. Hence there is a definable 0 < r < ∞ such that the open

ball H ∩Br(φi(x)) is contained in Vi. Let a ∈ H be definable with distance
at most r/4 from φi(x). Put Vx = Br/2(a) ∩H. Then V̄x ⊂ Br(φi(x)) ∩H is

a compact set contained in Vi. We put Ux = φ−1
i (Vx). �

Lemma 3.21. A finite Z-linear combination of volumes of definable bounded
open subsets of Rd is up to sign the volume of a definable bounded open subset
of Rd.

Proof. All contributions with a positive coefficient can be combined into a
single one by taking the disjoint union of translates of the definable sets. In
the same way all contributions with a negative coefficient can be combined
into a single one. So it suffices to prove that the difference of the volumina
of two definable bounded open subsets of Rd is up to sign the volume of a
definable bounded open subset of Rd. The argument of Viu-Sos, see [VS15,
Section 4] in the semi-algebraic setting works identically in the definable case
and provides what we want. �

Recall that we work with k-definable sets in a fixed o-minimal structure S
expanding (R, <, 0, 1,+, ·).
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Theorem 3.22. Let p ≥ 1, and (M,φi) be a definable Cp-manifold with
corners, G ⊂M a pseudo-oriented compact definable subset of dimension d.
Let ω be a differential form of degree d on G as in Definition 3.11. Then∫

G
ω

converges absolutely. If ω is definable, then the value is up to a sign the
volume of a definable bounded open subset of Rd+1.

Proof. We are going to rewrite our integral as a finite Z-linear combination
of other integrals. Eventually these summand will be absolutely convergent,
proving absolute convergence of the original integral. In the definable case,
every summand will be written as a difference between volumes of bounded
definable open subsets of Rd+1. By Lemma 3.21 this will imply that the
original volume is up to a sign the volume of a single definable bounded open
subset of Rd+1 and hence finish the proof of the theorem.

We begin by showing how to reduce to the case M = Rn. By Lemma 3.20
each point x ∈ G has a definable open neighbourhood Ux in M such that Ūx is
compact and contained in one of the finitely many charts of M . By hypothesis
G is compact, so it is covered by finitely many such neighborhoods, let us call
them U1, . . . , Ua. The Ūi and their multiple intersections inherit a pseudo-
orientation from G. By the inclusion-exclusion principle, Corollary 3.17, we
have ∫

G
ω =

a∑
i=1

∫
Ūi

ω −
∑
i<j

∫
Ūi∩Ūj

ω ± . . . .

We now replace G by one of the Ūi (or multiple intersections), making it
affine.

We have ω =
∑

I aI dxI . Again, it suffices to treat the summands sep-
arately. After a coordinate permutation we may assume without loss of
generality that ω = adx1 ∧ · · · ∧ dxd where a is continuous on G. Recall
that π : Rn → Rd denotes the projection onto the first d coordinates. Let
y1, . . . , yd be the coordinates on Rd. Hence

π∗( dy1 ∧ · · · ∧ dyd) = dx1 ∧ · · · ∧ dxd.

We let G0, G1, . . . , GN be pairwise disjoint as in Lemma 3.9 applied to G.
In particular, G0∪G1∪· · ·∪GN equals G up to a subset of dimension at most
d− 1. All Gi inhert a pseudo-orientation from G and all π|Gi with i ≥ 1 are
charts. We may replace each such Gi by a finite union of open subsets, again
up-to a subset of dimension d− 1, and assume that all G1, . . . , GN carry an
orientation in the classical sense and that π|Gi : Gi → π(Gi) is orientation
preserving. Thus ∫

G
ω =

N∑
i=0

∫
Gi

ω

by Corollary 3.17 if all integrals on the right converge absolutely. Thus it
suffices again to treat a single

∫
Gi
ω.

We begin with the easy case i = 0. By assumption, all fibres of π|G0

have positive dimension, hence π|∗G0
= 0 on differential forms of degree d.



EXPONENTIAL PERIODS AND O-MINIMALITY I 19

Thus the restriction of ω = adx1 ∧ · · · ∧ dxd to G0 vanishes. Hence
∫
G0
ω

converges absolutely with value 0, the volume of ∅.
Now we treat Gi with i ≥ 1. Then π|Gi : Gi → π(Gi) ⊂ Rd is a chart

and thus has an inverse ψi : π(Gi)→ Gi. Note that ψi is of Cp-class . Let
y1, . . . , yd denote the coordinates of Rd. The integral∫

π(Gi)
a ◦ ψi dy1 ∧ · · · ∧ dyd

converges absolutely as a is continuous on the compact G and thus in
particular bounded on Gi. Finally,

ψ∗i ( dx1 ∧ · · · ∧ dxd) = dy1 ∧ · · · ∧ dyd

as π ◦ ψi is the identity. Thus∫
Gi

adx1∧· · ·∧ dxd =

∫
π(Gi)

ψ∗i (a dx1∧· · ·∧ dxd) =

∫
π(Gi)

a◦ψi dy1∧· · ·∧ dyd

converges absolutely.
Suppose that ω is definable, then a is definable. It remains to show that∫

ψi(Gi)
a ◦ψ dy1 ∧ · · · ∧ dyd is the volume of a definable bounded open subset

of Rd+1. This integral equals∫
C+

a ◦ ψi dy1 ∧ · · · ∧ dyd −
∫
C−

|a ◦ ψi|dy1 ∧ · · · ∧ dyd

with C± = {y ∈ ψi(Gi) | ±a(ψi(y)) > 0} both definable bounded and open
in Rd. Hence it equals vol(U+)− vol(U−) with U± = {(y, z) ∈ C± × R : 0 <
z < |a(ψi(y))|}. Note that U± are both definable bounded and open in Rd+1.
This difference is the volume of a definable bounded open subset of Rd+1 by
Lemma 3.21. �

Remark 3.23. Let us explain why we cannot replace Rd+1 by Rd in the
theorem above. Consider the half-circle G = {(x, y) ∈ R× (0,∞) | x2 + y2 =
1}. It is relatively compact, semi-algebraic and definable without parameters.

Then Reg1(G) = G for all p ≥ 1. Now
∫
G y dy = ±

∫ 1
−1

√
1− y2 dy = ±π/2.

As π is transcendental,
∫
G y dy cannot be the volume of Q-semi-algebraic

subset of R.

Remark 3.24. The natural way of computing the integral is to pull the
differential form back to a chart (via the inverse of the chart map) and
evaluate there. However, this pull-back involves a Jacobian matrix. Its
entries are not bounded in general, hence convergence is not automatic.

Here is an explicit example: Let M = R2, G = {(y2, y)|y ∈ [0, 1]}, ω =
a dx1+b dx2 for continuous a, b on G. We have Reg1(G) = {(y2, y)|y ∈ (0, 1)}.
It is a submanifold. We can use the projections π1 and π2 to the first or
second coordinate as a chart. In both cases the image in R is the open
interval I = (0, 1). The inverse ψ1 : I → G of π1 is t 7→ (t,

√
t). Its Jacobian

matrix is (
1,

1

2
√
t

)
.
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The second entry is unbounded on I. We have

ψ∗1ω = (a ◦ φ1) dt+ (b ◦ φ1)
1

2
√
t

dt.

The coefficient function is unbounded. (Note that a ◦ φ1 and b ◦ φ1 are
bounded because a and b are. Note also that differentiability of a and b does
not come into play. It suffices that they are continuous.) The solution is to
treat the summands a dx1 and b dx2 separately and use the projection π1 for
the first summand and π2 for the second summand. We then interpret

a dx1 = π∗1((a ◦ φ1) dt), bdx2 = π∗2((b ◦ φ2) dt)

and the convergence issue disappears.

Remark 3.25. A similar convergence argument for integrals can also be
found in [HKT15]. Alternatively, convergence also follows from the existence
of triangulations that are strictly of class C1, shown in [OS17] and [CP18].
These references treat explicitly the case of C∞-forms, but actually this
assumption is not needed.

4. Oriented real blowup

The oriented real blowup is a natural construction in the context of semi-
algebraic geometry. Nevertheless, it seems that little is written about it from
this point of view. The construction is discussed in §I.3 of [Maj84], §3.4
of [FJ20] and [Gil]. One of the main purposes of this section is to argue
that the oriented real blowup is semi-algebraic (in other words, definable
in Ralg) with suitable parameters. For a general discussion we refer to the
aforementioned sources.

Let X be a topological space, let π : L → X be a complex (topological)
line bundle on X, and let s : X → L be a section. Let L∗ be the complement
of the zero section. We put

B∗L,s = {l ∈ L∗ | s(π(l)) ∈ R≥0l}.

If s(x) = 0, then B∗L,s contains Lx r {0}, otherwise, it contains the unique

open half-ray generated by s(x). In particular, B∗L,s is stable under the
fibrewise action of R>0.

Following [Gil], we call the quotient the simple oriented real blowup:

BloL,s(X) = B∗L,s/R>0.

The simple oriented real blowup comes equiped with a natural projection
map π : BloL,s(X)→ X that is an isomorphism outside the zero locus of s.

If X is a complex analytic space, and D ⊂ X an effective Cartier divisor,
and s the tautological section of O(D), then we will write BD, and BloD(X)
for BO(D),s and BloO(D),s(X) respectively.

