
EXPONENTIAL PERIODS AND O-MINIMALITY II

JOHAN COMMELIN AND ANNETTE HUBER

Abstract. This paper is a sequel to [CHH20]. We complete the com-
parison between different definitions of exponential periods, and show
that they all lead to the same notion. In [CHH20], we show that naive
exponential periods are absolutely convergent exponential periods. We
also show that naive exponential periods are up to signs volumes of defin-
able sets in the o-minimal structure generated by Q, the real exponential
function and sin|[0,1].

In this paper, we compare these definitions with cohomological expo-
nential periods and periods of exponential Nori motives. In particular,
naive exponential periods are the same as periods of exponential Nori
motives, which justifies that the definition of naive exponential periods
singles out the correct set of complex numbers to be called exponential
periods.

Introduction

We strongly advise the reader to read the introduction of the compan-
ion paper [CHH20]. Let us now recall the definition of one of the main
protagonists of that paper.

Let k ⊂ C be a subfield such that k is algebraic over k0 := k ∩ R.
See Section 9.1 for more on this condition on k. Recall from [CHH20,
Definition 0.2] that a naive exponential period over k is a complex number
of the form ∫

G
e−fω

where G ⊂ Cn is an pseudo-oriented (not necessarily compact) closed k0-
semi-algebraic subset, ω is a rational algebraic differential form on Ank that
is regular on G and f is a rational function on Ank such that f is regular and
proper on G and, moreover, f(G) is contained in a strip

Sr,s = {z ∈ C | <(z) > r, |=(z)| < s}.
The definition of generalised naive exponential periods and absolutely conver-
gent exponential periods uses the same data, but with weaker conditions on
f , ω and G. These definitions are repeated in detail in Definition 9.3.

There is an alternative approach of a very different flavour. As far as we
understand, it is actually the original one: exponential periods appear as the
entry of a period matrix in Hodge theory of vector bundles with irregular
connections. We refer to the introduction of [CHH20] for more background.
We call the elements in the image of the period pairing

Hrd
n (X,Y ;Q)×Hn

dR(X,Y, f)→ C
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cohomological exponential periods, see Definition 10.12.
Ordinary periods have an even more conceptual interpretation as a C-

valued point on the torsor of isomorphisms between the de Rham realisation
and the Betti realisation, two fibre functors on the Tannaka category of
mixed (Nori) motives, see [HMS17]. The same picture also applies in the
case of exponential periods. Fresán and Jossen have developed a fully fledged
theory of exponential motives in [FJ20].

In this sequel to [CHH20] we show that these three approaches yield the
same set of exponential periods. Putting all the pieces of our two papers
together, we get the following comparison theorem.

Theorem (Theorem 13.4). Let k ⊂ C be a field such that k/k0 is algebraic.
Then the following subsets of C agree:

(1) Pnv(k), i.e., naive exponential periods over k;
(2) Pgnv(k), i.e., generalised naive exponential periods over k;
(3) Pabs(k), i.e., absolutely convergent exponential periods over k;
(4) Pmot(k), i.e., periods of all effective exponential motives over k;
(5) Pcoh(k), i.e., the set of periods of all (X,Y, f, n) with X a k-variety,

Y ⊂ X a subvariety, f ∈ O(X), n ∈ N0;
(6) Plog(k), i.e., periods of all (X,Y, f, n) with (X,Y ) a log pair, f ∈
O(X), n ∈ N0;

(7) PSmAff(k), i.e., periods of all (X•, f•, n) for (X•, f•) ∈ C−(SmAff/A1),
n ∈ N0.

Moreover, the real and imaginary part of these numbers are up to sign volumes
of bounded definable sets for the o-minimal structure Rsin,exp,k0 generated by
exp, sin|[0,1] and with paramaters in k0, see [CHH20, Definition 2.13].

Global structure of the proof. We recall the following diagram from [CHH20].
It explains the global structure of the two papers, and how the different
theorems contribute to the main comparison result.

Vol

Pnv Pgnv Pabs

Plog Pcoh PSmAff

Pmot

[CHH20, Theorem 5.12]

[CHH20, Lemma 5.5]

Proposition 12.1

[CHH20, Corollary 5.20]

Proposition 11.1

triv triv

Proposition 13.3Proposition 13.1

Structure of this paper. In Section 9 we recall notation and definitions
that were introduced in [CHH20]. Section 10 is a technical section on the
definition of cohomological exponential periods. For smooth affine varieties,
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we gave a definition in [CHH20, Section 6]. We now extend this definition to
arbitrary pairs (X,Y ) of a variety X and a closed subvariety Y ⊂ X.

As suggested by the diagram above, Section 11 is devoted to proving
Plog(k) ⊂ Pnv(k), whereas Section 12 shows the inclusion Pgnv(k) ⊂ Plog(k).
Finally, in Section 13 we prove the remaining parts, which are all very formal,
and glue all the pieces together to obtain the main theorem.

Acknowledgements. We sincerely thank Philipp Habegger with whom we
wrote [CHH20], the first part of this series. All our joint discussions and his
numerous insightful comments have had many direct and indirect influences
on this paper.

9. Recapitulations

We keep the notation from [CHH20]. We repeat them for the convenience
of the reader.

9.1. Fields of definition. If z is a complex number, we write <(z) and
=(z) for its real and imaginary part. Let k ⊂ C be a subfield. We denote by

k0 the intersection k ∩ R, by k̄ the algebraic closure of k in C, and by k̃ the
real closure of k0 in R. The following conditions on k are equivalent:

k0 ⊂ k is alg. ⇐⇒ k0 ⊂ k̄ is alg. ⇐⇒ k̃ ⊂ k̄ is alg. ⇐⇒ [k̄ : k̃] = 2.

If k satisfies these conditions, so does every intermediate extension k ⊂ L ⊂ C
with k ⊂ L algebraic.

9.2. Categories of varieties. Let k ⊂ C be a subfield. By variety we mean
a quasi-projective reduced separated scheme of finite type over k. By Xan

we denote the associated analytic space on X(C).

9.3. Good compactifications. We say that a pair (X,Y ) is a log-pair, if X
is smooth variety of pure dimension d, and Y ⊂ X a simple normal crossings
divisor. A good compactification of (X,Y ) is the choice of an open immersion
X ⊂ X̄ such that X̄ is smooth projective, X is dense in X̄ and Ȳ + X∞
is a simple normal crossings divisor where Ȳ is the closure of Y in X̄ and
X∞ = X̄ rX. If, in addition, we have a structure morphism f : X → A1, we
say that X̄ is a good compactification relative to f if f extends to f̄ : X̄ → P1.
Good compactifications (relative to a structure morphism) exist by resolution
of singularities, see also [CHH20, Section 1.3].

9.4. Some semi-algebraic sets. Let k be as in Section 9.1. Let X be a
smooth variety, f ∈ O(X), X̄ a good compactification, X∞ = X̄ rX. We
decompose X∞ = D0 ∪D∞ into simple normal crossings divisors such that
f̄(D∞) = {∞} and f̄ : D0 → P1 is dominant on all components, i.e., into
vertical and horizontal components.

We denote by BX̄(X) the oriented real blow-up of X̄an in Xan
∞ , for details

see [CHH20, Definition 4.2]. It is a k0-semi-algebraic C∞-manifold with
corners, see [CHH20, Proposition 4.3].

