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Abstract. For globally subanalytic manifolds we define de Rham complexes of globally
subanalytic differential forms and of constructible differential forms. Whereas the de Rham
theorem does not hold for the former in the non-compact case, it does hold for the latter
in full generality. We deduce that the constructible de Rham cohomology groups are
canonically isomorphic to the classical ones. We stress that our results apply already in the
C1-setting.

Introduction

We are interested in homology and cohomology theories in the tame setting of o-minimal
structures. O-minimal singular homology and cohomology have been successfully devel-
oped, first by Delfs and Knebusch [DK82] in the semialgebraic case and then by Edmundo
and Woerheide [EW08] in the general case of o-minimal expansions of a real closed field.

What has been missing so far is an o-minimal version of de Rham cohomology, more
precisely of the de Rham theorem comparing definable de Rham with o-minimal singular
cohomology. Note that Bianconi and Figueiredo have previously introduced in their prelim-
inary note [BF19], a version of definable de Rham cohomology groups. The first author of
the present paper has in [Hub24] studied the period pairing for manifolds definable in an
o-minimal structure, analyzing which simplices can be used for integration. But on the side
of differential forms an o-minimal version leading to a definable de Rham theorem did not
exist so far.

We focus on the globally subanalytic setting, i.e. on the o-minimal structure Ran of the
real field with restricted analytic functions. Given a globally subanalytic Cω-manifold that
is compact every real analytic function is globally subanalytic. Since in the Cω-setting the
classical de Rham cohomology groups are generated by real analytic differential forms
(see for example Beretta [Ber94]) we have immediately a definable version of the de
Rham theorem. But in the non-compact case the situation is completely different. The
straightforward definition using definable forms does not give rise to a good de Rham
cohomology theory, mainly due to the failure of the Poincaré lemma. Integration arguments
are no longer available in the o-minimal setting.

However in the globally subanalytic setting we are able to remedy the situation. Here
one can consider the class of constructible functions as introduced by Raf Cluckers and
Dan Miller [CM11]. Constructible functions are finite sums of finite products of globally
subanalytic functions and the logarithm of positive such functions. They are definable
in the o-minimal structure Ran,exp of the real field with restricted analytic functions and
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exponentiation (see van den Dries and Miller [vdDM96] for the structures Ran and Ran,exp).
The main property of this class is that it is closed under parametric integration.

Constructible functions of class C∞ are real analytic by [KO22]. The reasoning of
[Ber94] involves deep results from cohomology of coherent sheaves on Stein complex
manifolds which are so far not available in the definable or constructible setting. But in the
case of globally subanalytic Cp-manifolds where 0 < p < ∞ we are able to establish a full
constructible de Rham theorem. Given 0 ≤ q < p we define constructible differential forms
of regularity q and the corresponding de Rham cohomology groups. Note that this includes
the case of C1-manifolds: By the tame geometric properties of o-minimal structures we are
able to establish a version of the de Rham complex leading to the de Rham theorem also for
those.

The definition of constructible differential forms is subtle. We construct them similarly
to the definition of regulous functions (see Kucharz and Kurdyka [KK18]). We indicate the
case q = 0: A constructible differential form is C1 on a dense open globally subanalytic set.
We consider now the vector space of the continuous constructible differential forms such that
the Cartan derivative on such an open set extends to a continuous constructible differential
form on the whole manifold. This defines the constructible de Rham complex and the
constructible de Rham cohomology groups. It is a consequence of the tame properties of
o-minimal structures that they are indeed functorial for globally subanalytic C1-maps.

Our main result, Theorem 6.4 and Theorem 7.13, is the de Rham theorem for these
constructible de Rham cohomology groups: they are canonically isomorphic to the singular
cohomology groups (and if the given manifold is Cω therefore to the classical de Rham
cohomology groups).

Following closely the arguments in the classical case, we give two versions of proof, one
fairly explicit one depending on Stokes’ Theorem and a sheaf theoretic one. In both cases
the ingredients are the same: the Mayer-Vietoris property and homotopy invariance.

The Mayer-Vietoris property follows in a straight-forward way from the existence of
globally subanalytic partitions of unity in the Cp-case for p < ∞. It is this part of the
argument that breaks down for the Cω-versions of constructible de Rham cohomology.

Homotopy invariance turns out to be more subtle. As for functoriality, tameness is used
heavily.

The paper is organized as follows. In the first section we introduce some notations
and preliminaries on definable manifolds and differential forms. Note that we start with
a fairly general setup to be used in future work. In Section 2 we construct the definable
and constructible de Rham cohomology groups. In the third section we show that we have
functorial pull back and that Stokes’s theorem holds in this setting. In Section 4 we establish
homotopy invariance of constructible de Rham cohomology. In the fifth section we provide
some geometric results allowing us to prove in Section 6 a constructible de Rham theorem
in the case of globally Cp-manifolds with p < ∞ using the period pairing. In the last section
we give a sheaf-theoretic proof. Here we also establish that the hypercohomology of the
constructible de Rham complex computes the singular cohomology of a (not necessarily
compact) globally subanalytic Cω-manifold.

Acknowledgements. We would like to thank Nadine Große for discussion on the divergence
lemma (Proposition 3.2.)

1. Setting

1.1. Notations and Preliminaries.
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• By N = {1, 2, 3, . . .} we denote the set of natural numbers and by N0 the set of
natural numbers with 0.

• Given a set A and some a ∈ A we denote by ca the constant map on A with value a.
• By I we denote the open unit interval (0, 1) in R.
• Let r ∈ N0 ∪ {∞, ω}. We denote by Cr the class of real valued functions which

are r-times continuously differentiable in the case r ∈ N0 respectively infinitely
differentiable in the case r = ∞ respectively analytic in the case r = ω.

• We denote by Ralg the o-minimal structure of semialgebraic sets.
• We denote by Ran the o-minimal structure generated by the restricted analytic

functions; the definable sets and functions are the globally subanalytic ones.

Throughout the paper we fix an o-minimal structureM expanding the ordered field of
real numbers (R, <,+, ·, 0, 1), see [vdD98]. By definable, we shall always meanM-definable
(with parameters in R).

We will be mostly interested in the case that M is the o-minimal structure Ran. We
assume familiarity with the definition of globally subanalytic sets and functions on the reals
(compare with [vdDM96]).

Let A be a globally subanalytic set in Rn. A constructible function f : A→ R is of the
form

f =
k∑

i=1

fi
li∏

j=1

log(gi j)

where fi : A→ R, gi j : A→ R>0 are globally subanalytic functions (see [CM11]). Note that
constructible functions are closed under composition with globally subanalytic functions
from the right. The class is closed both under taking partial derivatives and parametric
integrals. The latter is the main result of Cluckers and Miller [CM11]. The former follows
by adapting the reasoning of [KO22] (where the corresponding result for the larger class of
log-analytic functions has been shown) to the setting of constructible functions, see [Kai25]
for details.

1.2. Definable manifolds. We introduce the main objects of our paper.

Definition 1.1. Let p ∈ N0 ∪ {∞, ω} and X a Hausdorff topological space. Let n ∈ N0.

(1) A definable Cp-atlasA of constant dimension n on X is the data

A = {(Ui,Vi ⊂ R
n, ϕi : Ui

∼
−→ Vi) | 1 ≤ i ≤ r},

consisting of a finite open cover X =
⋃r

i=1 Ui of X, definable open subsets Vi ⊂ R
n

along with homeomorphisms ϕi : Ui
∼
−→ Vi ⊂ R

n such that for each i, j, ϕi ◦ ϕ
−1
j :

ϕ j(Ui ∩U j)
∼
−→ ϕi(Ui ∩U j) is a definable Cp-diffeomorphism. We refer to the maps

ϕi as charts.
(2) We declare two definable Cp-atlases A = {(Ui,Vi, ϕi) : 1 ≤ i ≤ r} and A′ =
{(U′j,V

′
j, ϕ
′
j) : 1 ≤ j ≤ s} on X of constant dimension n to be equivalent if the

unionA∪A′ is a definable Cp-atlas of constant dimension n on X. This defines
an equivalence relation on the set of all definable Cp-atlases on X of dimension n.
We denote the equivalence class of a definable Cp-atlasA on X by [A].