Example 4.1. The blowup P̃1 := Blo∞(P1
C) is a compactification of C by a

circle at infinity. The details of the following picture will be explained as we
describe the general situation in local coordinates.
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0
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i∞

θ∞

Uε,R
S̄r

For every z ∈ S1 = {z ∈ C | |z| = 1} there is a point z∞ on the boundary:
it is the point of intersection of the boundary and the half-ray z · R≥0. A
system of open neighbourhoods around z∞ is given by the sets

Uε,R = {w ∈ C | |w| > R and |arg(w)− arg(z)| < ε}
∪ {w∞ | | arg(w)− arg(z)| < ε}

for small ε and positive real R.
The closure of the set Sr = {z ∈ C | <(z) ≥ r} is given by the union of Sr

and the half-circle {z∞ | <(z) ≥ 0}.

Suppose that L1, . . . , Ln are line bundles on X with respective sections
s1, . . . , sn, and put L = L1 ⊗ · · · ⊗ Ln with section s1 ⊗ · · · ⊗ sn. We may
then form the fibre product

BloL1,s1(X)×X · · · ×X BloLn,sn(X)

which naturally maps to BloL,s(X).

Definition 4.2. Let X be a smooth analytic space, and let D ⊂ X be a
simple normal crossings divisor. Denote the (smooth) irreducible components
ofD byD1, . . . , Dn. The oriented real blowup ofX inD, denoted by OBlD(X)
is the fibre product

BloD1(X)×X · · · ×X BloDn(X).

Note that OBlD(X) comes with a natural projection map to X.

One topological intuition for OBlD(X) is the complement of a tubular
neighbourhood of D in X. We now make this picture precise by a description
in local coordinates.

Consider a domain U in Cn and D = D1 ∪ . . . ∪ Dm the union of the
first m coordinate hyperplanes (intersected with U). In that case we have
the following explicit description of OBlD(U)

(2) {(z1, . . . , zn, w1, . . . , wm) ∈ Cn × (S1)m |
(z1, . . . , zn) ∈ U, ziw−1

i ∈ R≥0 for 1 ≤ i ≤ m}
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and π is the projection (z1, . . . , zn, w1, . . . , wm) 7→ (z1, . . . , zn). In particular,
it is a C∞-manifold with corners. Local coordinates are defined by

OBlD(U)→ Rm≥0 × (S1)m × Cn−m(3)

(z1, . . . , zn, w1, . . . , wm) 7→
(
z1

w1
, . . . ,

zm
wm

, w1, . . . , wm, zm+1, . . . , zn

)
.

In particular, this gives the blow-up the the structure of a manifold with
corners. As a consequence, we obtain the following result.

Proposition 4.3. Let k ⊂ C be a field which is algebraic over k0 = k ∩ R.
Let X be a smooth algebraic variety over k and let D ⊂ X be a simple
normal crossings divisor. Then the oriented real blowup OBlD(Xan) can
naturally be endowed with a structure of k0-semi-algebraic C∞-manifold with
corners (see Definition 3.1) in such a way that the natural projection map
π : OBlD(Xan)→ Xan is morphism of k0-semi-algebraic C∞-manifolds with
corners.

Proof. Without loss of generality k0 = k̃ is real closed and k = k̄ algebraically
closed. Let (X̄, D̄) be a good compactification of the log pair (X,D). It
suffices to prove the proposition for (X̄, D̄) because OBlD(Xan) is the preim-
age of Xan in OBlD̄(X̄). In other words, without loss of generality Xan is
compact.

Without loss of generality X is connected. By definition, for every point
x ∈ X, there is a Zariski-open neighbourhood Ux and an étale map p : Ux →
Ad (with d = dimX) such that p(x) = 0 and D ∩ Ux = p−1({z1 · · · zm = 0}).
By the semi-algebraic implicit function theorem, the map pan is invertible on
an open ball Bx around 0 in Cd. Let Vx = p−1(Bx) ⊂ Xan. The coordinate
functions z1, . . . , zm are both holomorphic and k0-semi-algebraic. Hence the
preimage

π−1(Vx) ⊂ OBlD(Xan)

has the shape described after Definition 4.2. The map (3) defines a chart.
More precisely, we also need to cover S1 ⊂ R2 by finitely many semi-algebraic
charts. As Xan is compact, finitely many of the Vx suffice to cover Xan. The
transition maps are C∞ and k0-semi-algebraic because the transition maps
between the p(Vx) are holomorphic and k0-semi-algebraic. �

Lemma 4.4. The construction of the oriented real blowup is functorial: Let
X1 and X2 be analytic spaces, and let Di ⊂ Xi be a simple normal crossings
divisor. Let f : X1 → X2 be a morphism, such that f−1(D2) ⊂ D1. Then

there is a natural morphism f̃ such that the following diagram commutes:

OBlD1(X1) OBlD2(X2)

X1 X2

f̃

f

If f is a morphism of smooth algebraic varities, then f̃ is a C∞-morphism
of semi-algebraic manifolds with corners.

Proof. Compute in local coordinates. �



EXPONENTIAL PERIODS AND O-MINIMALITY I 23

Remark 4.5. In the future, it will often be the case that we start with a
variety X that is not complete, and consider the oriented real blow-up of the
boundary divisor X∞ of a completion X̄ of X. In such a situation, we will
write BX̄(X) instead of OBlX∞(X̄).

Remark 4.6. It is not clear to us whether OBlD(X) is affine as semi-
algebraic C1-manifold with corners. In other words, does there exist a semi-
algebraic C1-embedding of OBlD(X) into Rn? Compare with Remark 3.3.

5. Naive exponential periods

Let k ⊂ C, k0 = k ∩ R and assume that k is algebraic over k0, see the
discussion in Section 1.1. Recall from Definition 0.2 the notion of a naive
exponential period. We denote Pnv(k) the set of naive exponential periods.

Let P̃1 denote the real oriented blow-up of P1 at the point at infinity, see
Example 4.1.

5.1. Examples of integrals. We first consider some instructive examples.

Example 5.1. Let G = [1,∞) ⊂ C, f = 1
z , ω = dz. Consider∫

G
e−fω =

∫ ∞
1

e−
1
t dt =

∫ 0

1
−e−s

1

s2
ds.

It does not converge. Indeed, the image f(G) = (0, 1] is not closed, hence
f : G → C is not proper. The properness condition in the definition of a
naive exponential period was added to exclude cases like this.

Example 5.2. Once again let G = [1,∞) ⊂ C, f = 1
z , but ω = 1

z2
. As in

the previous example, the data does not satisfy the definition of a naive
exponential period because f : G→ C is not proper. However, this time∫

G
e−fω =

∫ ∞
1

e−
1
t

1

t2
dt =

∫ 0

1
e−s ds

converges. It can be understood as a naive exponential period with G′ = [0, 1],
f ′ = z, ω′ = dz.

Example 5.3. Let s ∈ S1 with <(s) > 0. Consider the half ray Gs = {rs |
r ≥ 0}, f = z, ω = dz. If s 6= 1, this data does not satisfy the definition
of a naive exponential period because f(Gs) = Gs does not have bounded
imaginary part. Nevertheless,∫

Gs

e−f dz =

∫ ∞
0

e−rss dr = −e−rs
∣∣∣∞
1

= 1

converges and is obviously an exponential period. Note that it is independent
of s. Actually, Gs defines a class in Hrd

1 (A1, {0};Z), see Section 6.1 below,

because its closure in P̃1 is contained in B◦ = B◦P1(A1, id). The homology
class is independent of s (fill in the triangle between G1 and Gs, the third
edge is in ∂B◦). The period integral only depends on the homology class,
hence the independence follows from the abstract theory as well. We do not
allow Gs in our definition of a naive exponential period, but the same number
can be obtained as a naive exponential period for G1. This is a general
feature, see [CH20, Proposition 11.4]. In Definition 5.4 we will introduce the
notion of a generalised naive exponential period which allows all Gs.
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5.2. General properties.

Definition 5.4. A generalised naive exponential period over k is a complex
number of the form ∫

G
e−fω

where G ⊂ Cn is a pseudo-oriented closed k0-semi-algebraic subset, ω is a
rational algebraic differential form on Ank that is regular on G and f is a
rational function on Ank such that f is regular and proper on G and, moreover,

the closure of f(G) in P̃1 is contained in B◦ = C ∪ {s∞ | s ∈ S1,<(s) > 0}.
We denote Pgnv(k) the set of generalised naive exponential periods.

We are going to show in Corollary 5.11 that these generalised naive
exponential periods converge absolutely. For the rest of this section we
assume absolute convergence.

Lemma 5.5. Naive exponential periods are generalised naive exponential
periods.

Proof. The condition f(G) ⊂ Sr,s implies f(G) ⊂ B◦. �

Lemma 5.6. The sets Pnv(k) and Pgnv(k) are k̄-algebras. Moreover, Pnv(k) =
Pnv(k̄) and Pgnv(k) = Pgnv(k̄).

Proof. The arguments are the same for both notions. We formulate it for
naive exponential periods.

For the first statement we use the same argument as for f = 0, see [HMS17,
Proposition 12.1.5]:

We give the argument for the second. Let L/k be a finite subextension
of k̄/k. Since k is algebraic over k0, the extension L/L0 with L0 = L ∩ R is
also algebraic, for every finite extension L/k. Hence, Pnv(k̄) =

⋃
L/k Pnv(L)

where L runs through all finite subextensions of k̄/k. Thus it suffices to show
that Pnv(k) = Pnv(L) for L/k finite.