In the case X = A1 and X̄ = P1, we write P̃1 = BP1(A1). This is a
manifold with boundary: the compactification of C ∼= R2 by a circle at
infinity, adding one point for each half ray emanating from the origin.
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For s ∈ Cr {0}, we write s∞ for the point of ∂P̃1 corresponding to the
half ray s[0,∞). We say <(s∞) > 0 if <(s) > 0, and analogously for ≤. We
put

B◦ = P̃1 r {s∞ ∈ ∂P̃1 | <(s∞) ≤ 0} = C ∪ {s∞ | <(s) > 0},
∂B◦ = B◦ rC = {s∞ | <(s) > 0},

B] = P̃1 r {s∞ ∈ ∂P̃1 | s∞ 6= 1∞} = C ∪ {1∞},

∂B] = B] rC = {1∞}.

See [CHH20, Example 4.1] and [CHH20, Example 8.1] for illustrations.
We now return to the situation f : X → A1 for general smooth X and f .

Let f̃ : BX̄(X) → P̃1 be the induced map, see [CHH20, Lemma 4.4]. We
also define

B◦X̄(X, f) = BX̄(X) r {x ∈ ∂(BX̄(X)) | π(x) ∈ Dan
0 or <(f̃(x)) ≤ 0}

∂B◦X̄(X, f) = B◦X̄(X, f) rXan = B◦X̄(X, f) ∩ f̃−1({s∞ ∈ P̃1 | <(s) > 0}).

We are also going to need a variant (see Definition 11.3)

B]
X̄

(X, f) = BX̄(X) r {x ∈ ∂(BX̄(X)) | π(x) ∈ Dan
0 or f̃(x) 6= 1∞}

∂B]
X̄

(X, f) = B]
X̄

(X) rXan.

9.5. C1-homology. In this paper, we denote by ∆n the simplex

{(x1, . . . , xn) | xi > 0 and
∑
i

xi < 1} ⊂ Rn.

It is open in the ambient space, from which it inherits the standard orientation.
We denote by ∆̄n its closure in Rn, and define the face maps ki : ∆̄n−1 → ∆̄n

as in [War83, (2) p.142].
Let X be a C1-manifold with corners, see [CHH20, Section 1.5] for more

details. A C1-simplex on X is a C1-map

σ : ∆̄n → X

of C1-manifolds with corners.
Let Sn(X) be the space of formal Q-linear combinations of C1-simplices

of dimension n. For A ⊂ X closed, we denote Sn(A) ⊂ Sn(X) the subspace
spanned by simplices with image in A.

The restriction of σ to a face is again C1, hence the usual boundary
operator ∂ turns S∗(X) into a complex. The barycentric subdivision of a
C1-simplex is again C1.

As we argue in [CHH20, Theorem 1.3], given a C1-manifold with corners,
the complexes S∗(X) and S∗(X)/S∗(∂X) compute singular homology of X
and of (X, ∂X), respectively.

9.6. Semi-algebraic manifolds with corners. Let k be as in Section 9.1.
In [CHH20, Definition 3.1], we introduced the notions of a definable Cp-
manifolds with corners and definable subsets G ⊂M with respect to a fixed
o-minimal structure. In the present paper we restrict to the case of the
o-minimal structure Ralg,k0 and call them k0-semi-algebraic.
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Definition 9.1 (See [CHH20, Definition 3.11]). Let p ≥ 1. Let M be a
k0-semi-algebraic Cp-manifold with corners and G a k0-semi-algebraic subset.

A differential form ω of degree d on G is a continuous section

ω : G→ ΛdT ∗M.

In order to integrate differential forms, we need a notion of orientability.

Definition 9.2 (See [CHH20, Definition 3.14]). Fix an integer p ≥ 1, let
d ≥ 0 be an integer, and let M be a k0-semi-algebraic Cp-manifold with
corners with G ⊂M a k0-semi-algebraic subset of dimension d.

(1) A pseudo-orientation on G is the choice of an equivalence class of a
definable open subset U ⊂ Regd(G) such that dim(Gr U) < d and
an orientation on U . Two such pairs are equivalent if the they agree
on the intersection.

(2) Given a pseudo-orientation on G with U as in (1) and a differential
form ω of degree d on G, we define∫

G
ω :=

∫
U
ω

if the integral on the right converges absolutely.

By [CHH20, Theorem 3.22], the integral converges absolutely if G is
compact.

9.7. Periods. Let k be as in Section 9.1.

Definition 9.3 (See [CHH20, Definition 0.2], [CHH20, Definition 5.4],
[CHH20, Definition 5.17]). Let k ⊂ C be a subfield, such that k is alge-
braic over k ∩ R. A complex number

α =

∫
G

e−fω

is called

(1) naive exponential period over k if G ⊂ Cn is a pseudo-oriented closed
(not necessarily compact) k0-semi-algebraic subset, ω is a rational
algebraic differential form on Ank that is regular on G and f is a
rational function on Ank such that f is regular and proper on G and,
moreover, f(G) is contained in a strip

Sr,s = {z ∈ C | <(z) > r, |=(z)| < s};

(2) generalised naive exponential period over k if G ⊂ Cn is a pseudo-
oriented closed k0-semi-algebraic subset, ω is a rational algebraic
differential form on Ank that is regular on G and f is a rational function
on Ank such that f is regular and proper on G and, moreover, the

closure of f(G) in P̃1 is contained in B◦ = C ∪ {s∞ | s ∈ S1,<(s) >
0};

(3) absolutely convergent exponential period over k if G ⊂ Cn is a pseudo-
oriented (not necessarily closed) k0-semi-algebraic subset, ω is a
rational algebraic differential form on An, f a rational function on Ank
that is regular on G and the closure of f(G) in P̃1 is contained in B◦.
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We denote Pnv(k), Pgnv(k) and Pabs(k) the sets of all naive exponential peri-
ods over k, all generalised naive periods over k and all absolutely convergent
exponential periods over k, respectively.

By definition, Pnv(k) ⊂ Pgnv(k). By [CHH20, Corollary 5.20], we have
Pgnv(k) = Pabs(k). For properties and alternative descriptions of these sets
we refer for [CHH20, Section 5].

10. Exponential periods: the general case

Throughout this section let k ⊂ C be a subfield such that k is algebraic
over k0 = k ∩ R. All varieties are defined over k.

We turn to the definition of exponential periods for general (X,Y ), again
following Fresán and Jossen in [FJ20]. Notation for the smooth affine case
was set-up in [CHH20, Section 6].

10.1. Complexes of varieties. By SmAff/A1 we denote the category of
smooth affine varieties X together with a structure map f : X → A1. Note
that we do not require f to be smooth. Let Z[SmAff/A1] be the additive
hull of SmAff/A1:

• the objects are the objects of SmAff/A1;
• the morphisms are formal Z-linear combinations of morphisms in

SmAff/A1, more precisely for connected X we have

HomZ[SmAff/A1](X,Y ) = Z[MorSmAff/A1(X,Y )];

• the disjoint union is the direct sum.

We denote by C+(SmAff/A1) the category of bounded below homological
complexes over Z[SmAff/A1].