(3) A definable Cp-manifold of dimension n is the data (X, [A]) of a Hausdorff topo-
logical space X equipped with the equivalence class of a definable Cp-atlas [A] of
constant dimension n on X. We shall often suppress the choice of the equivalence
class of the atlas [A] for notational simplicity.
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(4) Let (X, [A]) be a definable Cp-manifold of dimension n. A subset A ⊂ X is
said to be a definable subset of X if for every ϕi : Ui

∼
−→ Vi ⊂ R

n in A, the set
ϕi(A ∩ Ui) ⊂ Rn is a definable subset of Rn. It is easy to check that the notion of
definable subsets only depends on the equivalence class of the chosen atlasA, and
that the collection of definable subsets of X is closed under finite intersections,
finite unions, and complements. We shall denote the Boolean algebra of definable
subsets of X by Def(X).

(5) A definable Cp-map f : (X, [A])→ (X′, [A′]) of two definable Cp-manifolds X and
X′ is a continuous map f : X → Y such that for every element (Ui,Vi, ϕi : Ui

∼
−→

Vi) ∈ A and (U′j,V
′
j, ϕ
′
j : U′j

∼
−→ V ′j) ∈ A

′ the map ϕ′j ◦ f ◦ϕ−1
i : ϕi

(
Ui∩ f −1(U′j)

)
→

V ′j is definable and Cp. This definition also only depends on the equivalence class
of the chosen atlasA.

(6) We denote by Cp
def(X) the R-algebra of definable Cp-functions on a definable Cp-

manifold X.
(7) Let X be a definable Cp-manifold of dimension n and let d ∈ {0, . . . , n}. A subset

Y is a definable Cp-submanifold of X of dimension d if it is a definable subset and
a Cp-submanifold of X of dimension d. Note that Y can then be endowed with a
definable Cp-manifold structure.

(8) A definable Cp-manifold X is called affine if it is definably Cp-diffeomorphic to a
definable Cp-submanifold of RN for some N.

Remark 1.2. WhenM = Ralg (orM = Ran) a definable Cp-manifold shall also be called
a semialgebraic Cp-manifold (or a globally subanalytic Cp-manifold, respectively). A
semialgebraic Cω-manifold is also referred to as a Nash manifold. We also note that C∞-
semialgebraic and C∞-globally subanalytic manifolds are automatically Cω as follows from
a remarkable result of van den Dries–Miller [vdDM94].

In the globally subanalytic case, we are also interested in the constructible version.

Definition 1.3. Let (X, [A]) be a globally subanalytic Cp-manifold. A function f : X → R
is said to be constructible if for every chart (Ui,Vi ⊂ R

n, ϕi : Ui
∼
−→ Vi) ∈ A, the composition

f ◦ ϕ−1
i : ϕi(Ui)→ R is constructible.

We let Cp
con(X) be the R-algebra of constructible Cp-functions on X.

Note that constructibility is invariant under change of globally subanalytic variables
because a function on a globally subanalytic set is constructible if and only if its restriction
to a finite cover by (not necessarily open) globally subanalytic subsets is constructible.

Remark 1.4. We note that every definable C0-manifold is definably normal (see for instance
[Edm00, Lemma 3.5], and [BF19, Theorem 2.7]). Recall this means that for two disjoint
closed definable subsets C,C′ ⊂ X there exist disjoint open definable subsets U ⊂ X and
U′ ⊂ X such that C ⊂ U and C′ ⊂ U′. On the other hand, note that there are examples
of Hausdorff definable spaces (in the sense of [vdD98, Ch. 10, §1]) that are not definably
normal (see [vdD98, Example on p. 159]).

Proposition 1.5 (Definable Partition of Unity). Suppose thatM is a polynomially bounded
o-minimal structure admitting C∞-cell decomposition. Let p < ∞ and let X be a definable
Cp-manifold. Then definable partitions of unity of order p exist: given any open definable
subset U ⊂ X and any finite cover of U by open definable subsets U =

⋃r
i=1 Ui one can find

definable Cp-functions fi : U → R for 1 ≤ i ≤ r such that
(1)
∑r

i=1 fi = 1, and
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(2) the support of each fi is contained in some closed definable subset of U contained
in Ui.

Proof. Let U =
⋃

i=1 Ui be a finite definable open cover of a definable open subset U ⊂ X.
Since U is definably normal (see Remark 1.4), we may replace X by U and assume that
X = U =

⋃r
i=1 Ui is a definable open cover of X. Further replacing the cover {Ui : 1 ≤ i ≤ r}

by a finite refinement, we shall assume without loss of generality that each Ui is contained in
a chart of some definable atlas. Since X is definably normal, we may proceed as in [vdD98,
Ch. 6, Lemma 3.6], to find open definable subsets Vi ⊂ Ui such that the closure in X of Vi

is contained in Ui and such that X =
⋃r

i=1 Vi.
Our X satisfies the assumptions of [KCPV24, Theorem 6.1]. It provides us with definable

Cp-functions ψi : X → R such that ψi ≥ 0 and ψ−1
i (0) = X \ Vi. Set

fi :=
ψi∑r

j=1 ψ j
∈ C

p
def(X).

Then { fi : 1 ≤ i ≤ r} is a partition of unity subordinate to the cover X =
⋃r

i=1 Ui. This
completes the proof. □

Note that the assumptions of the proposition are satisfied in the cases of Ran and Ralg.

Remark 1.6. In [FK23, Section 4] Fujita and Kawakami prove in the more general setting
of definably complete locally o-minimal structures that for r ≥ 1 a definably normal Cr-
manifold is affine. In the course of their proof, they have formulated a result on the existence
of definable partitions of unity. For convenience, we have also given a direct proof above.

1.3. Homotopies. We fix p ∈ N0 ∪ {∞, ω}. Let X,Y be definable Cp-manifolds.

Definition 1.7. Let f , g : X → Y be definable Cp-maps. Then f , g are called definably
Cp-homotopic if there is a definable Cp-map h : X × (−ε, 1 + ε)→ Y for some ε > 0 such
that f = h|X×{0} and g = h|X×{1}.

Remark 1.8. As all open (bounded or unbounded) intervals are even Nash-diffeomorphic,
the particular choice of interval (−ε, 1 + ε) is not important in this definition.

Definition 1.9. We say that X and Y are definably Cp-homotopy equivalent if there are
definable Cp-maps φ : X → Y and ψ : Y → X such that ψ ◦ φ is definably Cp-homotopic to
idX and φ ◦ ψ is definably Cp-homotopic to idY .

Definition 1.10. We call X definably Cp-contractible if it is definably Cp-homotopy equiv-
alent to a point, in other words: if there is a ∈ X such that idX : X → X and the constant
function ca : X → X with value a are definably Cp-homotopic.

1.4. Differential forms. We assume familiarity with the calculus of differential forms on
manifolds as in [BT82], [MT97] or [War83].

Let X be a definable Cp-manifold where p ∈ N ∪ {∞, ω}; i.e. p ≥ 1. Then its cotan-
gent bundle T ∗X → X has a natural structure of a definable Cp−1-manifold such that the
projection T ∗X → X is a definable map of Cp−1-manifolds. We denote by ΛkT ∗X → X its
kth-exterior power. Again it has a natural structure of a definable Cp−1-manifold.

For the rest of the paper we use the convention ∞ − 1 := ∞ and ω − 1 := ω. Let
0 ≤ q ≤ p − 1.

Definition 1.11. A definable Cq-form on X of degree k is a definable Cq-section ofΛkT ∗X →
X. We denote by Ek

def(q)(X) the space of all definable Cq-forms on X of degree k.
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It follows from the definitions that a differential form ω of class Cq is definable if all
coefficient functions in all coordinate charts of a definable atlas are definable.

In the case of globally subanalytic manifolds we also write Ek
sub(q)(X). There is also a

constructible variant.

Definition 1.12. Assume that X is globally subanalytic. A Cq-form ω on X is called
constructible if all coefficient functions in all coordinate charts of a globally subanalytic
atlas are constructible. We denote by Ek

con(q)(X) the space of all constructible Cq-forms on
X.

Remark 1.13. Assume that X is globally subanalytic. Let ω be a C∞-differential form on
X.