We view AnL → Spec(L) → Spec(k) as an affine k-variety contained in

An+1
k . We call it Ã. Then

Ã×k C =
⋃

σ:L→C
AnC

where σ runs through all embeddings of L into C fixing k. If
∫
G e−fω is a

naive exponential period over L, then f and ω are defined over k when viewed
on Ã ⊂ An+1. The extension L0/k0 is algebraic, hence every L0-semialgebraic
set is also k0-semialgebraic. �

In particular, we can move between k, k̄, k̄ ∩ R and k0 = k ∩ R without
changing the set of naive exponential or generalised exponential naive periods.

Remark 5.7. The assumption G ⊂ Cn = (An)an is surprising when com-
paring to the literature on ordinary periods. Most period references work
with semi-algebraic G ⊂ Rn. The two points of view are not equivalent
even though of course Cn ∼= R2n as semi-algebraic manifolds. We work
with f ∈ k(z1, . . . , zn) and ω ∈ Ωd

k(z1,...,zn)/k. Simply replacing C by R in

the definition would eliminate all non-real periods (at least if we assume
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k ⊂ R as we may by the above). In the case of ordinary periods, a complex
number is a period if and only if its real and imaginary part can be written
as
∫
G ω with G ⊂ Rn and ω ∈ Ωd

k(z1,...,zn)/k. We cannot show the same simple

characterisation in the exponential case and it is very likely false.

Lemma 5.8. Let k = k0 ⊂ R. The following are equivalent for α ∈ C:

(1) The number α is a naive exponential period over k.
(2) It can be written as

α =

∫
G

e−fω

with G ⊂ Rn a pseudo-oriented closed k-semi-algebraic subset of
dimension d, f ∈ k(i)(z1, . . . , zn) regular on G such that f |G : G→ C
is proper with image contained in Sr,s and ω ∈ Ωd

k(i)(z1,...,zn)/k(i) is

regular on G.
(3) Its real and imaginary part can be written as

<(α) =

∫
G

(
cos(f2)e−f1ω1 + sin(f2)e−f1ω2

)
=(α) =

∫
G

(
− sin(f2)e−f1ω1 + cos(f2)e−f1ω2

)
with G ⊂ Rn a pseudo-oriented closed k-semi-algebraic subset of di-
mension d, f1, f2 ∈ k(z1, . . . , zn) regular on G such that f1|G, f2|G : G→
R are proper, f1(G) is bounded from below, f2(G) is bounded, and
ω1, ω2 ∈ Ωd

k(z1,...,zn)/k regular on G.

Moreover, f1, f2 in (3) are the real and imaginary parts of f in (2), respec-
tively, and similarly for ω1, ω2. Finally, α is a generalised naive exponential
period if and only if it can be written as in (2) with f(G) ⊂ B◦.

Proof. Let G, f, ω as in the definition of a naive exponential period. By
definition G ⊂ Cn with coordinates z1, . . . , zn. By sending a complex num-
ber to its real and imaginary part we view G as a real subset G′ of C2n

with coordinates x1, y1, x2, y2, . . . , xn, yn. Let Σ: C2n → Cn be given by
(x1, y1, . . . , xn, yn) 7→ (x1 + iy1, . . . , xn + iyn). By definition Σ(G′) = G,
compatible with the pseudo-orientation. Put f ′ = Σ∗(f) and ω′ = Σ∗(ω).
Then by the transformation rule∫

G′
e−f

′
ω′ =

∫
G

e−fω.

Note that f ′ and ω′ are defined over k(i). This shows that (1) implies (2).
Conversely, a number of the form in (2) is by definition a naive exponential
period over k(i). By Lemma 5.6 it is also a naive exponential period over k, so
(2) implies (1). Let G, f, ω as in (1). We put f = f1+if2 and ω = ω1+iω2 and
compute e−fω. The conditions on f and ω are equivalent to the conditions
on f1, f2 and ω1, ω2. So properties (2) and (3) are equivalent.

The final claim follows as the equivalence proof of (1) and (2). �

5.3. Convergence and definability. The conditions on our domain of
integration can be reformulated.
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Lemma 5.9. Let f : An → P1 be a rational function over k and let G ⊂ Cn
be closed a semi-algebraic set such that f is regular and proper on G. Let ω
be a rational differential form on An over k. Let X ⊂ Pn be the complement
of the polar loci of f and ω, X̄ a good compactification of X such that f
extends to f̄ : X̄ → P1. Let Ḡ be the closure of G in the real oriented blow-up
BX̄(X) of X̄ at the divisor at infinity, see Remark 4.5, and G∞ = ḠrG.
(The case G∞ = ∅ is allowed.)

Then f extends to a semi-algebraic C∞-map f̃ : BX̄(X)→ P̃1 of compact
semi-algebraic C∞-manifolds with corners with boundary mapping G∞ to
∂P̃1. Moreover,

(1) (Naive exponential periods) f(G) ⊂ Sr,s for some r, s if and only if

f̃(G∞) ⊂ {1∞}.
(2) (Generalised naive exponential periods) f(G) ⊂ B◦ if and only if

f̃(G∞) ⊂ B◦.

Proof. By definition of X, we have f̄−1(∞) ⊂ X̄ rX. By Lemma 4.4 we get

an induced C∞-morphism of semi-algebraic manifolds with corners f̃ .
Let (gi)i≥1 be a sequence in G converging to g ∈ Ḡ. Assume g ∈ G∞. We

have g ∈ ∂BX̄(X) because G ⊂ Xan is closed. In particular, the image of g
in X̄an is in the complement of Xan.

We claim that f̃(g) /∈ C. Assume f̃(g) ∈ C ⊂ P̃1. Note that lim f̃(gi) =

f̃(g) by continuity. As f is proper, f(G) ⊂ C is closed. All f̃(gi) are in f(G),

hence so is f̃(g). Let D ⊂ C be a closed disk around f̃(g). It is compact,

hence so is its preimage E := f̃ |−1
G (D) ⊂ G . There is N ≥ 1 such that

f̃(gi) ∈ D for all i ≥ N . Hence their preimages gi are in E. As E is compact,
the limit point g is in E, in particular in G. This is a contradiction. We
have shown that f̃(G∞) ⊂ ∂P̃1.

Note that f(G) = f̃(Ḡ). Hence (2) is obvious. For (1) note that S̄r,s∩∂P̃1 =

{1∞}. Hence f(G) ⊂ Sr,s implies f̃(G∞) ⊂ {1∞}. Conversely, consider a

small open neighbourhood U of 1∞ in P̃1. It intersects C inside some strip
of the form Sr,s. As Ḡ is compact, so is G′ = Ḡr f̃−1(U). The image f(G′)
is compact, so bounded in C. By enlarging r and s, we ensure that both
f(G′) and f(G) ∩ U are contained in the same strip. �

Lemma 5.10. Let f and G be as in the definition of a generalised naive
exponential period. Let Ḡ be the compactification of G as in Lemma 5.9 and
G∞ = ḠrG. Let c be a rational function on An which is regular on G. The
extension of e−fc by 0 on G∞ yields a continuous function on Ḡ.

Proof. Let (gi)i≥1 be a sequence in G converging to g ∈ G∞. Then

|e−f(gi)| = e−<(f(gi)) → 0

because f(gi) tends to f̃(g) ∈ ∂B◦. The function c has at worst a pole in g,
but the exponential factors decays faster than |c(gi)| grows. In total

lim
i→∞
|e−f(gi)c(gi)| = 0. �
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Corollary 5.11. Assume that G, f, ω define a generalised naive exponential
period. Then ∫

G
e−fω

converges absolutely.

Proof. We apply Theorem 3.22 to Ḡ ⊂ BX̄(X) as in Lemma 5.9. It is
compact. By Lemma 5.10, the C∞-form e−fω on G extends to a continuous
form on Ḡ. This is enough. �

Theorem 5.12. If a number α ∈ C is a naive exponential period over k, then
its real and imaginary part are up to signs volumes of compact subsets S ⊂ Rn
defined in the o-minimal structure Rsin,exp = (R, <, 0, 1,+, ·, sin|[0,1], exp) with
parameters from k0.

Proof. By Lemma 5.6, we may assume k = k0. We use the characterisation
of naive exponential periods given in parts (2) and (3) of Lemma 5.8. Thus
α =

∫
G e
−fω with

<(α) =

∫
G

(
cos(f2)e−f1ω1 + sin(f2)e−f1ω2

)
,

=(α) =

∫
G

(
− sin(f2)e−f1ω1 + cos(f2)e−f1ω2

)
where G ⊂ Rn is closed and k-semi-algebraic of dimension d carrying a
pseudo-orientation, f1, f2 ∈ k(z1, . . . , zn) are regular and proper on G, f1(G)
is bounded from below, f2(G) is bounded, and ω1, ω2 ∈ Ωd

k(z1,...,zn)/k.

We want to apply Theorem 3.22. Again we apply it to the compact
k0-semialgebraic C∞-manifold with corners BX̄(X) of Lemma 5.9 and the
closure Ḡ of G BX̄(X). It is compact and a semi-algebraic subset of BX̄(X),
hence definable in Rsin,exp. The forms <(e−fω) and =(e−fω) are definable
on G∞ because they vanish identically. Hence it remains to verify the
definability on the affine G itself. The forms ω1 and ω2 are algebraic, in
particular definable. By assumption f2 is bounded, hence using Remark 2.14
the function sin(f2) is definable in our o-minimal structure. The same is
true for cos(f2) because cos(f) = sin(f + π/2), and π is definable in the
o-minimal structure Rsin,exp. �

Remark 5.13. The above argument does not work for generalised naive
exponential periods. It is essential that the imaginary part of f is bounded
on G. However, we are going to show (see [CH20, Theorem 13.4]) that every
generalised naive exponential period is actually a naive exponential period,
hence the consequence still applies.