We denote by SmProj/P1 the category of smooth projective varieties X
together with a structure map f : X → P1. As in the affine case we define
Z[SmProj/P1] and C+(Z[SmProj/P1]).

10.2. Rapid decay homology for complexes. Recall from [CHH20, Def-
inition 6.6] the description of rapid decay homology for (X, f) ∈ SmAff/A1.
We put

Srd
∗ (X, f) = S∗(B

◦(X, f))/S∗(∂B
◦(X, f))

where S∗(−) is as in Section 9.5 the complex of C1-simplices. By [CHH20,
Theorem 1.3] it computes singular homology.

Note that the complex Srd
∗ (X, f) depends on the choice of a good com-

pactification X̄ relative to f , but only in a weak way. We want to extend
the construction to complexes of varieties.

Let X be a smooth variety, f : X → A1. Recall from Section 9.3 that
a good compactification of (X, f) is a pair (X̄, f̄) where X̄ is smooth and
projective, f̄ : X̄ → P1 a morphism and X → X̄ is a dense open immersion
such that the complement X∞ is a simple divisor with normal crossing and
f̄ extends f .

Definition 10.1. Let X• be a bounded below complex in Z[SmAff/A1]. A
good compactification of X• is a bounded below complex X̄• in Z[SmProj/P1]
together with a morphism of complexes X• → X̄• such that for every n the
map Xn → X̄n is a good compactification of (Xn, f).
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Lemma 10.2. Let X be a smooth variety, f : X → A1.

(1) The system of good compactifications of (X, f) is filtered.
(2) Given g : Y → X a morphism of smooth varieties and a good com-

pactification of (X, f) there is a good compactification Ȳ of (Y, f ◦ g)
and morphism Ȳ → X̄ over g.

Proof. Let X → X1 and X → X2 be good compactifications of (X, f). Let
X ′3 be the closure of X in X1 ×P1 X2. Let X3 → X ′3 be a desingularisation
making the boundary into a divisor with normal crossings. A morphism
h : X1 → X2 of good compactifications of (X, f) is uniquely determined if it
exists because X is dense in X1.

Let g : Y → X be a morphism of smooth varieties. Let X̄ be a good
compactification of X. Choose any compactification Y ′ of Y . Possibly after
replacing Y ′ by a blow-up, the map g extends to Y ′. Picking a desingularisa-
tion Ȳ of Y ′ finishes the proof of this lemma. �

Corollary 10.3. Let (X•, f•) be a bounded below (homological) complex
in Z[SmAff/A1]. Then the system of good compactifications of (X•, f•) is
non-empty, filtering and functorial.

Proof. We construct X̄n by induction on n. For n � 0 there is nothing
to show. Suppose we have constructed good compactifications for n < N .

Let XN =
⋃
Xj
N be the decomposition into connected components. The

differential d : XN → XN−1 is of the form d =
∑m

i=1 aigi for morphisms

gi : X
j(i)
N → XN−1 and ai ∈ Z. Let Yi be a good compactification of XN such

that gi lifts. Let X̄N be a common refinement of Y1, . . . , Ym. By construction
d lifts to X̄N . We need to check that the composition X̄N → X̄N−1 → X̄N−2

vanishes. This is a combinatorial identity on the coefficients of the gi. It can
be checked on the dense open subsets XN → XN−1 → XN−2, where it holds
because X• is a complex. This finishes the proof of existence.

The same method also produces common refinements of two good com-
pactifications and lifts of morphisms of complexes. �

Recall the functor Srd
∗ computing rapid decay homology.

Definition 10.4. Let (X•, f•) be in C+(SmAff/A1). We define

Srd
∗ (X•, f•)

as the total complex of the double complex (Srd
m (Xn, fn))n,m for some choice

of good compactification (X̄•, f̄•) of (X•, f•).

Remark 10.5. By Corollary 10.3, this is well-defined up to canonical iso-
morphism in the derived category.

10.3. Twisted de Rham cohomology and periods for complexes. Re-
call from [FJ20], see also [CHH20, Section 6.2], that twisted de Rham co-
homology of (X, f) ∈ SmAff/A1 is defined as cohomology of the complex
Ω∗(X) with differential Ωp(X)→ Ωp+1(X) given by dω − df ∧ ω.

Definition 10.6. Let (X•, f•) ∈ C+(SmAff/A1). We define Hn
dR(X•, f•) to

be the cohomology of the total complex RΓdR(X•, f•) of the double complex
Ω∗(X•, Ef•).
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Lemma 10.7. Let (X•, f•) ∈ C+(SmAff/A1). Then the period map of
[CHH20, Definition 6.11] extends to a pairing of complexes

RΓdR(X•, f•)× Srd
∗ (X•, f•)→ C,

i.e., a morphism of complexes

RΓdR(X•, f•)→ Hom(Srd
∗ (X•, f•),C).

Proof. We apply [CHH20, Lemma 6.12] to each Xn, then take total complexes.
�

Definition 10.8. Let (X•, f•) ∈ C+(SmAff/A1), n ∈ N. The period pairing
for (X•, f•, n) is the induced map

Hn
dR(X•, f•)×Hrd

n (X•, f•)→ C.

The elements in the image of this pairing are called the exponential periods
of (X•, f•, n). We denote the set of these numbers for varying (X•, f•, n) by
PSmAff(k).

Remark 10.9. Fresán–Jossen interpret these periods as periods for a suitable
category of effective exponential motives. We consider them in Section 13.
The usual localisation amounts to inverting π. We do not consider the
non-effective case in our paper.

10.4. The relative case. Let X be a variety over k, Y ⊂ X a closed
subvariety and f ∈ O(X). We want to define exponential periods for
Hrd
n (X,Y, f) by reduction to the case C+(SmAff/A1).
A simplicial or bisimplicial variety X• → X is called a hypercover of X,

if it is a hypercover for the h-topology. We do not go into details about
this topology, which is introduced and studied in [Voe96]. For our purposes
it suffices to remark that in this case Hn(Xan

• ,Z) → Hn(Xan,Z) is an
isomorphism. The only examples that we are going to need are open and
closed covers, Section 11.3. We say that a hypercover is smooth and/or affine,
respectively, if all Xn are smooth and/or affine. By resolution of singularities,
every hypercover can be refined by a smooth affine hypercover. If g : Y → X
is a morphism of varieties, X• → X a smooth affine hypercover, then there
is a smooth affine hypercover Y• → Y and a morphism g• : Y• → X• over g.

Lemma 10.10. Let X be a variety over k, Y ⊂ X a subvariety. Let X• → X
be a smooth affine hypercover, Y• → Y a smooth affine hypercover with a
morphism Y• → X• of simplicial schemes compatible with the inclusion. Let

C(X,Y ) = Cone(Y• → X•)

be the cone of the associated map of total complexes in C+(SmAff/Z). Then
there is a natural isomorphism

Hrd
n (X,Y ) ∼= Hrd

n (C(X,Y )).

Proof. Fix r ∈ R. We put Tr(Xn) = f−1
n (Sr) ⊂ Xan

n where fn : Xn →
X → A1 is the structure map of Xn and Sr = {z ∈ C|<(z) ≥ r}. By
definition, X• → X is a universal homological cover, hence the base change
Tr(X•)→ Tr(X) is also a universal homological cover. This implies that the
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complex computing homology of Xan relative to Tr(X) is quasi-isomorphic
to the total complex of

S∗(X
an
• )/S∗(Tr(X•)).