(1) If ω is globally subanalytic then ω is Cω by [vdDM94].
(2) If ω is constructible then ω is Cω by [KO22].

Differential forms come with an algebra structure that will not play a role in our paper.
On the other hand, the differential is essential.

Remark 1.14. Let 1 ≤ q ≤ p − 1. The differential induces a well-defined map

d : Ek
def(q)(X)→ Ek+1

def(q−1)(X)

because the partial derivatives of definable functions are definable. In the globally subana-
lytic case, it also induces a well-defined map

d : Ek
con(q)(X)→ Ek+1

con(q−1)(X)

because the derivative of a constructible function is constructible, see the end of Section 1.1.

2. De Rham cohomology

Let p ∈ N∪ {∞, ω} and let X be a definable Cp-manifold of dimension n. Let 0 ≤ q ≤ p− 1.
This includes the case p = 1 and q = 0.

Definition 2.1. Let q > 0 and k ∈ N0.
(a) We denote by Ωk

def(q)(X) the set of all ω ∈ Ek
def(q)(X) such that dω ∈ Ek+1

def(q)(X).
(b) If X is globally subanalytic, we denote by Ωk

con(q)(X) the set of all ω ∈ Ek
con(q)(X)

such that dω ∈ Ek+1
def(q)(X).

The case q = 0 can be handled as well.

Definition and Remark 2.2. (1) Let ω ∈ Ek
def(0)(X). Then there is a definable dense

open subset U of X such that ω|U ∈ Ek
def(1)(U). We call U a definable C1-zone for

ω.
(2) Assume that X is globally subanalytic. Let ω ∈ Ek

con(0)(X). Then there is a globally
subanalytic dense open subset U of X such that ω|U ∈ Ek

con(1)(U). We call U a
globally subanalytic C1-zone for ω.

Definition 2.3. Let q = 0 and k ∈ N0.
(a) We denote by Ωk

def(0)(X) the set of all ω ∈ Ek
def(0)(X) such that there is a definable

C1-zone U for ω and some η ∈ Ek+1
def(0)(X) such that d(ω|U) = η|U .

(b) Assume that X is globally subanalytic. We denote by Ωk
con(0)(X) the set of all

ω ∈ Ek
con(0)(X) such that there is a globally subanalytic C1-zone U for ω and some

η ∈ Ek+1
con(0)(X) such that d(ω|U) = η|U .
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In the globally subanalytic case we will write Ωk
sub(q)(X) instead of Ωk

def(q)(X).

Remark 2.4. Let k ∈ N0.
(1) Ωk

def(q)(X) is an R-vector subspace of Ek
def(q)(X).

(2) Assume that X is globally subanalytic. Then Ωk
con(q)(X) is an R-vector subspace of

Ek
con(q)(X).

Proof. The case q > 0 being clear, we show the case q = 0. Here we show (2), the proof
for (1) being identical. Let ω1, ω2 ∈ Ω

k
con(0)(X) and λ1, λ2 ∈ R. For i ∈ {1, 2} choose

globally subanalytic C1-zones Ui for ωi and ηi ∈ E
k+1
con(0)(X) such that d(ωi|Ui ) = ηi|Ui . Then

U := U1∩U2 is a globally subanalytic C1-zone for both ω1 and ω2. Let ω := λ1ω1+λ2ω2 ∈

Ek
con(0)(X) and η := λ1η1 + λ2η2 ∈ E

k+1
con(0)(X). We have that

d(ω|U) = λ1d(ω1|U) + λ2d(ω2|U) = λ1η1|U + λ2η2|U = η|U

and obtain that ω ∈ Ωk
con(0)(X). □

Remark 2.5. Let k ∈ N0.
(1) We have Ek

def(q+1)(X) ⊂ Ωk
def(q)(X). Furthermore, Ωk

def(q)(X) is a module over the

ring Cq+1
def (X) of definable Cq+1-functions on X.

(2) Assume that X is globally subanalytic. We have Ek
con(q+1)(X) ⊂ Ωk

con(q)(X). Further-

more, Ωk
con(q)(X) is a module over the ring Cq+1

con (X) of constructible Cq+1-functions
on X.

Remark 2.6. Let q = 0 and k ∈ N0.
(1) Let ω ∈ Ωk

def(0)(X). Let U,U′ be definable C1-zones for ω and let η, η′ ∈ Ek+1
def(0)(X)

be such that d(ω|U) = η|U and d(ω|U′ ) = η′|U′ . Then η = η′.
(2) Let ω ∈ Ωk

con(0)(X). Let U,U′ be globally subanalytic C1-zones for ω and let
η, η′ ∈ Ek+1

con(0)(X) be such that d(ω|U) = η|U and d(ω|U′ ) = η′|U′ . Then η = η′.

Proof. Let V := U ∩ U′. Then V is dense in X. We have that η|V = d(ω|V ) = η′|V . The
forms η and η′ being continuous forms on X that agree on the dense open subset V of X,
must agree everywhere, in other words η = η′. □

Remark 2.7. Let q = 0 and k ∈ N0.
(1) Let ω ∈ Ωk

def(0)(X). Let U be a definable C1-zone for ω and let η ∈ Ek+1
def(0)(X) be

such that d(ω|U) = η|U . Then η ∈ Ωk+1
def(0)(X).

(2) Let ω ∈ Ωk
con(0)(X). Let U be a globally subanalytic C1-zons for ω and let η, ∈

Ek+1
con(0)(X) be such that d(ω|U) = η|U . Then η ∈ Ωk+1

con(0)(X).

Proof. Let A be a definable Cp-atlas for X. Let U be a C1-zone for both ω and η. Let
ϕ : V

∼
−→ W be a chart from A. We show that dζ = 0 where ζ := η|U∩V and are done.

It suffices to show that ψ∗dζ = 0 where ψ := ϕ−1 : W → V . There is an open and
dense globally subanalytic subset W ′ of ϕ(U ∩ V) such that ψ∗(ω|V ) is C2 on W ′. Let
V ′ := ϕ−1(W ′). Note that V ′ is open and dense in U ∩ V . We obtain

(ψ∗dζ)|W′ = dψ∗(ζ |V ′ ) = dψ∗(η|V ′ ) = dψ∗d(ω|V ′ ) = d2ψ∗(ω|V ′ ) = 0

and are done. □

By the previous remarks the following is well-defined.

Definition 2.8. Let q = 0 and k ∈ N0.
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(a) We define D : Ωk
def(0)(X) → Ωk+1

def(0)(X) as follows: Let ω ∈ Ωk
def(0)(X). Let U be a

definable C1-zone for ω and η ∈ Ek+1
def(0)(X) be such that d(ω|U) = η|U . Then we set

Dω := η.
(b) Assume that X is globally subanalytic. We define D : Ωk

con(0)(X) → Ωk+1
con(0)(X) as

follows: Let ω ∈ Ωk
con(0)(X). Let U be a globally subanalytic C1-zone for ω and

η ∈ Ek+1
con(0)(X) be such that d(ω|U) = η|U . Then set Dω := η.

Note that D ◦ D = 0 by the above proof. We occasionally write also D for d in the case
q > 0. Recall that n = dim(X).

Remark 2.9. Let ∗ ∈ {def, con}. Assume that X is globally subanalytic if ∗ = con.
(1) Let q = ∞ or q = ω. Then Ωk

∗(q)(X) = Ek
∗(q)(X) for every k ∈ N0.

(2) Let q < ∞. We have Ω0
∗(q)(X) = E0

∗(q+1)(X) and Ωn
∗(q)(X) = En

∗(q)(X).

Proof. (1) and (2) in the case q > 0 are clear. We show (2) for q = 0 in the case ∗ = con,
the case ∗ = def being the same.