Remark 5.14. In contrast to the case of ordinary periods, we do not
expect that all volumes of definable sets in this o-minimal structure are
naive exponential periods. The above argument only produces very special
definable sets: there is no need of nesting exp or sin|[0,1]. The Euler number
e is definable (as exp(1)), hence also ee (as exp(e)). The number e is known

to be an exponential period (e.g.,
∫ 1

0 (es + 1) ds). However, we do not see an
obvious way to write ee as an exponential period. It would be very interesting
to give a characterisation of the sets that do occur.
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5.4. The definition of Kontsevich and Zagier. In §4.3 of [KZ01], Kont-
sevich and Zagier give the following definition. An exponential period in
the sense of Kontsevich–Zagier is “an absolutely convergent integral of the
product of an algebraic function with the exponent of an algebraic function,
over a real semi-algebraic set, where all polynomials entering the definition
have algebraic coefficients”. We take this to mean numbers of the form∫

G
e−fω

where G ⊂ Rn is semi-algebraic over Q̃ = Q ∩ R, f ∈ Q(z1, . . . , zn), and ω
a rational algebraic differential form defined over Q such that the integral
converges absolutely. It is not clear to us if they want dim(G) = n. In this
case, there is a prefered orientation from the orientation of Rn, in the general
case we have to orient G.

We have shown that naive and generalised naive exponential periods over
Q are absolutely convergent. In particular, a generalised naive exponential
period over Q is an exponential period in the sense of Kontsevich–Zagier.

What about the converse?

Example 5.15. Let G = [1,∞) ⊂ R, f = iz, ω = 1
z2

dz. Then∫
G

e−fω =

∫ ∞
1

1

t2
e−it dt =

∫ ∞
1

1

t2
cos(−t) dt+ i

∫ ∞
1

1

t2
sin(−t) dt

converges absolutely because sin and cos are bounded by 1. However, the
data does not define a generalised naive exponential period. The interval
G is not a cycle for rapid decay homology of (A1, {1}). We do not have
limt→∞<(f(t))→∞ on G.

Hence:

Conjecture 5.16. There are exponential periods in the sense of Kontsevich–
Zagier which are not (generalised) naive exponential periods.

This is in the spirit of the period conjecture: if a number is not obviously
a period, than it is not. As the example demonstrates, the condition on
absolute convergence only implies that f(G) ⊂ P̃1 is contained in C∪{s∞|s ∈
S1,<(s) ≥ 0}. The above example uses the boundary point i∞. For such f ,
the absolute convergence of the integral depends on the choice of ω.

We propose the following modification:

Definition 5.17. An absolutely convergent exponential period over k is a
complex number obtained as the value of an absolutely convergent integral
of the form

(4)

∫
G

e−fω

where G ⊂ Cn is a pseudo-oriented (not necessarily closed) k0-semi-algebraic
subset, ω is a rational algebraic differential form on Ank that is regular on G,

f a rational function on Ank regular on G and the closure of f(G) in P̃1 is
contained in B◦.

We denote Pabs(k) the set of all absolutely convergent exponential periods
over k.
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Remark 5.18. The regularity condition for f and ω on G is harmless. We
may replace G by the open subset G′ of points in which f and ω are finite.
The value of the integral only changes if dim(G−G′) = dim(G), i.e., if there
is an open U ⊂ G on which f or ω are infinite. The integral

∫
U e−fω does

not make sense in this case, so we definitely want to exclude it. Note that
the condition on f(G) excludes Example 5.15 where we have f(G) = [i, i∞]
and i∞ /∈ B◦.

We are going to show that every absolutely convergent exponential period
is a generalised naive exponential period. Also for later use, let us be more
precise.

Proposition 5.19. Let α be an absolutely convergent exponential period
over k ⊂ R with domain of integration as in (4) of dimension d. Then there
are:

• a smooth affine variety X over k of dimension d,
• a simple normal crossings divisor Y ⊂ X,
• a closed k-semi-algebraic subset G ⊂ X(R) of dimension d such that
∂G = GrGint is contained in Y ,
• a pseudo-orientation on G,
• a morphism f : Xk(i) → A1

k(i) such that f |G : G → C is proper and

such that the closure f(G) ⊂ P̃1 is contained in B◦,
• a regular algebraic d-form ω on Xk(i),

such that

α =

∫
G

e−fω.

Proof. We start with a presentation

α =

∫
G

e−fω

with G of dimension d as in the definition of an absolutely convergent
exponential period and modify the data without changing the value. In
particular, G is equipped with a pseudo-orientation. With the same trick
as in Lemma 5.8, we may assume that G ⊂ Rn = Ank(R) is k-semi-algebraic
with f, ω algebraic over k(i).

Let X0 ⊂ Pnk be the Zariski-closure of G. It is an algebraic variety defined
over k of dimension d, see the characterisation of dimension in [BCR98,
Definition 2.8.1]. Moreover, dimX0(R) = d as a real algebraic set. By
assumption, f is a rational map on X0,k(i). After replacing X0 by a blow-up
centered in the smallest subvariety of X0 defined over k containing the locus
of indeterminancy of f , it extends to a morphism f0 : X0,k(i) → P1

k(i). By

construction, G ⊂ X0(R). Let G0 := Ḡ ⊂ Xan
0 be the closure. It is contained

in X0(R) and compact because Xan
0 is. It inherits a pseudo-orientation from

G. Let Y0 ⊂ X be the union of X0,sing and the Zariski closure of ∂G0, where
the boundary is taken inside X0(R). It has dimension less than d.

As the next step, let π : X1 → X0 be a resolution of singularities such
that the preimage Y1 of Y0 is a divisor with normal crossings. The map
π is an isomorphism outside Y0. As Y0 ⊂ X0 has codimension at least 1,
the intersection G0 ∩ Y0(R) has real codimension at least 1 in G0. Let G1
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be the “strict transform” of G0 in Xan
1 , i.e., the closure of the preimage of

U = G0 r (G0 ∩ Y0(R)). By construction ∂G1 ⊂ G1 r π−1(U) ⊂ Y1. Let
ω1 = π∗ω. By Lemma 3.16 (4), the set G1 inherits a pseudo-orientation.
Moreover, ∫

G1

e−f1◦ππ∗ω =

∫
G

e−fω,

where the left hand side converges absolutely because the right hand side
does.

We claim that after further blow-ups, we can reach X2 → X1 preserving
the properties of X1, Y1, and G1 such that, in addition, points of G2 in the
polar locus of ω2 are contained in the polar locus of f2.

We first prove the claim. Let X1,∞ be the polar locus of f and X1,ω the
polar locus of ω, i.e., the smallest closed subvarieties over k such that their
base change to k(i) contains the poles of f and ω, respectively. Note that
G1 is disjoint from X1,∞ because f1 is regular on G1 and G1 is contained in
the real points of X1.

Let x ∈ G1 be a point such that f1 is regular, but ω1 has a pole. Let U1

be a small compact neighbourhood of x in G1 in which f1 is regular. By
assumption, ∫

U1

e−f1ω1

converges absolutely. As f1 is regular on U1, the factor e−f1 and its inverse
are bounded. Hence the absolute convergence of the integral is equivalent to
absolute convergence of the integral∫

U ′1

ω1.

This case already shows up in the case of ordinary periods, see the proof
of [HMS17, Lemma 12.2.4]. The argument is due to Belkale and Brosnan
in [BB03]. After a blow-up X2 → X1 we find holomorphic coordinates such
that the pull-back ω2 of ω1 has the shape

unit×
n∏
j=1

z
ej
j dz1 ∧ · · · ∧ dzn

with ej ∈ Z. Absolute convergence is only possible if ej ≥ 0 for all j, i.e., if
ω2 is regular on U2. This finishes the proof of the claim.

Let X be the complement of the polar loci of f2 and ω2, Y = X ∩ Y2,
f and ω the restrictions of f2 and ω2 to X, and G = Xan ∩ G2. The map
f2 : G2 → (P1)an is proper, and hence so is f : G → C. The data satisfies
all properties stated in the proposition, with the exception that X is only
quasi-projective rather than affine. We have X ⊂ PNk for some N . Let H be

the hypersurface defined by the equation X2
0 + · · ·+X2

N = 0. Then PNk rH is

affine. Note that G∩Han = ∅ because G ⊂ PN (R) and H(R) = ∅. Hence we
may replace X by Xr (X ∩H), making it quasi-affine. Now X is of the form
X ′ r V (s1, . . . , sm) for finitely many si ∈ O(X ′). Let H ′ = V (s2

1 + · · ·+ s2
m).

Note that X(R) = (X rH ′)(R). Hence we may replace X by its open subset
X ′ rH ′, making it affine. �
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Corollary 5.20. The set of absolutely convergent exponential period equals
the set of generalised naive exponential periods:

Pgnv(k) = Pabs(k).

Proof. By Corollary 5.11, every generalised naive exponential period is an
absolutely convergent exponential period.

Let α be an absolutely convergent exponential period. By the same
argument as for naive exponential periods (see Lemma 5.6), we may replace
k by k ∩ R. We apply Proposition 5.19. Let X ′ ⊂ X be a dense open affine
subvariety, G′ = G ∩ X ′an. As G ⊂ X(R) is of full dimension, we have
dim(GrG′) < dim(G), hence the integral does not change when restricting
to the open subset G′ of G. We replace X, G by X ′, G′. Now X ⊂ An. The
morphism f : Xk(i) → A1

k(i) extends to a rational morphism Ank(i) → A1
k(i).