By [FJ20, Proposition 3.5.2] (see also [CHH20, Proposition 6.5]) and the
fact that S∗(−) computes singular homology (see [CHH20, Theorem 1.3]),
we have for each n and sufficiently large r, a quasi-isomorphism

S∗(X
an
n )/S∗(Tr(Xn))→ S∗(BX̄n

(Xn))/S∗(Tr(Xn))← Srd
∗ (Xn, fn).

By taking total complexes this gives quasi-isomorphisms of the projective
limit of the complexes computing rapid decay homology of X and Srd

∗ (X•, f•).
Note that projective limits are exact in our situation because all homology
spaces are finite dimensional. The same arguments can be applied to Y . By
taking cones we get the result for relative homology. �

Given this Lemma, we are led to define:

Definition 10.11 ([FJ20, Definition 7.1.6]). Let X be a variety over k,
f ∈ O(X), Y ⊂ X a closed subvariety. Choose C(X,Y ) ∈ C+(SmAff/A1)
as in Lemma 10.10.

(1) We define Hn
dR(X,Y, f) as cohomology of

RΓdR(X•, Y•, f) = RΓdR(C(X,Y )).

(2) We define the period pairing for (X,Y, f, n) as the period pairing

Hrd
n (X,Y, f)×Hn

dR(X,Y, f)→ C

for C(X,Y ).

We conclude this section by recalling the definition of a cohomological
exponential period.

Definition 10.12 (See [CHH20, Definition 6.10]). Let X be a variety, f ∈
O(X), Y ⊂ X a closed subvariety, n ∈ N0. The elements in the image of
the period pairing for (X,Y, f, n) are called the (cohomological) exponential
periods of (X,Y, f, n).

We denote Pcoh(k) the set of cohomological exponential periods for varying
(X,Y, f, n) over k. We denote Plog(k) the subset of cohomological exponential
periods for varying (X,Y, f, n) such that (X,Y ) is a log-pair.

Lemma 10.13. Let K/k be an algebraic extension. Then

Pcoh(K) = Pcoh(k).

Proof. The same argument as in the classical case, [HMS17, Corollary 11.3.5],
also applies in the exponential case. �

11. Cohomological exponential periods are naive exponential
periods

The aim of this section is to prove the key comparison in Proposition 11.1.
See [CHH20, Proposition 8.4] for the corresponding statement in the special
case where X is a curve. In that case, the main ideas of the proof are present,
but several technicalities are avoided.
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Proposition 11.1. Let k ⊂ C be as in Section 9.1. Let (X,Y ) be a log pair,
i.e., X a smooth variety, Y ⊂ X a simple normal crossings divisor. Let
f ∈ O(X), and let α be a cohomological exponential period of (X,Y, f, n)
(see Definition 10.12). Then α is a naive exponential period:

Plog(k) ⊂ Pnv(k).

Remark 11.2. This justifies that our fairly restrictive definition of a naive
exponential period was a reasonable choice.

The proof is technical and will take the rest of the section.

11.1. Notation. Throughout, let k be as in Section 9.1, k0 = k ∩ R.
If X is a smooth variety, f ∈ O(X), X̄ a good compactification relative

to f , then we put X∞ = X̄ rX. We decompose X∞ = D0 ∪D∞ where D0

consists of the horizontal components and D∞ of the vertical components
mapping to ∞ in P1.

As before, we denote by f̃ : BX̄(X)→ P̃1 the induced map on the oriented
real blow-up of X̄an in Xan

∞ .
Recall from Section 9.4 that

B◦X̄(X, f) = BX̄(X) r {x ∈ ∂(BX̄(X)) | π(x) ∈ Dan
0 or <(f̃(x)) ≤ 0}

∂B◦X̄(X, f) = B◦X̄(X, f) rXan

We introduce a variant.

Definition 11.3. We put

B]
X̄

(X, f) = BX̄(X) r {x ∈ ∂(BX̄(X)) | π(x) ∈ Dan
0 or f̃(x) 6= 1∞}

∂B]
X̄

(X, f) = B]
X̄

(X) rXan

The spaces BX̄(X) and B◦
X̄

(X, f) are k0-semi-algebraic manifolds with

corners by [CHH20, Proposition 4.3] and B]
X̄

(X, f) is a k0-semi-algebraic
subset.

11.2. A comparison of homology. The first step in the argument is an
alternative description of rapid decay homology using B](X, f) rather than
B◦(X, f). Let us motivate why this is needed. We are going to represent
homology classes by k0-semi-algebraic sets G such that Ḡ ⊂ B◦

X̄
(X, f). Hence

f(G) ⊂ B◦ as in the definition of a generalised naive exponential period. The

proposition will allow us to even choose Ḡ ⊂ B]
X̄

(X, f). Hence f(G) ⊂ B]

and the data defines a naive exponential period. Indeed, the closure of the
strip

Sr,s = {z ∈ C | <(z) > r, |=(z)| < s}
inside P̃1 is contained in B]. Actually, we can only apply this argument in
the case of smooth X, but see Section 11.3 for the reduction.

Proposition 11.4. Let V be a smooth variety, f ∈ O(V ), V̄ a good com-
pactification, n ≥ 0. Then the natural map

Hn(B]
V̄

(V, f), ∂B]
V̄

(V, f);Z)→ Hn(B◦V̄ (V, f), ∂B◦V̄ (V, f);Z)

is an isomorphism.
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Proof. We are going to show the equivalent statement on cohomology. The
spaces are paracompact Haussdorff and locally contractible, hence we may
compute singular cohomology as sheaf cohomology. We abbreviate B◦(V ) =

B◦
V̄

(V, f) and B](V ) = B]
V̄

(V, f). Let j◦ : V an → B◦(V ) and j] : V an →
B](V ) be the open immersions. Our relative cohomology is computed by

applying RΓ to j◦! Z and j]! Z, respectively.
We compare their higher direct images on a subset of V̄ an. As in the

definition of B◦(V ), let V̄ rV = D0 ∪D∞ such that D∞ ⊂ f̄−1(∞) and f is
rational on D0. Furthermore let p◦ : B◦(V )→ V̄ an rDan

0 , and p] : B](V )→
V̄ an rDan

0 the projections. We consider the natural map

Rp◦∗j
◦
! Z→ Rp]∗j

]
! Z

and claim that it is a quasi-isomorphism.
We compute its stalks. For x ∈ V an, both sides are simply equal to Z

concentrated in degree 0.

Let x ∈ Dan
∞ r Dan

0 . The stalk of Rip]∗j
]
! Z in x is given by the limit

of H i(p]−1(U), p]−1(U) ∩ ∂B](V );Z) for U running through the system of
neighbourhoods of x. The analogous formula hold for p◦. Hence it suffices
to show that

H i(p]−1(U), p]−1(U) ∩ ∂B](V );Z)→ H i(p◦−1(U), p◦−1(U) ∩ ∂B◦(V );Z)

is an isomorphism for all U sufficiently small. This is a local question
on V̄ . We choose local coordinates z1, . . . , zn on V̄ centered at x such that
f̄(z1, . . . , zn) = z−d11 . . . z−dmm , where m is the number of components of D0

passing through x. Let Uε be the polydisc of radius ε around the origin. On
Uε the real oriented blow-up is given by

{(z1, . . . , zn, w1, . . . , wm) ∈ Bε(0)n × (S1)m | ziw−1
i ∈ R≥0}.