Ω0
con(0)(X) = E0

con(1)(X):
By Remark 2.5 we have E0

con(1)(X) ⊂ Ω0
con(0)(X). For the other inclusion let ω ∈ Ω0

con(0)(X).
Then ω : X → R is a continuous constructible function. By passing to a chart, we may
assume that X is an open globally subanalytic subset of Rn. There is an open and dense
globally subanalytic subset U of X such that ω|U is C1 and for each i ∈ {1, . . . , n} there
is a continuous constructible function gi : X → R with ∂ω|U/∂xi = gi. Let B := X \ U.
Then B is a globally subanalytic subset of X with dim(B) < n. We have to show that ω is
differentiable at every p ∈ B with (∂ω/∂xi)(p) = gi(p) for every i ∈ {1, . . . , n}. By the good
directions lemma [vdD98, Theorem (4.2) in Chapter 7] the set of all v ∈ Rn \ {0} such that
for every p ∈ B there is r > 0 with p+ tv ∈ U for every t ∈ (−r, r)\ {0} is dense in Rn. Hence
we can find a basis of such vectors. By applying a suitable linear coordinate transformation
we can assume that this property holds for the unit vectors. Let p ∈ B. Without restriction
we can assume that p = 0. We are done by applying the following classical result from
analysis (see for example [Apo74, Exercise 5.16]). Let f : (−1, 1) → R be a continuous
function with the following properties:

(1) The function f is differentiable on (−1, 1) \ {0}.
(2) There is a continuous function g : (−1, 1) → R such that f ′(x) = g(x) for all

x ∈ (−1, 1) \ {0}.
Then f is differentiable in 0 with f ′(0) = g(0).

Ωn
con(0)(X) = En

con(0)(X):
By definition we have Ωn

con(0)(X) ⊂ En
con(0)(X). Let ω ∈ En

con(0)(X) and let U be a globally
subanalytic C1-zone for ω. We have d(ω|U) = 0. Hence ω ∈ Ωn

con(0)(X). □

In the case q < ∞ the situation is different for 0 < k < n:

Example 2.10. Let q < ∞. We have that E1
sub(q+1)(R

2) ⊊ Ω1
sub(q)(R

2) ⊊ E1
sub(q)(R

2).

Proof. E1
sub(q+1)(R

2) ⊊ Ω1
sub(q)(R

2):
By Remark 2.5 we have E1

sub(q+1)(R
2) ⊂ Ω1

sub(q)(R
2). Set

c : R→ R, t 7→


0, t ≤ 0,

if
tq+1, t ≥ 0.
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Then c is a globally subanalytic Cq-function which is not Cq+1. Set ω := c(x1)dx1. Then
ω ∈ E1

sub(q)(R
2) \E1

sub(q+1)(R
2). The set U := R2 \ ({0} ×R) is a globally subanalytic C1-zone

for ω. We have d(ω|U) = 0. Hence ω ∈ Ω1
sub(q)(R

2).

Ω1
sub(q)(R

2) ⊊ E1
sub(q)(R

2):
By Definition we have Ω1

sub(q)(R
2) ⊂ E1

sub(q)(R
2). Let c be as above and set ω := c(x1)dx2.

Then ω ∈ E1
sub(q)(R

2). We have that U := R2 \ ({0} × R) is a globally subanalytic C1-zone
for ω and that dω(x) = c′(x1)dx1 ∧ dx2 for x ∈ U. The function c′(t) is not Cq on R. Hence
d(ω|U) cannot be extended to a form in E2

sub(q)(R
2) and therefore ω ∈ E1

sub(q)(R
2)\Ω1

sub(q)(R
2).
□

Recall that p ∈ N ∪ {∞, ω} and 0 ≤ q ≤ p − 1.

Definition 2.11. (a) We define the definable de Rham complex (Ω•def(q)(X),D) of X by

0→ Ω0
def(q)(X)

D
−→ Ω1

def(q)(X)
D
−→ . . .

D
−→ Ωn

def(q)(X)→ 0

with the definable kth de Rham cohomology group of X as the kth-cohomology
group of the above complex of real vector spaces, i.e.

Hk
dR,def(q)(X) := ker(Ωk

def(q)(X)
D
−→ Ωk+1

def(q)(X))/im(Ωk−1
def(q)(X)

D
−→ Ωk

def(q)(X)).

(b) In the caseM = Ran, we define the constructible de Rham complex (Ω•con(q)(X),D)
of X by

0→ Ω0
con(q)(X)

D
−→ Ω1

con(q)(X)
D
−→ . . .

D
−→ Ωn

con(q)(X)→ 0

with the constructible de Rham cohomology groups Hk
dR,con(q)(X) as the kth-cohomology

group of the above complex.

In the globally subanalytic case we write H•dR,sub(q)(X).
For general o-minimal structures, the definable de Rham cohomology does not agree

with singular cohomology, as seen in the following example.

Example 2.12. Let I = (0, 1) be the open unit interval. We have that H1
dR,sub(q)(I) , 0 for

every q ∈ N0 ∪ {ω}.

Proof. Let ω := dx/x ∈ Ω1
sub(q)(I). Then dω = 0 but there is no f ∈ Ω0

sub(q)(I) with d f = ω.
The Cω-function g : I → R, x 7→ log x,which fulfills dg = ω is not globally subanalytic. □

It will turn out that the situation is much better in the constructible setting.

3. Basic Results

Let p ∈ N∪ {∞, ω} and X,Y be definable Cp-manifolds and let f : Y → X be a definable
Cp-map. Let 0 ≤ q ≤ p − 1.

3.1. Functoriality. In the case q > 0 we have the usual functoriality.

Remark 3.1. Let q > 0 and k ∈ N0.
(1) We have the well-defined map Ωk

def(q)(X)→ Ωk
def(q)(Y), ω 7→ f ∗ω, with D( f ∗ω) =

f ∗(Dω).
(2) In the globally subanalytic case we have the well-defined map Ωk

con(q)(X) →
Ωk

con(q)(Y), ω 7→ f ∗ω, with D( f ∗ω) = f ∗(Dω).
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Our aim is to establish functoriality also in the case q = 0. We will need some preparation.

Proposition 3.2. Let M be a C2-manifold with boundary. We denote by ι : ∂M → M the
inclusion of the boundary. Assume that ω is a continuous k-form on M whose restriction
ω|M◦ to the interior M◦ of M and ι∗ω to the boundary ∂M are C1. Let, moreover, η be a
continuous (k + 1)-form on M such that dω|M◦ = η|M◦ . Then

d(ι∗ω) = ι∗η.

Proof. The question is local on ∂M, hence it suffices to consider the case M = [0, 1)×(−1, 1)l

and ∂M = {0} × (−1, 1)l. We use the coordinates x0, . . . , xl. We spell out the claim.
We have (in multi-index notation)

ω =
∑
J∈J

aJdxJ , η =
∑

J′∈J ′
bJ′dxJ′

where

J := {( j1, . . . , jk) | 0 ≤ j1 < · · · < jk ≤ l} ,

J ′ := {( j1, . . . , jk+1) | 0 ≤ j1 · · · < jk+1 ≤ l} .

By assumption for every J ∈ J respectively J′ ∈ J ′, the functions aJ respectively bJ′ are
continuous and even C1 for x0 > 0. We denote by ω0 and η0 the restriction of ω respectively
η to {x0 = 0}. Note that ι∗dx0 vanishes on ∂M. Hence we have

ω0 =
∑
J∈J̃

a0
JdxJ , η0 =

∑
J′∈J̃ ′

b0
J′dxJ′

where

J̃ := {( j1, . . . , jk) | 1 ≤ j1 < · · · < jk ≤ l} ,

J̃ ′ := {( j1, . . . , jk+1) | 1 ≤ j1 · · · < jk+1 ≤ l} .

and
a0

J(x1, . . . , xl) = aJ(0, x1, . . . , xl), b0
J′ (x1, . . . , xl) = bJ′ (0, x1, . . . , xl)

for J ∈ J̃ respectively J′ ∈ J̃ ′. We assume that dω = η for x0 > 0, i.e., for all 0 ≤ j1 <
. . . < jk+1 ≤ l and for all (x0, x) ∈ (0, 1) × (−1, 1)l

b j1... jk+1 (x0, x) =
k+1∑
i=1

(−1)i−1
∂a j1... ĵi... jk+1

∂x ji
(x0, x)

and claim dω0 = η0, i.e., for all 1 ≤ j1 < · · · < jk+1 ≤ l

b0
j1... jk+1

(x) =
k+1∑
i=1

(−1)i−1
∂a0

j1... ĵi... jk+1

∂x ji
(x)

for every x ∈ (−1, 1)l. Without loss of generality, we consider j1 = 1, . . . , jk+1 = k + 1.
Without loss of generality, it suffices to compare the values in 0. We simplify notation:

at
i(x1, . . . , xk+1) := a1...î...k+1(t, x1, . . . , xk+1, 0, . . . , 0),

bt(x1, . . . , xk+1) := b1...k+1(t, x1, . . . , xk+1, 0, . . . , 0).