The differential form ω on X extends to a rational differential form on Ank(i).

This data satisfies the assumptions of the definition of a generalised naive
exponential period. �

Remark 5.21. It is not clear to us if it is equivalent to restrict to G ⊂ Rn of
dimension n in the definition of an absolutely convergent exponential period.
We tend to expect that it fails to be true. The analogous statement for
ordinary periods holds true because they turn out to be volumes of bounded
semi-algebraic sets (see [HMS17, Section 12.2], also [VS15]). We have replaced
this by our Theorem 3.22. Close inspection of the proof only shows that
every naive exponential period (and hence by [CH20, Theorem 13.4] also
all absolutely convergent exponential periods) can be written as a Z-linear
combinations of numbers of the form∫

G
e−f dx1 ∧ · · · ∧ dxn

for G ⊂ Rn of dimension n, f : G→ C continuous with semi-algebraic real
and imaginary part.

Remark 5.22. We pick up again on Example 5.15. As explained previously,
the integral

∫∞
1 e−it dt

t converges absolutely, but does not obviously define a
generalised naive period. We concentrate on the real part. Integration by
parts gives ∫ ∞

1

cos(t)

t2
dt = cos(1)−

∫ ∞
1

sin(t)

t
dt

= cos(1)− π

2
+

∫ 1

0

sin(t)

t
dt

because of the classical identity
∫∞

0
sin(t)
t dt = π

2 . Note that the function
sin(t)
t is entire, so there are no convergence issues with the last integral. The

numbers cos(1) and π/2 are definable in the o-minimal structure Rsin,exp

of Definition 2.13. The same is true for the function sin(t)
t . Hence we have

written our number as the volume of a set that is definable in Rsin,exp. Note,
however, that the formula does not give a presentation as an absolutely
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convergent exponential period. We have∫ 1

0

sin(t)

t
dt =

∫ 1

0
=
(

eit

t

)
dt,

but the real part does not converge for the choice G = (0, 1), f = iz, and
ω = dz

z .

6. Review of cohomological exponential periods

Throughout this section let k ⊂ C be a subfield. All varieties are defined
over k.

We give the definition of exponential periods following [FJ20] concentrating
on the smooth affine case at the moment.

6.1. Rapid decay homology. [FJ20, 1.1.1] Given a real number r, let
Sr = {z ∈ C | <(z) ≥ r}.
Definition 6.1. Let X be a complex algebraic variety, Y ⊂ X a subvariety,
f ∈ O(X). The rapid decay homology of (X,Y, f) is defined as

Hrd
n (X,Y, f) = lim

r→∞
Hn(Xan, Y an ∪ f−1(Sr);Q).

For r′ ≥ r, there is a projection map on relative homology, so this really
is a projective limit. A direct limit construction using singular cohomology
yields rapid cohomology Hn

rd(X,Y, f). It is dual to rapid decay homology.
By [FJ20, 3.1.2], these limits stabilise, so it suffices to work with a single,
big enough r. Indeed:

Theorem 6.2 (Verdier [Ver76, Corollaire 5.1]). There is a finite set Σ ⊂ C
such that f |f−1(CrΣ) : f−1(Cr Σ)→ Cr Σ is a fibre bundle.

As Sr is contractible, this implies that all f−1(Sr) with r sufficiently large
are homotopy equivalent to a fibre of f .

There is an alternative description of Hrd
n (X, f) which is better suited

to the computation of periods. It is originally due to Hien and Roucairol,
see [HR08]. We follow the presentation of Fresán and Jossen in [FJ20,
Section 3.5].

We fix a smooth variety X and f ∈ O(X). Let X̄ be a good com-
pactification, i.e., such that X̄ is smooth projective, X∞ = X̄ r X is a
divisor with normal crossing and f extends to f̄ : X̄ → P1. We decompose
X∞ = D0∪D∞ into simple normal crossings divisors such that f̄(D∞) = {∞}
and f̄ : D0 → P1 is dominant on all components, i.e., into vertical and hori-
zontal components.

Definition 6.3. We denote by π : BX̄(X)→ X̄an the real oriented blow-up

OBlX∞(X̄), see Definition 4.2. Let f̃ : BX̄(X) → P̃1 be the induced map,
see Lemma 4.4. We also define

B◦X̄(X, f) = BX̄(X) r
(
π−1(Dan

0 ) ∪ f̃−1({s∞ ∈ P̃1|<(s) ≤ 0})
)
,

∂B◦X̄(X, f) = B◦X̄(X, f) rXan = B◦X̄(X, f) ∩ f̃−1({s∞ ∈ P̃1|<(s) > 0}).

We are going to omit the subscript X̄ as long as it does not cause confusion.
At this point we only consider them as topological spaces. In fact B◦

X̄
(X, f)

is a semi-algebraic C∞-manifold with corners.
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Remark 6.4. Our definition of B◦(X, f) does not agree with

B◦,FJ = Xan ∪ f̃−1({s∞ ∈ P̃1|<(s) > 0})
as defined by Fresán–Jossen [FJ20, Section 3.5] and the earlier rapid decay
literature. The two definitions differ if D0 and D∞ intersect. They agree
in the curve case where D0 ∩ D∞ = ∅ is automatic. If the intersection
is non-empty, then B◦,FJ is not a manifold with corners whereas B◦(X, f)
always is. The issue is also addressed in [MH17, Section 2].

Proposition 6.5 ([FJ20, Proposition 3.5.2]). Let X be a smooth variety
over k. For sufficiently large r, the inclusion induces natural isomorphisms

Hn(Xan, f−1(Sr);Q) ∼= Hn(B(X), f̃−1(Sr);Q) ∼= Hn(B◦(X, f), ∂B◦(X, f);Q).

In particular,

Hrd
n (X, f) ∼= Hn(B◦(X, f), ∂B◦(X, f);Q).

Proof. Their proof is correct with the modified notion of B◦(X, f). �

Recall that S∗(M) denotes the complex of Q-linear combinations of C1-
simplices for a Cp-manifold with corners M . Recall also Definition 1.1. It
computes singular cohomology by Theorem 1.3.

Definition 6.6. Let X be a smooth variety, f ∈ O(X). Choose a good
compactification X̄. We put

Srd
∗ (X, f) = S∗(B

◦
X̄(X, f))/S∗(∂B

◦
X̄(X, f)).

Remark 6.7. Fresán and Jossen work with piecewise C∞-simplices instead,
see [FJ20, Section 7.2.4]. We opt for the slightly more complicated notion
of C1-simplices as opposed to C∞-simplices because they are well-suited for
working with our semi-algebraic sets.

6.2. Twisted de Rham cohomology: the smooth case. Let X/k be
a smooth variety, f ∈ O(X). We define a vector bundle with connection
Ef = (OX , df ) with df (1) = −df . The de Rham complex DR(Ef ) has the
same entries as the standard de Rham complex for X, but with differential
Ωp → Ωp+1 given by dω − df ∧ ω.

Definition 6.8. Let (X, f) be as above. We define algebraic de Rham
cohmology H∗dR(X,Y, f) of (X, f) as hypercohomology of DR(Ef ).

If X is affine, this is nothing but cohomology of the complex

RΓdR(X) := [O(X)
df−→ Ω1(X)

df−→ . . . ].

The definition needs to be extended to the relative cohomology of singular
varieties. We first consider a special case. Let X be smooth and Y ⊂ X a
simple divisor with normal crossings. Let Y• → Y be the Čech-nerve of the
cover of Y by the disjoint union of its irreducible components, see Section 1.
It is a smooth proper hypercover. In particular, Hn(Y an

• ,Z) = Hn(Y an,Z).

Definition 6.9. Let X be a smooth variety, Y ⊂ X a divisor with simple
normal crossings. We define algebraic de Rham cohomology H∗dR(X,Y, f) of

(X,Y, f) as hypercohomology of Cone
(
π∗DR(Ef |Y•)→ Ef

)
[−1].
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6.3. The period isomorphism. Hien and Roucairol established the exis-
tence of a canonical isomorphism

Hn
rd(X, f)⊗Q C→ Hn

dR(X, f)⊗k C

for smooth affine varieties X see [HR08, Theorem 2.7]. It is also explained
and extended to the relative case for any variety X and subvariety Y by
Fresán and Jossen, see [FJ20, Theorem 7.6.1]. We refer to it as the period
isomorphism. It induces a period pairing

(5) 〈−,−〉 : Hn
dR(X,Y, f)×Hrd

n (X,Y, f)→ C.

Definition 6.10. Let X be a variety, f ∈ O(X), Y ⊂ X a closed subvariety,
n ∈ N0. The elements in the image of the period pairing (5) are called the
(cohomological) exponential periods of (X,Y, f, n).

We denote Pcoh(k) the set of cohomological exponential periods for varying
(X,Y, f, n) over k. We denote Plog(k) the subset of cohomological exponential
periods for varying (X,Y, f, n) such that (X,Y ) is a log-pair.

The construction of the period map is non-trivial. Fortunately, we only
need its explicit description in a special case.

Definition 6.11. Let X be smooth affine. We define a pairing

Ωn(X)× Srd
n (Xan, f)→ C

by mapping (ω, σ) to ∫
σ

e−fωan.

Lemma 6.12. The pairing is well-defined and induces a morphism of com-
plexes

Ω∗(X, f)→ Hom(Srd
∗ (Xan, f),C).

On cohomology it induces the pairing (5).