We make a change of coordinates by writing zi = riwi with ri ∈ [0, ε). Hence
over Uε the real oriented blow-up is given by

(r1, . . . , rm, w1, . . . , wm, zm+1, . . . , zn) ∈ [0, ε)m × (S1)m ×Bε(0)n−m.

In it ∂B](V ) is the subset of points with r1 · · · rm = 0, wd11 . . . wdmm = 1 and

∂B◦(V ) is the subset of points with r1 · · · rm = 0, <(wd11 . . . wdmm ) > 0.
We apply the long exact sequence for relative cohomology. Hence it

suffices to compare cohomology of p]−1(Uε) and p◦−1(Uε) and their boundaries
separately. Both p]−1(Uε) and p◦−1(Uε) are homotopy equivalent to their
intersection with V an, hence they have the same cohomology.

We now concentrate on the boundary. In both cases they are fibre bundles
over

{(r1, . . . , rm, w1, . . . , wm−1, zm+1, . . . , zn) ∈
[0, ε)m × (S1)m−1 ×Bε(0)n−m | r1 · · · rm = 0}.

In the case of ∂B](V ), the fibre consists of dm points, the solutions of

wdmm = (wd11 . . . w
dm−1

m−1 )−1. In the case of ∂B◦(V ), the fibre consist of dm
open circle arcs centered around these points. In particular, the inclusion
p]−1(Uε)∩∂B] → p◦−1(Uε)∩∂B◦ is fibrewise a homotopy equivalence, hence
it induces an isomorphism on cohomology. �
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The goal of this whole section is to express α as a naive exponential period.
In order to find the set G as in the definition of a naive exponential period,
we are going to choose a k0-semi-algebraic triangulation of B](V, f) that
is globally of class C1 (see [CHH20, Definition 7.1]), and with V as in the
setting of the preceding proposition. Our next goal is therefore to construct
a suitable smooth V from the log-pair (X,Y ).

11.3. Hypercovers. By definition of cohomological exponential periods, we
need to fix a smooth affine hypercover of our log-pair (X,Y ). We do this
explicitly.

Let p : S → T be a morphism. Its Čech-nerve is the simplicial scheme
S• → T with

Sn = S ×T · · · ×T S (n+ 1 factors)

and the usual face and degeneracy maps. It is a hypercover, if p is a cover
for the h-topology. We need two easy cases.

Let X be a smooth variety, U1, . . . , UM an affine open cover. We put

U0 = U1 q · · · q UM → U.

Let U• be its Čech-nerve. Explicitly, we have

Un =
∐

J∈{1,...,M}n+1

UJ

with

U (j0,...,jn) =

n⋂
i=0

U ji .

Singular homology satisfies descent for open covers (the Mayer–Vietoris
property), hence U• → X is a smooth affine hypercover, the Čech-complex
defined by the open cover.

For the second special case, let X be a smooth variety, Y ⊂ X a sim-
ple normal crossings divisor with irreducible components Y 1, . . . , Y N . By
assumption they are smooth. We put

Y0 = Y 1 q · · · q Y N → Y.

Let Y• be its Čech-nerve. Explicitly, we have

Yn =
∐

J∈{1,...,N}n+1

Y J

with

Y (j0,...,jn) =

n⋂
i=0

Y ji .

Singular homology satisfies proper base change, hence Y• → Y is a smooth
hypercover, the Čech-complex defined by the closed cover.

We can combine the two constructions. The bisimplicial scheme

Y• ∩ U• → Y

is a smooth affine hypercover. In the notation of Lemma 10.10

C(X,Y ) = Cone(Y• ∩ U• → U•).
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We write Y−1 = X, then all terms of C(X,Y ) are direct sums of objects of
the form Yn ∩ Um for n ≥ −1 and m ≥ 0.

The definition of the period pairing also requires the choice of a good
compactification of C(X,Y ). We proceed as follows. Let X̄ be a good
compactification of (X,Y, f). We choose an open cover U1, . . . , UM by affine

subvarieties of X such that Ȳ +
∑M

i=1 U
i
∞ is still a simple normal crossings

divisor. This can be achieved by choosing U i as the complement of a generic
hyperplane U i∞ in X̄. Note that X̄ is a good compactification of each of the
UJ . Hence the Čech-nerve of the map

M∐
i=1

X̄ → X̄

is a good compactification of U•. We denote it Ū•. For each I ⊂ {1, . . . , N}
let Ȳ I be the closure of Y I in X̄. By the transversality assumption it is
smooth and a good compactification. Hence

Ȳn =
∐

J∈{1,...,N}n+1

Ȳ J

defines a good compactification of Yn and of Yn ∩Um for all m. The complex

Cone(Ū• ∩ Ȳ• → Ū•) ∈ C+(SmProj/A1)

is a good compactification of C(X,Y ).

Corollary 11.5. Let (X,Y ) be a log pair, f : X → A1. With the notation
above

RΓdR(X,Y, f) = RΓdR(C(X,Y )) = Ω∗(C(X,Y ))

and rapid decay homology of (X,Y, f) is computed by

Srd
∗ (X,Y, f) := Cone(Srd

∗ (Ū• ∩ Ȳ , f•)→ Srd(Ū•, f•)).

Proof. The statement for de Rham cohomology is simply Definition 10.11.
The claim for rapid decay homology is Lemma 10.10 in every degree. �

Our next aim is to get a clearer understanding of B◦(−, f) and B](−, f)
applied to C(X,Y ) and its good compactification C(X̄, Ȳ ).

11.4. Real oriented blow-up and closed Čech complexes. Let X be
smooth, Y ⊂ X a simple normal crossings divisor, f ∈ O(X). Let X̄ be
a good compactification such that Y + X∞ is a simple normal crossing
divisor and f extends to X̄. Let Ȳ be the closure of Y in X̄. Denote by

BX̄(Y ), B◦
X̄

(Y, f) and B]
X̄

(Y, f) the closure of Y an in BX̄(X), B◦
X̄

(X, f) and

B]
X̄

(X, f), respectively. As in the last section let Y• → Y and Ȳ• → Ȳ be

the Čech-complexes for the closed cover of Y and Ȳ by their irreducible
components.

Applying our oriented blow-ups, we get simplicial k0-semi-algebraic man-
ifolds with corners BȲ•(Y•) and B◦

Ȳm
(Y•, f•) and k0-semi-algebraic subsets
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B]
Ȳ•

(Y•). Note that

BȲm(Ym, fm) =
∐

J∈{1,...,N}n+1

BȲ J (Y J , fJ),

B◦Ȳm(Ym, fm) =
∐

J∈{1,...,N}n+1

B◦Ȳ J (Y J , fJ)

B]
Ȳm

(Ym, fm) =
∐

J∈{1,...,N}n+1

B]
Ȳ J (Y J , fJ).