Note that at
i and bt are continuous as functions in (t, x1, . . . , xk+1) and C1 for fixed t ∈ [0, 1).

We introduce the vector field

At = (at
1,−at

2, . . . , (−1)kat
k+1).
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The assumption reads

(1) bt =

k+1∑
i=1

(−1)i ∂at
i

∂xi
= div(At)

for t > 0 and the claim is the same equality (1) for t = 0.
We apply Gauss’s Theorem to the vector fields At and the balls B(r) ⊂ (−1,−1)k+1 of

radius r < 1:

div(A0)(0) = lim
r→0

1
vol(B(r))

∫
B(r)

div(A0)dB(r)

= lim
r→0

1
vol(B(r))

∫
∂B(r)
⟨A0(x), x⟩d∂B(r)

= lim
r→0

lim
t→0

1
vol(B(r))

∫
∂B(r)
⟨At(x), x⟩d∂B(r)

= lim
r→0

lim
t→0

1
vol(B(r))

∫
B(r)

div(At)dB(r)

= lim
r→0

lim
t→0

1
vol(B(r))

∫
B(r)

btdB(r)

= lim
r→0

1
vol(B(r))

∫
B(r)

b0dB(r)

= b0(0)

as claimed. □

Proposition 3.3. (1) LetD be a finite set of definable subsets of X. Let ω ∈ Ωk
def(0)(X)

and set η := Dω ∈ Ωk+1
def(0)(X). Then there is a stratification of X, compatible withD,

into finitely many definable C1-submanifolds ιS : S → X such that ι∗Sω ∈ Ω
k
def(0)(S )

with D(ι∗Sω) = ι∗S η.
(2) Assume that X is globally subanalytic. LetD be a finite set of globally subanalytic

subsets of X. Let ω ∈ Ωk
con(0)(X) and set η := Dω ∈ Ωk+1

con(0)(X). Then there is
a stratification of X, compatible with D, into finitely many globally subanalytic
C1-submanifolds ιS : S → X such that ι∗Sω ∈ Ω

k
con(0)(S ) with D(ι∗Sω) = ι∗S η.

Proof. We show (2), the proof for (1) being the same. By enlarging the set D we can
assume that the domains of a given globally subanalytic Cp-atlas of X are contained. Hence
it is both sufficient and necessary to consider a chart of that atlas. Hence we may assume
that X is an open globally subanalytic subset of Rn. There is a family S0 of finitely many
pairwise disjoint open globally subanalytic subsets of X which are compatible withD such
that
⋃

S 0∈S0
S 0 is a globally subanalytic C1-zone for ω.

Then the complement X \
⋃

S 0∈S0
S 0 has smaller dimension. It contains a dense and

relatively open globally subanalytic subset T ′ which is a C2-submanifold of X. Let m
be its dimension and let ι : T ′ → X be the inclusion. The form ι∗ω is constructible and
continuous. Hence there is a family T of finitely many pairwise disjoint globally subanalytic
C2-submanifolds of T ′ of dimension m which are compatible with A such that

⋃
T∈T T is a

globally subanalytic C1-zone for ι∗ω.
By refining we may assume that for T ∈ T there is S 0 ∈ S0 such that T is contained

in the closure of S 0. Fix T ∈ T and such an S 0. By the good direction lemma in [vdD98,
Theorem (4.2) in Chapter 7] there is some v ∈ Rn \ {0} such that for every Q ∈ T there is
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r > 0 such that Q + tv ∈ S 0 for all t ∈ (0, r). By cell decomposition we find a dense globally
subanalytic set S T which is relatively open in T such that there is a continuous globally
subanalytic function αT : S T → R>0 with Q + tv ∈ S 0 for all Q ∈ S T and 0 < t < αT (Q).
Note that

M := {Q + tv | Q ∈ S T , t ∈ [0, αT (Q))}
is a C2-manifold with boundary. Set S1 := (S T )T∈T .

Now consider X \
⋃

S∈S0∪S1
S . Inductively, we construct a sequence of finite families

of pairwise disjoint globally subanalytic C2-submanifolds S0, . . . ,SN of X such that S =
S0 ∪ . . . ∪ SN is a stratification of X compatible withD fulfilling the following property:
For every T ∈ S of dimension less than dim X there is S 0 ∈ S0 and a globally subanalytic
C2-submanifold M ⊂ S 0 of dimension dim(T ) + 1 such that T ∪ M is a C2-manifold with
boundary. Moreover, ι∗Xω is C1 for all S ∈ S where ιS : S → X is the inclusion.

Let S ∈ S and let ιS : S → X be the inclusion. We show that ι∗Sω ∈ E
k
con(1)(S ) with

d(ι∗Sω) = ι∗S η. The case S ∈ S0 is is clear since then S is an open subset of a C1-zone of ω.
The case S ∈ S j for some j > 0 follows from the above and Proposition 3.2. □

Theorem 3.4. Let q = 0 and k ∈ N0. Let f : Y → X be a definable C1-map of definable
C1-manifolds.

(1) We have the well-defined map Ωk
def(0)(X) → Ωk

def(0)(Y), ω 7→ f ∗ω, with D( f ∗ω) =
f ∗(Dω).

(2) In the caseM = Ran we have the well-defined map Ωk
con(0)(X)→ Ωk

con(0)(Y), ω 7→
f ∗ω, with D( f ∗ω) = f ∗(Dω).

Proof. We show again (2). Let ω ∈ Ωk
con(0)(X) and η := Dω ∈ Ωk+1

con(0)(X). Let U be a
globally subanalytic C1-zone for ω such that d(ω|U) = η|U . We have f ∗ω ∈ Ek

con(0)(Y).
(This is where we use that f is at least C1.) We need to check that d(( f ∗ω)|V ) = ( f ∗η)|V on
some C1-zone V for f ∗ω. The assertion is local on X and Y . We pass to charts and replace
Y by a globally subanalytic dense open subset on which f is even C2.

Without loss of generality f ∗ω is C1 (replace Y by a C1-zone for f ∗ω). The image
f (Y) ⊂ X is globally subanalytic. Let S be a stratification of X, compatible with f (Y),
as in Proposition 3.3. Hence there is a dense open globally subanalytic ι : X′ ↪→ f (Y)
which is also a C1-submanifold of X and such that ι∗ω is C1. Moreover, d(ι∗ω) = ι∗η. The
preimage f −1(X′) is dense in Y . We claim that this is the C1-zone we wanted to find. Note
that f ∗ω| f −1(X′) = f ∗ι∗ω. The claim now follows from the compatibility of pull-back and
differential in the C1-case. □

3.2. Stokes’ Theorem. In the case q > 0 we immediately have the usual Stokes’ theorem
for simplices.

Remark 3.5. Let q > 0. Let k > 0 and let ∆k be the standard k-simplex. Let f : ∆k → X be
a definable C1-map. Then Stokes’ formula holds:

(1) Let ω ∈ Ωk−1
def(q)(X). Then ∫

∆k
f ∗dω =

∫
∂∆k

f ∗ω.

(2) In the globally subanalytic case let ω ∈ Ωk−1
con(q)(X). Then∫

∆k
f ∗dω =

∫
∂∆k

f ∗ω.

We can establish Stokes’ theorem also in the case q = 0.
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Proposition 3.6. Let q = 0. Let k > 0 and let ∆k be the standard k-simplex. Let f : ∆k → X
be a definable C1-map. Then Stokes’ formula holds:

(1) Let ω ∈ Ωk−1
def(0)(X). Then ∫

∆k
f ∗Dω =

∫
∂∆k

f ∗ω.

(2) In the globally subanalytic case let ω ∈ Ωk−1
con(0)(X). Then∫

∆k
f ∗Dω =

∫
∂∆k

f ∗ω.