Proof. Let ω ∈ Ωn(X), σ an n-dimensional C1-simplex in Srd
n (Xan, f). The

smooth form ωan on Xan defines a smooth form e−fωan on B◦(X, f). (Note
that e−fωan vanishes to any order on ∂B◦(X, f), so it can be extended by 0
to a neighbourhood of the boundary). Hence the integral is well-defined.

The compatibility with the boundary map translates as∫
σ

e−fdfω
an =

∫
∂σ

e−fωan

which holds by Stokes’s formula (see Theorem 1.4) because dfω = dω−df ∧ω.
The construction is the one of [FJ20, Chapter 7.2.7], only with our S∗(X)

instead of their complex, see Remark 6.7. �

By taking double complexes, this extends to general X and Y . We will
discuss this in detail in [CH20, Section 10]. At this point, we handle the
simplest case.
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Example 6.13. Let X be a smooth affine variety, Y ⊂ X a smooth closed
subvariety, f ∈ O(X). Then relative twisted de Rham cohomology is com-
puted by the complex

RΓdR(X,Y, f) = Cone (Ω∗(X)→ Ω∗(Y )) [−1]

=
[
Ω0(X)→ Ω1(X)⊕ Ω0(Y )→ Ω2(X)⊕ Ω1(Y )→ . . .

]
with differential induced by df and restriction. Its rapid decay homology is
computed by the complex

Srd
∗ (X,Y, f) = Cone

(
Srd
∗ (Y, f)→ Srd

∗ (X, f)
)
.

Explicitly: let X̄ be a good compactification of X such that f extends to a
morphism on X̄ with target P1

k and such that the closure Ȳ of Y in X̄ is a
good compactification as well. Then

Cone(Srd
∗ (Y, f)→ Srd

∗ (X, f)) =

[Srd
0 (X, f)← Srd

1 (X, f)⊕ Srd
0 (Y, f)← Srd

2 (X, f)⊕ Srd
1 (Y, f)← . . . ].

Let σ be a cycle in Srd
n (X,Y ), i.e., a chain σX on X such that ∂σX = σY is

supported on Y . In the second incarnation, we identify it with (σX ,−σY ).
Let ω be cocycle in RΓdR(X,Y, f), i.e., a pair of differential forms (ωX , ωY ) ∈
Ωn(X)⊕ Ωn−1(Y ) such that dωX = 0, dωY = ωX |Y . Their period is

〈[ω], [σ]〉 =

∫
σX

ωX −
∫
σY

ωY .

7. Triangulations

We fix a real closed field k̃ ⊂ R and work with semi-algebraic sets of RN
defined over k̃. We expect that everything holds in general for o-minimal
structures, but we do not need this for our application. We use the set-up of
[vdD98, Chapter 8] for complexes. It is not completely standard, but very
convenient for us.

Let n ∈ N0. Let a0, . . . , an ∈ k̃N be affine independent. The open n-
simplex defined by these vectors is the set

σ = (a0, . . . , an)

=

{
n∑
i=0

λiai ∈ RN : for all i we have λi > 0 and λ0 + · · ·+ λn = 1

}
.

We fix the orientation given by dλ1 ∧ · · · ∧ dλn. The closure of σ is denoted
by [a0, . . . , an] and obtained by relaxing to λi ≥ 0 in the definition above.
We call [a0, . . . , an] a closed k-simplex. The points a0, . . . , an are uniquely
determined by [a0, . . . , an] and thus by σ. As usual, a face of σ is a simplex
spanned by a non-empty subset of {a0, . . . , an}. Then [a0, . . . , an] is a disjoint
union of faces of σ. We write τ < σ if τ is a face of σ and τ 6= σ.

A finite set K of simplices in RN is called a complex if for all σ1, σ2 ∈ K
the intersection σ1 ∩ σ2 is either empty or the closure of common face τ of
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σ1 and σ2. Van den Dries’s definition does not ask for τ to lie in K. So the
polyhedron spanned by K

|K| =
⋃
σ∈K

σ

may not be a closed subset of RN . We call K a closed complex if |K| is
closed or equivalently, if for all σ ∈ K and all faces τ of σ, we have τ ∈ K.
Note that

⋃
σ∈K σ is a disjoint union, this is an advantage of working with

“open” simplices. We write K for the complex obtained by taking all faces of
all simplices in K. Note that K is k̃-semi-algebraic.

Definition 7.1. Let M be a k̃-semi-algebraic C1-manifold with corners,
A ⊂M be a k̃-semi-algebraic subset. A semi-algebraic triangulation of A is a
pair (h,K) where K is a complex and where h : |K| → A is a k̃-semi-algebraic
homeomorphism. We say that it is globally of class C1, if h extends to a
C1-map on an open neighbourhood of |K|.

Let B ⊂ A be a k̃-semi-algebraic subset. We say that (h,K) is compatible
with B if Φ(B) is a union of members of K.

Remark 7.2. Note that there are weaker definitions of C1-triangulations
in the literature, see for example Remark 9.2.3(a) [BCR98] or [Shi97, Chap-
ter II]. However, Ohmoto-Shiota have shown the existence of semi-algebraic
triangulations globally of class C1 for locally closed semi-algebraic subsets
of RN , see [OS17]. Czapla-Paw lucki [CP18] show even stronger regularity
properties (that we do not need) in the o-minimimal setting.

7.1. Existence of triangulations. Our aim is to triangulate semi-algebraic
manifolds with corners, see Definition 3.1.

Lemma 7.3. Let X a compact k̃-semi-algebraic C1-manifold with corners
with atlas (φi : Ui → Vi|i = 1, . . . , N). Then there are k̃-semi-algebraic
functions of class C1

f1, . . . , fm : X → [0, 1]

such that for every j there is i

• such that the support of fj is contained in Ui,
• there is an open subset Wj ⊂ Ui on which fj is identically 1,

and, moreover, the Wj are a cover of X.

Proof. For each P ∈ X we fix a chart Ui containing P . Each Vi is an open
subset of some Rni×Rmi

≥0. There is an open ball B in Rni+mi centered at φi(P )

of radius r > 0 such that φi(P ) ∈ B∩Rni×Rmi
≥0 ⊂ Vi. Let f ′P : Rni+mi → [0, 1]

be a k̃-semi algebraic C1-function that is identically 1 on the open ball of
radius r/2 centered at φi(P ) and with support contained completely in B.
We denote by WP the preimage in Ui of the said ball of radius r/2 and by
fP the composition f ′P ◦ φi extended by zero on X r Vi. As X is compact,
there are finitely many P1, . . . , Pm such that WP1 ∪ · · · ∪WPm = X. The
lemma follows with Wj = WPj and fj = fPj . �

Proposition 7.4. Let X be a compact k̃-semi-algebraic C1-manifold with
corners, A1, . . . , AM semi-algebraic subsets of X. Then there is a k̃-semi-
algebraic triangulation of X compatible with A1, . . . , AM that is globally of
class C1.
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Proof. As a first step, we ignore the regularity issue and consider X as a
compact k̃-semi-algebraic space. By [Rob83, Theorem 1] it is affine. By

[BCR98, Theorem 9.2.1] or [vdD98, Theorem 8.2.9] it admits a k̃-semi-
algebraic triangulation (h,K) of X compatible with A1, . . . , AM . Using

[OS17], we are going to construct a k̃-semi-algebraic homeomorphism Φ :
|K| → |K| which respects all simplices and such that h ◦ Φ is C1. This new
triangulation has the required properties.

In detail: Let φ1, . . . , φN and f1, . . . , fm be as in Lemma 7.3. The map
fjφi : X → Rd is well-defined and k̃-semi-algebraic. We apply the “panel
beating” of [OS17, Corollary 3.3] to the maps

gj = (fjφi) ◦ h : |K| → X → Rd.

Note that they formulate the results in the semi-algebraic setting, but they
point out that the proof is written in a way that it also applies in other
settings such as ours.

This gives us a k̃-semi-algebraic homeomorphism Φ : |K| → |K| respecting
all simplices such that all gj ◦ Φ are C1. We claim that h ◦ Φ is C1. As
W1, . . . ,Wm cover X, it suffices to check the claim after restricting to the
preimage of some Wj . By definition, a map is C1 if its composition with φi
is. This is the case because fjφi = φi on Wj and gj is C1. �

Remark 7.5. We briefly sketch what the C1-triangulation result of Ohmoto–
Shiota [OS17] boils down to in the 1-dimensional setting. This suffices for
the context considered in Section 8. Say γ : [0, 1] → RN is a continuous

k̃-semi-algebraic map, then there exist 0 = t1 < · · · < tm = 1 in k̃ such that
all γ|(ti,ti+1) are C1. Thus γ is represented in homology by a chain of paths

that are C1 on (0, 1). So assume that γ is such a path. For ` ∈ Z suffiently
large the right-sided derivative of t 7→ γ(t`) at t = 0 exists and vanishes; this
follows from asymptotic behavoir of semi-algebraic functions see [vdDM96,
4.12]. Extending t 7→ γ(t`) to the left with value γ(0) yields a C1-function
on (−∞, 1). The same procedure works at t = 1 by reparametrizing with
1− (1− t)` and extending to the right with value γ(1).

7.2. A deformation retract. We are going to show that, up to deformation,
a complex K can be identified with a closed complex. The arguments are
similar to the ones in [vdD98, Chapter 8 (3.5)]. Compare also Friedrich’s
[HMS17, Proposition 2.6.8] and its proof.

If σ is a simplex in RN , then b(σ) denotes its barycenter. Let K ⊂ RN
be a complex. We denote by β(K) its barycentric subdivision as defined in
[vdD98, Chapter 8 (1.8)]. Note that |K| = |β(K)|.