Proposition 11.6. The simplicial k0-semi-algebraic sets

BȲ•(Y•)→ BX̄(Y ), B◦Ȳ•(Y•, f•)→ B◦X̄(Y, f), B]
Ȳ•

(Y•, f•)→ B]
X̄

(Y, f),

are the Čech-nerves for the corresponding closed covers

BȲ0(Y0)→ BX̄(Y ), B◦Ȳ0(Y0, f0)→ B◦X̄(Y, f), B]
Ȳ0

(Y0, f0)→ B]
X̄

(Y, f),

Proof. Let Z = Y J for J ⊂ {1, . . . , N}m+1 for all m, J . Then Z̄ is transverse
to X∞. The description of the real oriented blow-up in local coordinates
immediately gives

BZ̄(Z) = Z̄an ×X̄ BX̄(X), B◦Z̄(Z, f) = Z̄an ×X̄an B◦X̄(X, f),

B]
Z̄

(Z, f) = Z̄an ×X̄an B
]
X̄

(X, f),

In total we have

BȲ•(Y•) = Ȳ• ×X̄ B(X),

B◦Ȳ•(Y•, f•) = Ȳ• ×X̄ B◦(X, f),

B]
Ȳ•

(Y•, f•) = Ȳ• ×X̄ B](X, f).

This gives the claim on Čech-nerves. �

Corollary 11.7. Let X be a smooth variety, f ∈ O(X), Y ⊂ X a simple
normal crossings divisor. Choose a good compactification X̄ of X such that

Y +X∞ is a simple normal crossings divisor. Let B◦
X̄

(Y, f) and B]
X̄

(Y, f)

be the closure of Y an in B◦
X̄

(X, f) and B]
X̄

(X, f), respectively. Then

Hrd
n (Y, f) ∼= Hn(B◦X̄(Y, f), ∂B◦X̄(Y, f);Q) ∼= Hn(B]

X̄
(Y, f), ∂B]

X̄
(Y, f);Q)

and

Hrd
n (X,Y, f) ∼= Hn(B◦X̄(X, f), B◦X̄(Y, f) ∪ ∂B◦X̄(X, f);Q)

∼= Hn(B]
X̄

(X, f), B]
X̄

(Y, f) ∪ ∂B]
X̄

(X, f);Q).

Proof. Let Y• → Y be the Čech-nerve of the closed cover of Y by the disjoint
union of its irreducible components. By Proposition 11.6, the natural map

B◦Ȳ•(Y•, f•)→ B◦X̄(Y, f)

is a proper hypercover, hence it induces isomorphisms on singular homology.
�
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11.5. Semi-algebraic triangulations of hypercovers. We use the nota-
tion of Section 11.3.

Note that the natural map BX̄(UJ) → BX̄(X) induces an inclusion
B◦
X̄

(UJ , f) ⊂ B◦
X̄

(X, f).

Proposition 11.8. There is a finite dimensional subcomplex

S∆
∗ (X,Y, f) ⊂ Srd

∗ (X,Y, f)

such that the inclusion is a quasi-isomorphism and every S∆
n (X,Y, f) has a

finite basis consisting of k0-semi-algebraic C1-simplices of the form

σ : ∆̄a → B](Ub) a+ b = n

or

σ : ∆̄a → B](Ub ∩ Yc) a+ b+ c = n− 1

such that σ is a homeomorphism onto its image.

Proof. By definition, Srd
∗ (X,Y ) is the total complex of

Cone(S∗(B
◦(U• ∩ Y•, f), ∂)→ S∗(B

◦(U•, f), ∂)

(where ∂ is an abbreviation for ∂B◦(−, f) as applicable).
In order to unify notation, we write Y−1 = X and also Y I = X for |I| = −1.

We now want to choose compatible k0-semi-algebraic triangulations in the
sense of [CHH20, Section 7]. We first triangulate the base BX̄(X) by applying
[CHH20, Proposition 7.4]. We obtain a k0-semi-algebraic triangulation of
the compact k0-semi-algebraic manifold with corners BX̄(X) compatible

with the finitely many k0-semi-algebraic subsets B]
X̄

(UJ ∩ Y I , f) and their
boundaries.

In the next step, we want to triangulate the (bi)simplicial k0-semi-algebraic

sets B]
X̄

(U•∩Y•, f) and B]
X̄

(U•, f) and their boundaries such that all structure
maps and the maps between them are simplicial. We obtain this simply by
pull-back of the triangulation of the base. By loc. cit. the simplices can be
chosen to be C1.

We apply [CHH20, Proposition 7.6] to these simplicial complexes and
replace them by the closed core of their barycentric subdivisons. The
subcomplexes

|cc(βB](Ua ∩ Yb, f))|

are deformation retracts, hence they have the same homology as (B](Ua ∩
Yb, f), ∂). By Proposition 11.4 their homology also agrees with homology of
(B◦(Ua ∩ Yb, f), ∂). The subcomplexes are compact.

We now consider the subcomplexes of S∗(B
◦(U•∩Y•, f), ∂) and S∗(B

◦(U•, f), ∂)
that compute the simplicial homology of |cc(βB](U• ∩ Y•, f))| and |cc(βB](U•, f))|
relative to their boundaries, respectively. By what we argued above, the in-
clusion of subcomplexes into the ambient complexes are quasi-isomorphisms.
Let S∆

∗ (X,Y, f) be the total complex of the cone of the natural map between
these subcomplexes. By construction it has a degreewise finite basis of the
form given in the proposition. �
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11.6. Proof of Proposition 11.1.

Proof. Let α = 〈Ω,Σ〉 be an exponential period for the log-pair (X,Y, f).
We want to express it as a naive exponential period.

We work with the hypercovers U• and Y• as in Section 11.3. By definition,
Σ ∈ Hrd

n (X,Y ;Z). We compute rapid decay homology via the complex
S∆
∗ (X,Y, f) of Proposition 11.8. By definition this means that the cohomo-

logy class Σ is represented by a tuple σbc ∈ S∆
a (Ub∩Yc) with a+b+c = n−1,

b ≥ 0, c ≥ −1.
Also by definition, Ω is represented by a cycle in Ω∗(Cone(U• ∩Y• → U•)),

i.e., a tuple ωbc ∈ Ωa(Ub ∩ Yc) with a+ b+ c = n− 1, b ≥ 0, c ≥ −1 (again
we use the convention that Y−1 = X). By definition of the period pairing
〈Ω,Σ〉 is obtained by taking a linear combination of the integrals∫

σbc

e−fωbc.

Each of the σbc is a linear combination of k0-semi-algebraic strictly-simplices
globally of class C1 with values in B](Ub ∩ Yc) ⊂ B◦(Ub ∩ Yc).

Recall that naive exponential periods form an algebra, hence it suffices to
show that the integrals for the individual simplices define naive exponential
periods.

Let U = Ub ∩ Yc ⊂ AN , ω = ωbc ∈ Ωa(U). Let T : ∆̄a → B](U, f) be a
k0-semi-algebraic C1-simplex. Let G = T (∆̄a) ∩ Uan. We equip it with the
pseudo-orientation induced from ∆a. It is a closed k0-semi-algebraic subset

of CN because U is affine and the inclusion Uan → B]
Ū

(U, f) is k0-semi-

algebraic. Moreover, as U is affine, f |G is the restriction of a polynomial in
k[X1, . . . , XN ] to G and ω|G the restriction of an algebraic differential form.