Proof. We show (2), the proof being identical for (1). We fix ω. Let η ∈ Ωk
con(0)(X) be such

that η|U = d(ω|U) on a globally subanalytic C1-zone U for ω. By functoriality (Theorem
3.4) it suffices to consider the case where f is the inclusion of ∆k in an open neighbourhood
of ∆k in Rk . By [CP18, Main Theorem] there is a globally subanalytic triangulation of ∆k

by C1-simplices such that ω is C1 on the interior of each face. It suffices to establish the
formula for these. Without loss of generality, ω is now C1 on the interior of ∆k and its faces.

Let ∆ϵ ⊂ ∆k be the k-simplex at distance ϵ from the boundary. It is fully contained in the
C1-zone for ω. Hence Stokes’ formula holds on ∆ϵ . We take the limit ϵ → 0. As ω and η
are continuous, we obtain the terms for ∆k itself. □

4. Homotopy invariance

By Example 2.12 homotopy invariance does in general not hold for the definable de
Rham cohomology groups. But we are able to establish it in the globally subanalytic setting
for the constructible de Rham cohomology groups.

Let X,Y be globally subanalytic Cp-manifolds where p ∈ N ∪ {ω} and let f , g : X → Y
be globally subanalytic Cp-mappings. Let 0 ≤ q ≤ p − 1.

We show that the constructible de Rham cohomology is invariant under globally subana-
lytic Cp-homotopies. We establish in the first step the case q > 0. The classical proof (see
for example [BT82, Chapter I §4]) has to be adjusted to our setting. In the second step we
will show also the case q = 0.

We consider X × R. Let π : X × R → X, (x, t) 7→ x, be the natural projection and
s : X → X × R, x 7→ (x, 0), the 0-section. The natural decomposition

ΛkT ∗(X × R) = ΛkT ∗X ⊕ Λk−1T ∗X × T ∗R

induces a canonical decomposition

(2) ω = ω′ + ω′′ ∧ dt

for all ω ∈ Ωk
con(q)(X × R). In local coordinates, ω′′ ∧ dt collects the components involving

dt and ω′ the forms that do not involve dt. Note that both ω′ and ω′′ are constructible and
Cq. However, they are not necessarily in Ωk

con(q)(X × R) because the differential does not
respect the decomposition. Indeed, when we decompose

d = dx + dt

with dx induced from the differential on X and dt from the differential on R, then

dω = dxω
′ + dtω

′ + dxω
′′ ∧ dt

and (dω)′ = dxω
′. If dω is Cq, then so is dxω

′ but not necessarily dtω
′ and dxω

′′.
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Definition 4.1. Let q ≥ 0. Let k ∈ N. We set

Qk : Ωk
con(q)(X × R)→ Ωk−1

con(q)(X × R),

ω 7→

∫ t

0
ω′′dt.

Proposition 4.2. Let q > 0. The form Qk(ω) is well-defined in Ωk−1
con(q)(X × R) and satisfies

DQk(ω) − Qk+1(Dω) = (−1)k(ω − π∗s∗ω).

Proof. By Cluckers and Dan Miller [CM11, Theorem 1.3] parametric integrals of integrable
constructible functions are constructible. This makes Qk(ω) constructible. Once we have
established the formula, we can argue by descending induction on k that DQk(ω) is Cq, so
that Qk(ω) is indeed in Ωk−1

con(q)(X × R).
The formula itself is classical, see [BT82, Chapter I, § 4]. We sketch the argument for

the convenience of the reader. We show the formula for ω′ and ω′′ ∧ dt separately. The
claims are

0 − Qk+1(dtω
′) = (−1)k(ω′ − π∗s∗ω′),(3)

dtQk(ω′′ ∧ dt) = (−1)kω′′ ∧ dt,(4)

dxQk(ω′′) − Qk+1(dxω
′′ ∧ dt) = 0.(5)

The first two hold by the fundamental theorem of calculus applied to the components of
ω′ and ω′′. The last holds by the formula for the derivative of a parameter dependent
integral. □

4.1. The case q = 0. The aim of this section is to extend the formula for the chain homotopy
also to the case q = 0.

Proposition 4.3. Let q = 0. The form Qk(ω) is well-defined in Ωk−1
con(0)(X × R) and satisfies

DQk(ω) − Qk+1(Dω) = (−1)k(ω − π∗s∗ω).

The proof will be given at the end of the section by combining some geometric prepara-
tions with a limit argument.

Throughout, X is a globally subanalytic C1-manifold. We fix ω ∈ Ωk
con(0)(X × R).

Lemma 4.4. Assume that X is affine. Let f : X × R→ R be a constructible function. Then
there is a dense open globally analytic subset U ⊂ X, a partition C of U into finitely many
open globally subanalytic sets such that for each C ∈ C there are a natural number n = nC

and globally subanalytic C2-functions c1, . . . , cn : C → R with c1 < . . . < cn such that⋃
C∈C

{(x, t) ∈ C × R | t , ci(x) for all i}

is a C1-zone for f .

Proof. We writeU = X × R. Let m = dim X. LetV be a globally subanalytic C1-zone for
f and set B := U \V. Then dim(B) < m + 1. Set V := π(V) and for x ∈ V let

Bx := {t ∈ R | (x, t) ∈ B}.

Let E be the set of all x ∈ V such that Bx is not finite, equivalently that Bx contains a
nonempty open interval. Then dim(E) < m since otherwise the interior of B would be
nonempty. By the uniform finiteness property [vdD98, Lemma (2.13) in Chapter 3] there is
N ∈ N such that #Bx ≤ N for all x ∈ V \ E. There is a cell decompositionD of V \ E such
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that for every C ∈ D there are n = nC ∈ {0, . . . ,N} and globally subanalytic C2-functions
c1, . . . , cn : C → R with c1 < c2 . . . < cn such that

Bx = {c j(x) | j ∈ {1, . . . n}}

for every x ∈ C. Set C := {C ∈ D | C open} and set U :=
⋃

C∈CC. □

A function a : X → R gives rise to a section X → X × R of π : X × R→ R. We denote
this section by sa. In particular s = s0 is the 0-section.

Lemma 4.5. In order to prove Proposition 4.3, it suffices to verify the following claim:
Assume X is an affine C2-manifold, c1, . . . , cn : X → R bounded globally analytic C2-

functions (either non-vanishing or constant and equal to 0) with c1 < · · · < cn such that
s∗ci
ω is C1 for all i and such that the complementV of the graphs is a C1-zone for ω. Then

there is a dense globally subanalytic U ⊂ X such thatW := V ∩ U × R is a C1-zone for
Qk(ω) and for all (x, t) ∈ W

dQk(ω) = Qk+1(dω) + (−1)k(ω − π∗s∗ω).

Proof. As in the proof of Proposition 4.2, the form Qk(ω) is constructible. By descending
induction on k and functoriality, we may assume that

E(ω) := Qk+1(Dω) + (−1)k(ω − π∗s∗ω) ∈ Ωk
con(0)(X × R).

Once we have established

(6) dQk(ω) = E(ω)

on a C1-zone for ω, this shows that Qk(ω) ∈ Ωk−1
con(0)(X×R) with DQk(ω) = E(ω) as claimed.

The claim (6) is local on X, hence we may assume that X is affine. We apply Lemma 4.4
to the component functions of ω. It suffices to consider only the open strata C ⊂ X one at
the time.

Again as the claim is local on X, it suffices for each x ∈ X to consider a gobally
subanalytic neighbourhood on which all ci are bounded. (We may need infinitely many such
open sets but this does not matter to the reduction.) We replace X by such a neighbourhood.
Finally, the vanishing locus of each ci is a globally subanalytic subset. Up to sets of
smaller dimension, we may decompose X into open globally subanalytic subsets on which
ci does not vanish or is constant and equal to 0. It suffices to consider each of the pieces
separately. □

From now on, we consider X as Lemma 4.5. We decompose ω = ω′ + ω′′ ∧ dt as in (2).

Definition 4.6. Let k ∈ N. Let a, b : X → Rwith a < b be globally subanalytic C2-functions
equal to one of the ci or disjoint from all of them. We set

Qb
a : Ωk

con(0)(X × R)→ Ωk−1
con(0)(X),

ω 7→

∫ b(x)

a(x)
ω′′dt.