We define the closed core of a complex K as

cc(K) = {σ ∈ K | K contains all faces of σ}.

Then cc(K) is a subcomplex of K. It is a closed complex by definition.
But it can be empty: consider a complex consisting of a single simplex of
positive dimension. This problem is remedied by passing to the barycentric
subdivision. More precisely, if K is non-empty, then cc(β(K)) is non-empty.
Indeed, the barycenter b(σ) of σ ∈ K defines a face (b(σ)) of β(K); it must
lie in cc(β(K)).
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Finally, note that if L is a subcomplex of K, then β(L) ⊂ β(K) and
cc(L) ⊂ cc(K), so we have cc(β(L)) ⊂ cc(β(K)).

Proposition 7.6. Let K be a complex. There exists a k̃-semi-algebraic
retraction r : |K| = |β(K)| → |cc(β(K))| with the following properties.

(i) For each x ∈ |K| the half open line segment [x, r(x)) is contained in
the simplex of β(K) containing x.

(ii) The map

H(x, t) = (1− t)x+ tr(x)

is a k̃-semi-algebraic strong deformation retraction H : |K| × [0, 1]→
|K| onto |cc(β(K))|.

We use a variation of the arguments found in §3, Chapter 8 [vdD98].

Proof. Let b = b(σ) be a vertex of β(K). As in loc. cit. we define a continuous
semi-algebraic function

λσ : |K| = |β(K)| → [0, 1]

which vanishes on |τ | if b is not a vertex of τ ∈ β(K) and equals the
barycentric coordinate with respect to b if it is.

Let us define furthermore

Λ(x) =
∑
σ∈K

λσ(x).

We claim that Λ(x) > 0 for all x ∈ |K|. Indeed, x is contained in a simplex
(b(σ0), . . . , b(σn)) of β(K); here σ0 < · · · < σn are open simplices of K and
σn ∈ K. In particular, λσn(x) > 0. Thus the contribution coming from σn to
the sum Λ(x) is strictly positive. As all other contributions are non-negative
we find Λ(x) > 0, as desired.

We are ready to define r(x) for x ∈ |K| as

r(x) =

∑
σ∈K λσ(x)b(σ)

Λ(x)
.

Thus r : |K| → Rm is k̃-semi-algebraic and continuous.
Let us verify that r(|K|) ⊂ |cc(β(K))|. Say x ∈ |K| and let σ0, . . . , σn

be as before. Say σ ∈ K. We recall that λσ(x) > 0 if and only if σ is
among {σ0, . . . , σn}. Let σi0 < · · · < σik = σn be those among the σ0, . . . , σn
that lie in K. So r(x) =

∑k
j=0 αjb(σij ) with coefficients αj ∈ [0, 1] such

that
∑k

j=0 αj = 1. Observe that αj > 0 since x ∈ (b(σ0), . . . , b(σn)). Thus

r(x) ∈ (b(σi0), . . . , b(σik)). Finally, b(σij ) ∈ σij ∈ K for all j. Therefore,
β(K) contains all faces of the simplex (b(σi0), . . . , b(σik)) which must thus
be an element of cc(β(K)). We conclude r(x) ∈ |cc(β(K))|. So the target of
r is cc(β(K)), as claimed.

Moreover, (b(σi0), . . . , b(σik)) is a face of (b(σ0), . . . , b(σn)) ∈ β(K), hence
by convexity the ray [x, r(x)) is in the simplex of β(K) containing x.

We now verify that r is a retraction. We still assume x ∈ (b(σ0), . . . , b(σn))
as above. Note that x =

∑
σ∈K λσ(x)b(σ) and

∑
σ∈K λσ(x) = 1. If λσ(x) > 0
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for some σ ∈ K, then σ is among σ0, . . . , σn. Hence
n∑
i=0

λσi(x)b(σi) = x and
n∑
i=0

λσi(x) = 1.

Now suppose x ∈ |cc(β(K))|. By definition, β(K) contains all faces of
(b(σ0), . . . , b(σn)). In particular, b(σi) ∈ |K| and hence σi ∈ K for all i. So
Λ(x) = 1 and r(x) = x. In particular, r is a retraction.

Keeping the notation above for x ∈ (b(σ0), . . . , b(σn)) ∈ β(K), we find for
all t ∈ (0, 1) that

(1− t)x+ tr(x) =
1

Λ(x)

n∑
i=0

((1− t)Λ(x) + twσi(x))λσi(x)b(σi),

here wσi is constant 1 if σi ∈ K and constant 0 else wise. Each factor in
the sum on the right is strictly positive, which implies (1 − t)x + tr(x) ∈
(b(σ0), . . . , b(σn)). As we have seen before, r(x) = x for x ∈ |cc(β(K))|.
Altogether, this proves claim (ii). �

8. The case of curves

Let k ⊂ C be a subfield which is algebraic over k0 = k ∩R. For simplicity,
we assume that k is algebraically closed. In this section we will show that
naive exponential periods of the form

∫
G e−fω where G is 1-dimensional are

the same as cohomological exponential periods of smooth marked curves. This
comparison is a special case of the general result in [CH20, Theorem 13.4],
but we include it to illustrate the key ideas of the general proof, while
avoiding several technical problems.

This section is organised as follows: first we give some elementary exam-
ples of cohomological exponential periods and explain why they are naive
exponential periods. This is followed by an intermezzo in which we describe
the oriented real blow-up of a marked curve, because it features several times
in the remainder of the section. Finally, we prove the inclusions announced
above.

8.1. Examples of cohomological exponential periods. In Section 5.1
we saw explicit examples of naive exponential periods. We will now look at
some examples of cohomological exponential periods, before considering the
case for general curves.

Example 8.1. We start with the simplest non-trivial case: X = A1, Y = {0},
f = id. Then Hrd

1 (A1, {0}, id) = H1(B◦(A1, id), {0} ∪ ∂B◦(A1, id);Q). Both
B◦ = B◦(A1, id) and its boundary are contractible, hence Hrd

1 (A1, {0}, id) is
of dimension 1. The generator is the path from 0 to a point on ∂B◦, i.e., one
of the Gs of Example 5.3. We use G1 = [0,∞) because it is in the subspace
B] as defined in Section 1.4.

B◦ : C 1∞

i∞

B] : C 1∞



40 JOHAN COMMELIN, PHILIPP HABEGGER, AND ANNETTE HUBER

The boundary in singular homology maps it to the class of the point 0 with
multiplicity −1.

The relative de Rham complex has the shape

k[z]
P 7→(dP−P dz,P (0))−−−−−−−−−−−−→ k[z] dz ⊕ k.

As in Example 6.13, the periods of (Qdz, a) are computed as∫
G1

e−zQdz − a.

The general theory tells us that H1
dR(A1, {0}, id) also has dimension 1. It

is easy to see that (dz, 0) is a not in the image of the differential: Indeed
P 7→ dP − P dz is injective, and the preimage of dz under this injection
is the constant polynomial −1, which does not have constant coefficient 0.
Hence (dz, 0) generates our cohomology. The periods of (A1, {0}, id, 1) are
precisely the elements k as ∫

G1

e−z dz = 1.

Unsurprisingly, these elements are naive exponential periods as explained in
Example 5.3. We now turn to X = A1, Y = {0} and f = zn. In this case
the boundary of B◦(A1, f) has n components, hence Hrd

1 (A1, {0}, f) is of
dimension n. As generators for homology we can use the n different preimages
of [0,∞) under z 7→ zn. They are of the form Gsm for m = 0, . . . , n− 1 with

s = e2πi/n. The boundary map in singular homology maps each of them to
the point 0 with multiplicity −1.

In this case the de Rham complex has the shape

k[z]
P 7→(dP−nzn−1P dz,P (0))−−−−−−−−−−−−−−−−→ k[z] dz ⊕ k.

All elements in H1
dR(A1, {0}, f) are represented by pairs (QdZ, a). Their

periods are computed as ∫
Gs

e−z
n
Qdz − a.

These are naive exponential periods.

Remark 8.2. The preceding example provides an explicit instance of [CH20,
Proposition 11.4] which is an important ingredient in the final comparison
theorem: rapid decay homology is not only computed by B◦(A1, f), but also

by B](A1, f) = C ∪ f̃−1(1∞) so we can choose intervals with end points E

in {0} ∪ f̃−1(1∞).

8.2. The oriented real blow-up of a marked curve. Let C̄ be a smooth
projective complex curve, or in other words, a compact Riemann surface. Let
f̄ : C̄ → P1 be a non-constant meromorphic function. Let Q1, . . . , Qn ∈ C̄
denote the poles of f̄ , let P1, . . . , Pm be some points on C̄ distinct from
the Qi, and denote by C ⊂ C̄ the complement of {P1, . . . , Pm, Q1 . . . Qn}.
Denote by f : C → A1 the restriction of f̄ to C.

We now consider the real oriented blow-up B(C) = BC̄(C) and the map

f̃ : B(C) → P̃1 induced by f . It adds a circle to C̄an in each of the points
Pi and Qj . The algebraic map f : C → A1 induces a semi-algebraic map
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of manifolds with boundary f̃ : B(C)→ P̃1. The circles around the Pi are
mapped to f(Pi) ∈ C. The circles around the Qi are mapped to the circle at

infinity of P̃1. As in Definition 6.3 let B◦(C, f) ⊂ B(C) be the open subset

of points either in Can or mapping to <(s∞) > 0 on the boundary of P̃1.
So it removes the circles around the Pi’s and some circle segments from the
circles around the the Qj ’s.