We need to check the condition on f(G). The closure Ḡ = T (∆̄a) ⊂
B](U, f) is compact, hence so is its image in B] = C ∪ {1∞}. This implies
that f(G) ⊂ C is contained in a strip Sr,s as we want. Compactness of Ḡ

also implies that the map Ḡ→ P̃1 is proper. The preimage of the circle at
infinity is precisely ḠrG, hence f : G→ C is also proper.

Therefore our α is a linear combination of numbers of the form∫
∆̄a

e−f◦TT ∗ω =

∫
G

e−fω,

which are naive exponential periods. �

12. Generalised naive exponential periods are cohomological

Let k ⊂ C be a subfield, k0 = k ∩ R and assume that k is algebraic over
k0, see Section 9.1. Recall from Definition 9.3 the notion of a generalised
naive exponential period. We denote by Pgnv(k) the set of generalised naive
exponential periods. Recall from Definition 10.12 the notion of an exponential
period of a log pair and the set Plog(k) of all such numbers.

The aim of this section is the proof of the following converse of Proposi-
tion 11.1:

Proposition 12.1. Every generalised naive exponential period over k is an
exponential period of a log-pair over k:

Pgnv(k) ⊂ Plog(k).
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More precisely, given

• a pseudo-oriented k-semi-algebraic G ⊂ Cn of real dimension d,
• f a rational function and
• ω a rational algebraic d-form

as in the definition of a generalised naive exponential period, there are

• a smooth affine variety X of dimension d,
• a simple normal crossings divisors Y on X,
• a function f ∈ O(X) induced from the original f ,
• a homology class [G] ∈ Hrd

d (X,Y ;Z), and

• a cohomology class [ω] ∈ Hd
dR(X,Y, f)

such that

〈[ω], [G]〉 =

∫
G

e−fω.

12.1. Horizontal divisors. We will need to make the closure of G disjoint
from the components of the divisor that are horizontal relative to f . We
start with a local criterion.

Lemma 12.2. Let k ⊂ R be a real closed field, so that k̄ = k(i). Let
D,E ⊂ Ank be unions of distinct coordinate hyperplanes. In other words,

D =
{∏

i∈I xi = 0
}

and E =
{∏

j∈J xj = 0
}

, with I, J ⊂ {1, . . . , n} and

I ∩ J = ∅. Let G be a semialgebraic subset of Ank(R) = Rn, such that G is
disjoint from D(R), and such that Ḡ contains the origin. Let ∂Ḡ = Ḡr Ḡint

be its boundary in Rn. Let U ⊂ Ank(R) be an open neighbourhood of the
origin, and assume that G ∩ U is open in Rn and ∂Ḡ ∩ U ⊂ E(R). Then D
is empty.

E

D
0 U0 ⊂ G

Proof. Without loss of generality, we may assume that U is an open ball.
Note that U \ E(R) has 2#J connected components. Since G ∩ U is open,
and Ḡ contains the origin, we see that G intersects at least one of these
components, say U0. Since ∂Ḡ ∩ U ⊂ E(R), we find that U0 ⊂ G. On the
other hand, for every i /∈ J , it is clear that {xi = 0} intersects U0. Hence D
is empty. �

Setting 12.3. For the actual proof of Proposition 12.1, we are going to use
the following data:

• a real closed field k ⊂ R, hence k(i) = k̄,
• a smooth affine variety X over k of dimension d,
• a simple normal crossings divisor Y ⊂ X,
• a closed k-semi-algebraic subset G ⊂ X(R) of dimension d such that
∂G ⊂ Y (R) (where ∂G = GrGint inside X(R)),
• a pseudo-orientation on G,
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• a morphism f : Xk̄ → A1
k̄

such that f : G → C is proper and such

that the closure f(G) ⊂ P̃1 is contained in B◦,
• a regular algebraic d-form ω on Xk̄,
• a good compactification X̄ of X such that f extends to f̄ : X̄k̄ → P1

k̄
,

• and finally, we denote by D ⊂ X̄ is the smallest subvariety of X̄
containing all components of (X∞)k̄ = X̄k̄−Xk̄ on which f̄ is rational.

Lemma 12.4. In this setting, we may choose X̄ such that, in addition to
being a good compactification, the closure of G in X̄an is disjoint from Dan.

Proof. Without loss of generality, we may assume that X is connected. If D
is empty, we are done. Hence assume that D is not empty. By the properness
assumption on f , we see that Ḡ ∩Dan lies in the preimage of ∞ ∈ P1.

Let Ȳ be the Zariski closure of ∂Ḡ ∪ Y in X̄, where ∂Ḡ = Ḡ r (Ḡ)int

viewed as subset of X̄. It contains the closure of Y in X̄, but possibly also
additional components mapping to ∞. By resolution of singularities, we may
find a modification π : X̃ → X̄ such that π−1(X) → X is an isomorphism,

X̃ again smooth and such that D̃ ∪E ∪ Ỹ is a strict normal crossings divisor
in X̃, where D̃ and Ỹ denote the strict transforms of D and Y respectively,
and where E denotes the exceptional locus of π. In addition, we may assume
that D̃ and Ỹ are disjoint.

Let G̃ denote the strict transform of G under π, i.e., the closure of
G ∼= π−1(G) in X̃an. It is contained in X̃(R). Since π is proper, the closure

of G̃ in X̃(R) is contained in π−1(Ḡ). This means that ∂G̃ ⊂ E ∪ Ỹ .

f̄−1(∞)

D

∂G ⊂ Y

G

Ỹ

D̃

E
G̃

We will now show that D̃(R) is disjoint from the closure of G̃ in X̃(R).

Suppose that x is contained in their intersection. Since Ỹ is disjoint from
D̃, we conclude that x ∈ E(R). As Ỹ is closed, there is even an open

neighbourhood U of x in X̃(R) such that U is disjoint from Ỹ (R). In

particular we find that G ∩ U is open in X̃(R), and that ∂G̃ ∩ U ⊂ E(R).
After a suitable choice of continuous semialgebraic coordinates, we see that
this contradicts the conclusion of Lemma 12.2. Therefore the closure of G̃ is
disjoint from D̃(R).

Since f̃ = f̄ ◦ π is not rational on E, we conclude that X̃ satisfies the
conditions of the statement. �

12.2. Proof of Proposition 12.1.
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Proof. Let α be a generalised naive exponential period. By [CHH20, Lemma 5.6]
and Lemma 10.13, we may assume without loss of generality that k ⊂ R
and that k is real closed and hence k(i) = k̄. Generalised naive exponential
periods are absolutely convergent, so we can use the characterisation of
[CHH20, Proposition 5.19]. This brings us into Setting 12.3 with

α =

∫
G

e−fω.

By Lemma 12.4, we may improve the good compactification X̄ in such a
way that the closure of G in X̄an is disjoint from the components of X∞ on
which f̄ has a pole. This implies that the closure Ḡ of G in the real oriented
blow-up BX̄(X) is contained in B◦

X̄
(X, f). Note that Ḡ is compact because

BX̄(X) is. We replace X by Xk̄ from now on.
Let Y• and their compactifications be as in Section 11.3. Note that we do

not have to pass to an open Čech-cover because X is affine. By definition

RΓdR(X,Y )d = Ωd(X)⊕ Ωd−1(Y0)⊕ · · · ⊕ Ω0(Yd−1)

The tuple (ω, 0, . . . , 0) is a cocycle because dω = 0 and ω|Y0 = 0, both for
dimension reasons. We denote the induced cohomology class by

[ω] ∈ Hn
dR(X,Y, f).