Lemma 4.7. The form Qb
a(ω) is well-defined in Ωk−1

con(0)(X). There is a dense open globally
subanalytic U ⊂ X such that on U the form Qb

a(ω) is C1 with

dQb
a(ω) − Qb

a(dω) = (−1)k(s∗aω − s∗bω)
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Proof. Once we have established the formula for dQb
a(ω) on the C1-zone U, we put

DQb
a(ω) := Qb

a(ω) + (−1)k(s∗aω − s∗bω).

It is continuous on X. This will make Qb
a well-defined.

We now establish the formula. We consider the strip

S = {(x, t)|x ∈ X, a(x) ≤ t ≤ b(x)}.

If ω is C1 on a neighbourhood of S , the formula follows from Proposition 4.2 by pull-back
along sections (or by repeating the computation). We want to reduce to (a limit of) this case.

By assumption, there are indices i ≤ j such that ci ≤ a < ci+1, c j ≤ b ≤ c j+1 (interpreting
c−1 = −∞, cn+1 = ∞ for the boundary cases). Note that

Qb
a = Qci+1

a + Qci+2
ci+1
+ · · · + Qb

c j
.

It suffices to consider the summands separately, so that ω is C1 in the interior of S .
By decomposing

Qb
a = Q(a+b)2

a + Qb
(a+b)/2

we can even assume that ω extends to a C1-form on the lower or upper boundary. Without
loss generality, it extends to a C1-form on a neighbourhood of the graph of a. (The other
case is symmetric.) By assumption both ω and dω extend continuously to the graph of b.
We want to apply Proposition 3.2 to the C2-manifold with boundary S and the continuous
constructible (k − 1)-form

Ω : (x, t) 7→ Qt
a(ω) .

It is C1 on the interior of S because ω is, with derivative

(7) dΩ = Qt
a(dω) + (−1)k(ω − π∗s∗aω).

Note that the right hand side extends continuously to the graph of b.
The form s∗bΩ = Qb

a(ω) is continuous and constructible. Hence there is a dense open
globally subanalytic U ⊂ X such that s∗bΩ is C1. On U we have by Proposition 3.2 and (7)

dΩb
a(ω) = db∗Ω = s∗b

(
Qt

a(dω) + (−1)k(ω − π∗s∗aω)
)
= Qb

a(dω) + (−1)k(s∗bω − s∗aω).

This is the claim. □

Proof of Proposition 4.3. By Lemma 4.5, it suffices to consider the case that X is affine and
we are given bounded globally subanalytic C2-functions c1, . . . , cn : X → X × R such that
ω is C1 outside of the graph of the ci. They are either non-vanishing or constant equal to 0.
By Lemma 4.7 there is a dense open globally subanalytic U ⊂ X such that all Qci+1

ci (ω) are
C1 with the correct derivative. We replace X by U in order to simplify the notation.

We need to verify the formula for the derivative in the C1-zone. Consider (x, t) in the
complement of the graphs. There is a unique index i such ci(x) < t < ci+1(x). There is also j
such that c j(x) ≤ 0 < c j+1(x). Assume j < i for simplicity. (The other cases are analogous.)
In a neighbourhood of (x, t) choose T ∈ R such that c j < T < t. Note that ω is C1 on a
neighbourhood of X × T . We have

Qk(ω) = π∗Qc j+1

0 (ω) + · · · + π∗Qci
ci−1

(ω) + π∗QT
ci

(ω) + Qt
T .
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All summands are C1, hence so is Qk(ω). The derivative is computed termwise. By
Lemma 4.7 and Proposition 4.2 (for the last summand) this yields

dQk(ω) = π∗dQc j+1

0 (ω) + · · · + π∗dQci
ci−1

(ω) + π∗QT
ci

(ω) + dQt
T

= Qt
0(dω) + (−1)k(ω − π∗s∗ω)

= Qk+1(dω) + (−1)k(ω − π∗s∗ω).

□

4.2. Consequences for cohomology. Let 0 ≤ q ≤ p − 1 and X a globally subanalytic
Cp-manifold.

Proposition 4.8. Let π : X × R → X, (x, t) 7→ x be the natural projection and s : X →
X × R, x 7→ (x, 0) the 0-section. Then the maps

π∗ : H•dR,con(q)(X)→ H•dR,con(q)(X × R)

and
s∗ : H•dR,con(q)(X × R)→ H•dR,con(q)(X)

are inverse to each other.

Proof. By functoriality s∗ ◦π∗ = idH•dR,con(q)(X). It remains to show that π∗ ◦ s∗ = idH•dR,con(q)(X×R).
Let ω ∈ Ωk

con(q)(X × R) be with Dω = 0. By Proposition 4.2 and Proposition 4.3 we have
that

ω − π∗s∗ω = (−1)k−1D(Qkω)
Hence [ω] = π∗s∗[ω] and we are done. □

Corollary 4.9. Assume that f and g are globally subanalytic Cp-homotopic. Then

f ∗ : H•dR,con(q)(Y) 7→ H•dR,con(q)(X)

and
g∗ : H•dR,con(q)(Y) 7→ H•dR,con(q)(X)

coincide.

Proof. Let ε > 0 and h : X × (−ε, 1 + ε)→ Y be a globally subanalytic Cp-map such that
f = h0 and g = h1. Choose a globally subanalytic Cp-map τ : R → (−ε, 1 + ε) such that
τ(0) = 0 and τ(1) = 1. Set

H : X × R→ Y, (x, t) 7→ h(x, τ(t)).

We have that f = H ◦ s0 and g = H ◦ s1 and therefore f ∗ = s∗0 ◦ H∗ and g∗ = s∗1 ◦ H∗.
The maps s∗0 and s∗1 are both inverse to π∗ by Proposition 4.8 and therefore equal. Hence
f ∗ = g∗. □

Corollary 4.10. Let X,Y be globally subanalytically Cp-homotopy equivalent. Then
H•dR,con(q)(X) and H•dR,con(q)(Y) are isomorphic.

Corollary 4.11. Let X be globally subanalytically Cp-contractible. Then

Hk
dR,con(q)(X) =

R, k = 0,
0, k > 0.

Proof. This follows from Corollary 4.10 and the fact that the de Rham complex for a point
is concentrated in degree 0. □



18 ANNETTE HUBER, TOBIAS KAISER, AND ABHISHEK OSWAL

5. Geometric Preparations

Let p ∈ N ∪ {ω}. A globally subanalytic Cp-cell is a globally subanalytic Cp-manifold.

Remark 5.1. Let C ⊂ RN be a globally subanalytic Cp-cell of dimension n. Then C is
globally subanalytically Cp-isomorphic to the n-dimensional open hypercube In = (0, 1)n.

Proposition 5.2. Let C ⊂ RM be a globally subanalytic Cp-cell. Then C is globally
subanalytically Cp-contractible.

Proof. By Remark 5.1 we can assume that C = In where n is the dimension of C. Consider
the polynomial σ(t) = 3t2 − 2t3. We have that σ(0) = 0, σ(1) = 1 and σ(t) ∈ [0, 1]
for all t ∈ [−1/2, 3/2]. Let a ∈ In. We see that idIn and ca are globally subanalytically
Cp-homotopic via

h : In × (−1/2, 3/2)→ In, (x, t) 7→ (1 − σ(t))x + σ(t)a.

□

For the proof of the constructible de Rham theorem we need the following weakening of
open globally subanalytic cells.

Definition 5.3. A subset V of Rn is called a ribbon if there is an open globally subanalytic
subset W of Rn−1 and globally subanalytic C0-functions a, b : W → R with a < b such that

V = {x = (x′, xn) ∈ Rn | x′ ∈ W, a(x′) < xn < b(x′)}.

The set W is called the base of V .

Remark 5.4. A ribbon in Rn is an open globally subanaytic subset of Rn.

Example 5.5. Let C ⊂ Rn be an open globally subanalytic C0-cell. Then C is a ribbon.

The intersection of open cells is in general not an open cell. But the class of ribbons is
stable under finite intersections.

Lemma 5.6. Let V1,V2 ⊂ R
n be ribbons. Then V1 ∩ V2 is a ribbon.