The following figure illustrates the case C̄ = P1.

Q1
Q2

Q3

Q4

P1

P2

8.3. A 1-dimensional comparison. We now show that generalised naive
exponential periods are cohomological exponential periods.

Proposition 8.3. Let α =
∫
G e−fω be a generalised naive exponential period

over k0 as in Definition 5.4. Assume that dim(G) = 1. Then α is a
cohomological exponential period for a tuple (C, Y, f, 1), where C is a smooth
curve defined over k, Y ⊂ C is finite set of points, and f : C → A1

k is a
regular function.

This is a special case of [CH20, Proposition 12.1].

Proof. By Corollary 5.11, every generalised naive exponential period is abso-
lutely convergent. Hence we may apply Proposition 5.19 to obtain a smooth
affine curve C over k0, a finite set of points Y ⊂ C(k0), a pseudo-oriented
1-dimensional k-semi-algebraic subset G of C(R) with endpoints in Y , a

function f : Ck → A1
k that is proper on G and such that f(G) ⊂ B◦, and a

regular 1-form ω on Ck, such that α =
∫
G e−fω. By abuse of notation we

replace C and Y by Ck and Yk from now on.
Certainly, the form ω defines a class [ω] ∈ H1

dR(C, Y, f).
The semi-algebraic set Reg1(G) is semi-algebraically homeomorphic to a

finite union of open intervals and circles. We may consider connected compo-
nents separately. Thus, without loss of generality, Reg1(G) is homeomorphic
to an open interval and G its closure in Can. The semi-algebraic set G is
homeomorphic to either a circle, or to an interval with 0, 1 or 2 end points
in Can. By assumption, we are given an orientation on the complement
of finitely many points of G. We may consider these intervals separately,
enlarging Y if necessary.

Let C̄ be a smooth compactification of C, and Ḡ the closure of G in B(C).
It is compact because B(C) is. Lemma 5.9 implies Ḡ ⊂ B◦(C, g).
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By construction, the boundary of Ḡ is contained in Y ∪ ∂B◦
C̄

(C, f). It

defines a class [G] ∈ Hrd
1 (C, Y, f) = H1(B◦(C, g), Y ∪ ∂B◦(C, f);Q). Finally,

as in Example 6.13, the period pairing of these classes is computed as

〈[ω], [G]〉 =

∫
Ḡ

e−fω = α.

This proves the result: α is indeed a cohomological exponential period. �

8.4. Converse direction. We now want to express cohomological expo-
nential periods as naive exponential periods. This means that we start
with a marked curve Y ⊂ C, and cohomology classes γ ∈ Hrd

1 (C, Y ) and
ω ∈ H1

dR(C, Y, f). We want to show that the period pairing 〈ω, γ〉 is a naive
exponential period. Let us sketch the ingredients of the proof:

(i) The first step is the observation that rapid decay homology Hrd
1 (C, Y )

is computed as the ordinary homology of the space B◦(C, f).
(ii) We then note that B◦(C, f) is homotopic to a certain subset B](C, f).

We will give an ad hoc definition of this subset here, for the general
definition see [CH20, Definition 11.3].

This step is crucial, because in the next step it will allow us to
obtain semi-algebraic sets G whose image is contained in a suitable
strip: f(G) ⊂ Sr,s. See also Remark 8.2.

(iii) Finally, we use semi-algebraic triangulation results and the delicate
Proposition 7.6 to realise γ as a linear combination of homology
classes of semi-algebraic sets. This will allow us to realise 〈ω, γ〉 as
naive exponential period.

Proposition 8.4 ([CH20, Proposition 11.1]). Let C ⊂ An be a smooth affine
curve over k, f ∈ O(C), and Y ⊂ C a proper closed subvariety. Then every
cohomological exponential period of (C, Y, f, 1) is a naive exponential period.

Proof. By definition, f ∈ k[C]. We also write f for a polynomial in
k[z1, . . . , zn] representing it. As C is affine, the twisted de Rham coho-
mology H1

dR(C, Y, f) is a quotient of Ω1(C)⊕
⊕

y∈Y k hence every element

is represented by a tuple (ω, ay). We also write ω for the element of Ω1(An)
representing ω ∈ Ω1(C).

Step 1. Let C̄ be a smooth compactification of C and let Z = C̄ r C be
the points at infinity. By Proposition 6.5,

Hrd
1 (C, Y ;Z) = H1(B◦(C, f), Y an ∪ ∂B◦(C, f);Z).

We decompose Z = Zf ∪ Z∞ such that f is regular in the points of Zf and
has a pole in the points of Z∞. Let dz ≥ 1 be the multiplicity of f̄ at z ∈ Z.
The oriented real blow-up of C̄ in Z replaces each point z ∈ Zan by a circle
Sz. It is compact. The boundary is a disjoint union of circles. The map
f̃ : B(C) → P̃1 maps these circles either to C (the case z ∈ Zf ) or to the
circle at infinity (the case z ∈ Z∞). In the latter case, the map on the circle
is a dz to 1 cover.

By definition the subset B◦(C, f) is the union of the preimage of Can and
those points P in the circles Sz above z ∈ Zan

∞ that are in the preimage of
the half circle {w∞ | <(w) > 0}. Hence the boundary of B◦(C, f) consists
of dz many circle segments for every z ∈ Zan

∞ .
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Step 2. Now consider the smaller subset B](C, f) defined as the union of
the preimage of Can and the points P in the circles Sz above z ∈ Zan

∞ that are
in the preimage of 1∞. Hence the boundary ∂B](C, f) of B](C, f) consists
of dz many disjoint points for every z ∈ Zan

∞ . In particular the boundaries of
B◦(C, f) and B](C, f) are homotopy equivalent. Both B◦(C, f) and B](C, f)
are homotopy equivalent to Can. Thus

Hrd
1 (C, Y ;Z) = H1(B](C, f), Y an ∪ ∂B](C, f);Z).

Note that B](C, f) is not a manifold with corners, hence we are not able
to interpret the right hand side in the sense of C1-homology as defined in
Section 1.5. However, it is a topological space so ordinary singular homology
is perfectly well-defined and this is how we interpret the right-hand side.

Step 3. The space B◦(C, f) is a k0-semi-algebraic C∞-manifold with
boundary. By Proposition 7.4, it has a k0-semi-algebraic triangulation
compatible with B](C, f), Y and ∂B](C, f) that is globally of class C1. In
particular, the points in Y an∪∂B](C, f) are vertices. By Proposition 7.6, the
closed core of its barycentric subdivision is a strong deformation retraction
of B](C, f). We denote the closed core by A. Hence

H1(B](C, f), Y an ∪ ∂B](C, f);Z) = H1(A, Y an ∪ ∂B](C, f);Z).

The subcomplex A is compact, hence simplicial and singular homology of A
agree. Therefore every homology class is represented by a linear combination
of closed semi-algebraic 1-simplices in A. The triangulation is C1, hence the
closed 1-simplices in the triangulation of C define elements of S1(C, f). In
all, each homology class in Hrd

1 (C, Y ;Z) is represented by linear combination
of C1-paths in B](C, f) with boundary in Y an ∪ ∂B](C, f). The period
integral is defined by integrating e−fω on these paths, see Definition 6.11
and Lemma 6.12.

Let γ : [0, 1]→ A be one these simplices. We put G = γ([0, 1]) ∩ Can. We
need to check that it satisfies the conditions needed for naive exponential
periods. The closure Ḡ = γ([0, 1]) differs from G by at most two points, the

end points. The image f̃(Ḡ) in P̃1 is compact and contained in B](C, f),
hence f(G) is contained in a suitable strip Sr,s for r, s > 0. The map

f̃ : Ḡ → P̃1 is proper because Ḡ is compact. By definition, the preimage
f̃−1(1∞) does not contain any points of G. Hence f : G→ C is also proper.
We conclude that

∫
G e−fω is a naive exponential period.

Our cohomological period was a linear combination of such. The same
arguments as in the case of ordinary periods (see [HMS17, Proposition 12.1.5])
show that a linear combination of naive exponential periods is a naive
exponential period. �

References

[BB03] P. Belkale and P. Brosnan. Periods and Igusa local zeta functions. Int. Math.
Res. Not., 49:2655–2670, 2003.

[BBT18] Benjamin Bakker, Yohan Brunebarbe, and Jacob Tsimerman. o-minimal GAGA
and a conjecture of Griffiths, 2018.

[BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry,
volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in
Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1998. Translated
from the 1987 French original, Revised by the authors.



44 JOHAN COMMELIN, PHILIPP HABEGGER, AND ANNETTE HUBER

[BE00] Spencer Bloch and Hélène Esnault. Gauß-Manin determinant connections and
periods for irregular connections. Number Special Volume, Part I, pages 1–31.
2000. GAFA 2000 (Tel Aviv, 1999).

[CH20] Johan Commelin and Annette Huber. Exponential periods and o-minimality II,
2020.

[CP18] Ma lgorzata Czapla and Wies law Paw lucki. Strict C1-triangulations in o-minimal
structures. Topol. Methods Nonlinear Anal., 52(2):739–747, 2018.

[DK81] Hans Delfs and Manfred Knebusch. Semialgebraic topology over a real closed
field. II. Basic theory of semialgebraic spaces. Math. Z., 178(2):175–213, 1981.

[DMR07] Pierre Deligne, Bernard Malgrange, and Jean-Pierre Ramis. Singularités
irrégulières, volume 5 of Documents Mathématiques (Paris) [Mathematical
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