Recall that G is equipped with a pseudo-orientation. Let G′ ⊂ G be an
oriented semi-algebraic subset with dim(G r G′) < d that represents the
pseudo-orientation. We apply [CHH20, Proposition 7.4] to the semi-algebraic
manifold with corners B◦

X̄
(X, f). Hence we may choose a semi-algebraic

triangulation of Ḡ that is globally of class C1 and that is compatible with
he oriented subset G′, and also compatible with the subsets B◦

X̄
(Y J) ∩ Ḡ,

and ∂B◦
X̄

(Y J , f) ∩ Ḡ for all J Here Y J is the intersection of irreducible
components of Y as in Section 11.3. The top dimensional simplices inherit
an orientation from G′. We use the triangulation of Ḡ to define a cycle
(σ, σ0, . . . , σd−1) in

Srd
d (Cone(Y• → X)) =

Sd(B
◦(X, f), ∂)⊕ Sd−1(B◦(Y0, f0), ∂)⊕ · · · ⊕ S0(B◦(Yd−1, fd−1, ∂)

where we abbreviate Sn−1(B◦(Yi, fi), ∂) = Sn−1(B◦
Ȳi

(Yi, fi))/Sn−1(∂B◦
Ȳi

(Yi, fi)).

In detail: We are given a simplicial complex K and a homeomorphism
h : |K| → Ḡ which extends to a C1-map on a neighbourhood of |K|. For
each closed top-dimensional simplex a = [a0, . . . , ad] ∈ K, we choose a linear
isomorphism ∆̄d → [a0, . . . , ad]. By composition we obtain a C1-map

Ta : ∆̄d → [a0, . . . , ad]
h|[a0,...,ad]−−−−−−→ B◦X̄(X, f).

It is a homeomorphism onto its image. The image of Ta is oriented by the
orientation on G′. We can arrange for Ta to respect this orientation. The
formal linear combination

σ =
∑
a∈Kd

Ta

is a chain on B◦
X̄

(X, f). Its boundary ∂̌σ is a linear combination of (d− 1)-

simplices with image contained in one of the components Y i or in ∂B◦
X̄

(X, f).
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Let σ0 ∈ Sd−1(Y0) be the chain defined by the simplices in the Y i, ignoring
the ones with image contained in ∂B◦

X̄
(X, f). By construction, the simplices

appearing in ∂̌σ0 are contained in one of the Y ij , hence they define σ1 ∈
Sd−2(Y1). Recursively, we find all σa. By construction, ∂̌(σ, σ0, . . . , σd−1) is
a cycle. Let

[G] ∈ Hrd
d (X,Y, f)

be its homology class. Because of the special shape of [ω], we have

〈[ω], [σ]〉 =
∑
a∈Kd

∫
∆̄d

T ∗aω =
∑
a∈Kd

∫
Ta(∆̄d)

ω =

∫
G
ω.

We have written α as a cohomological period over k̄. �

13. Conclusion

Fresán and Jossen develop a fully fledged theory of exponential motives
in [FJ20]. It behaves very much like the theory of ordinary Nori motives.
In particular, there is a so-called “basic lemma” for affine pairs (X,Y, f).
We refer to their book for further details. We denote by Pmot(k) the set of
periods of effective exponential motives.

Proposition 13.1. The periods of effective exponential motives are expo-
nential periods in the sense of Definition 10.12 for a tuple (X,Y, f, n) with X
smooth, Y a strict normal crossings divisor and n = dimX. In other words,

Pmot(k) ⊂ Plog(k).

Proof. By definition, every effective exponential motive is a subquotient of
some exponential motive of the form Hn(X,Y, f) for an affine k-variety X,
Y ⊂ X a subvariety, f ∈ O(X), and X r Y smooth. Hence its periods are
also periods of Hn(X,Y, f).

There is a blow-up π : X̃ → X such that X̃ is smooth and Ỹ = π−1(Y ) is
a simple normal crossings divisor. By excision for rapid decay homology, we
obtain an isomorphism

Hrd
n (X̃, Ỹ , f) ∼= Hrd

n (X,Y, f).

This isomorphism lifts to an isomorphism of motives. Hence they have the
same periods. �

Remark 13.2. By Proposition 12.1 all exponential periods are even realised
as cohomological exponential periods of affine log-pairs. This is not obvious
from the purely motivic argument given above.

Proposition 13.3. Periods of complexes of smooth affine varieties are
periods of effective exponential Nori motives, i.e.,

PSmAff(k) ⊂ Pmot(k).

Proof. The argument is the same as in the case of ordinary Nori motives, see
[HMS17, Theorem 11.4.2]. We give a sketch of the proof.

By [FJ20, Corollary 3.3.3], we may choose a good filtration F0X ⊂ F1X ⊂
. . . FnX = X of an affine variety X, i.e., one where in every step the relative
homology is concentrated in a single degree equal to the dimension. By
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definition the exponential motives of X are computed as homology of the
complex of exponential Nori motives

. . . Hi+1(Fi+1X,FiX, f)→ Hi(FiX,Fi−1X, f)→ . . . .

Given a complex X• of affine varieties, we may choose compatible good filtra-
tions on all entries of the complex. The exponential motives of X• are defined
as homology of the total complex of the double complex Hi(FiXj , Fi−1Xj , fj).
This is compatible with the period computation, hence we have identified
the periods of X• with the periods of exponential period motives. �

Theorem 13.4. Let k ⊂ C be a field, k0 = k ∩ R, and assume that k/k0 is
algebraic. Then the following subsets of C agree:

(1) Pnv(k), i.e., naive exponential periods over k;
(2) Pgnv(k), i.e., generalised naive exponential periods over k;
(3) Pabs(k), i.e., absolutely convergent exponential periods over k;
(4) Pmot(k), i.e., periods of all effective exponential motives over k;
(5) Pcoh(k), i.e., the set of periods of all (X,Y, f, n) with X a k-variety,

Y ⊂ X a subvariety, f ∈ O(X), and n ∈ N0;
(6) Plog(k), i.e., periods of all tuples (X,Y, f, n) with (X,Y ) a log pair,

f ∈ O(X), and n ∈ N0;
(7) PSmAff(k), i.e., periods of all tuples (X•, f•, n) for (X•, f•) ∈ C−(SmAff/A1)

and n ∈ N0.

Moreover, the real and imaginary part of these numbers are up to sign volumes
of bounded definable sets for the o-minimal structure Rsin,exp,k0 generated by
exp, sin|[0,1] and with paramaters in k0, see [CHH20, Definition 2.13].

Proof. The statement on volumes of definable sets is [CHH20, Theorem 5.12].
The following diagram shows all the inclusions that we have proved between

the sets listed above.

Vol

Pnv Pgnv Pabs

Plog Pcoh PSmAff

Pmot

[CHH20, Theorem 5.12]

[CHH20, Lemma 5.5]

Proposition 12.1

[CHH20, Corollary 5.20]

Proposition 11.1

triv triv

Proposition 13.3Proposition 13.1

Therefore we have equality everywhere. �
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