Proof. Let W1 be the base of V1 and W2 be the base of V2. Let a1, b1 : W1 → R be globally
subanalytic C0-functions such that

V1 = {x = (x′, xn) ∈ Rn | x′ ∈ W1, a1(x′) < xn < b1(x′)}

and let a2, b2 : W2 → R be globally subanalytic C0-functions such that

V2 = {x = (x′, xn) ∈ Rn | x′ ∈ W2, a2(x′) < xn < b2(x′)}.

Let W̃ := W1 ∩W2 and set

a : W̃ → R, x′ 7→ max{a1(x′), a2(x′)},

b : W̃ → R, x′ 7→ min{b1(x′), b2(x′)}.
Let

W := {x′ ∈ W̃ | a(x′) < b(x′)}
and

V := {x = (x′, xn) ∈ Rn | x′ ∈ W, a(x′) < xn < b(x′)}.
We have that V is a ribbon and V1 ∩ V2 = V . □

Proposition 5.7. Let V ⊂ Rn be a ribbon and let W ⊂ Rn−1 be its base. Then the projection
V → W is a globally subanalytic Cp-homotopy equivalence.
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Proof. Let a, b : W → R be globally subanalytic C0-functions with a < b such that

V = {x = (x′, xn) ∈ Rn | x′ ∈ W, a(x′) < xn < b(x′)}.

By A. Valette and G. Valette [VV21, Theorem 1.1] there is a globally subanalytic Cp-
function c : W → R such that a < c < b, Consider

φ : V → W, x = (x′, xn) 7→ x′, ψ : W → V, x′ 7→ (x′, c(x′)).

We have that

f := ψ ◦ φ : V → V, x = (x′, xn) 7→ (x′, c(x′)), g := φ ◦ ψ : W → W, x′ 7→ x′.

So g = idW . It remains to show that f is globally subanalytic Cp-homotopic to idV . Consider
as in the proof of Proposition 5.2 the polynomial σ(t) = 3t2 − 2t3 and take

h : V × (−1/2, 3/2)→ V, (x, t) = (x′, xn, t) 7→ (x′, (1 − σ(t))xn + σ(t)c(x′)).

□

We can weaken the regularity condition stated in Remark 5.2.

Corollary 5.8. Let C ⊂ Rn be an open globally subanalytic C0-cell. Then C is globally
subanalytic Cp-homotopy equivalent to a singleton.

Proof. We do induction on n.

n = 1: Then C is an open interval and hence an open globally subanalytic Cp-cell. We are
done by Proposition 5.2.

n − 1 → n: Let B be the base of C. Then B is an open globally subanalytic C0-cell in
Rn−1. By Example 5.5 and Proposition 5.7 we have that C and B are globally subanalytic
Cp-homotopy equivalent. We are done by the inductive hypothesis. □

We can formulate now the Poincaré Lemma in our setting:

Corollary 5.9 (Poincaré Lemma). Let C ⊂ Rn be an open globally subanalytic C0-cell.
Then

Hk
dR,con(q)(C) =

R, k = 0,
0, k > 0.

for every q ∈ N0 ∪ {ω}.

Proof. This follows from Corollary 4.11 and Corollary 5.8. □

6. Constructible de Rham Theorem

To establish the constructible de Rham theorem we follow the classical approach by
induction on open sets, using a constructible version of the Mayer-Vietoris sequence
(compare with [BT82, MT97]). This needs partition of unity. The argument uses partition
of unity, see Proposition 1.5.

Let p ∈ N ∪ {ω} and let X,Y be globally subanalytic Cp-manifolds.
We consider the globally subanalytic singular homology groups Hsing,sub

• (X,R) and the
globally subanalytic singular cohomology groups H•sing,sub(X) := Hom(Hsing,sub

• (X),R), with
respect to globally subanalytic C1-simplices and coefficients in the reals. Note that as for ex-
ample observed in [Hub24, Corollary 5.3] the canonical maps Hsing,sub

• (X,R)→ Hsing
• (X,R)

and H•sing,sub(X)← H•sing(X,R) to the classical singular homology and cohomology, respec-
tively, are isomorphisms as a consequence of the result of Pawłucki [Paw24].
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Definition 6.1. We say that the constructible de Rham theorem holds for X if

⟨·, ·⟩ : H•dR,con(q)(X) × Hsing,sub
• (X,R)→ R, ([ω], [σ]) 7→

∫
σ

ω,

is a perfect pairing for every 0 ≤ q ≤ p − 1.

Note that the above pairing is well-defined since Stokes’s theorem holds for globally
subanalytic C1-simplices in the constructible setting by Remark 3.5 and Proposition 3.6.
Note also that it is functorial for globally subanalytic Cp-morphisms by the change of
variables formula and Remark 3.1 (q > 0) and Theorem 3.4 (q = 0). This means that
for every globally subanalytic Cp-morphism f : Y → X and ωX ∈ H•dR,con(q)(X), σY ∈

Hsing,sub
• (X,R) we have

⟨ f ∗ωX , σY⟩ = ⟨ωX , f∗σY⟩.

Remark 6.2. Let X and Y be globally subanalytic Cp-homotopy equivalent. Then the
constructible de Rham theorem holds for X if and only if it holds for Y .

Our main result will be that the constructible de Rham theorem holds in the case p < ∞
in full generality. We will use partition of unity.

Lemma 6.3. Let p < ∞. Let U1,U2 ⊂ X be open globally subanalytic subsets. Assume
that the constructible de Rham theorem holds for U1,U2 and U1 ∩ U2. Then it holds for
U1 ∪ U2.

Proof. Let 0 ≤ q ≤ p − 1. We consider for k ∈ N0 the Mayer-Vietoris sequence

(8) 0 7→ Ωk
con(q)(U1 ∪ U2)

Φ
→ Ωk

con(q)(U1) ⊕Ωk
con(q)(U2)

Ψ
→ Ωk

con(q)(U1 ∩ U2)→ 0

where
Φ(ω) = (ω|U1 , ω|U2 ), Ψ(ω1, ω2) = ω2|U1∩U2 − ω1|U1∩U2 .

This sequence is exact: Given (ω1, ω2) ∈ ker(Ψ), we get a unique differential from ω
restricting to ω1 and ω2 on U1 and U2, respectively. It is constructible because it is
piecewise constructible. The behaviour of the derivatives can be tested locally. Hence
ω ∈ Ωk

con(q)(U1 ∪ U2) as claimed.
Now consider η ∈ Ωk

con(q)(U1 ∩ U2). Choose according to Proposition 1.5 globally
subanalytic Cp-functions f1, f2 : U1 ∪ U2 → R≥0 with f1 + f2 = 1 and supp( fl) ⊂ Ul for
l ∈ {1, 2}. Let Vl ⊂ U1 ∪ U2 be the complement of the support of fl. We put

η2 =

 f1η on U1 ∩ U2

0 on U2 − U1 ⊂ V1

on U2 and analogously η1 on U1. Then (−η1, η2) ∈ Ωk
con(q)(X) and

Ψ(−η1, η2) = f1η − (− f2η) = η.

Denote by S •(X) the complex defining H•sing,sub(X,R). By functoriality of the pairing in
Definition 6.1, we get a morphism from the short exact sequence of complexes in (8) to the
(exact up to chain homotopy equivalence) sequence, see [Dol95, Proposition 8.1 (d) and
Proposition 8.6]

0→ S •(U1 ∪ U2)→ S •(U1) ⊕ S •(U2)→ S •(U1 ∩ U2)→ 0.

This induces a map between the long exact Mayer-Vietoris sequences for H•dR,con(q)(·) and
H•sing,sub(·,R). The de Rham theorem for U1 ∪U2 follows by the 5-lemma from the de Rham
theorem for U1, U2 and U1 ∩ U2. □
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Theorem 6.4 (Main Theorem). Assume that p < ∞. The constructible de Rham theorem
holds for any globally subanalytic Cp-manifold.

Proof. Let X be a globally subanalytic Cp-manifold.
We first consider the case that X is a globally subanalytic open subset of Rn with the

induced manifold structure. We argue by induction on n. The case n = 0 is trivial.
Now assume that the assertion holds for globally subananlytic open subsets of Rn−1. By

considering the globally subanalytic Cω-isomorphism

Rn → (−1, 1)n, x = (x1, . . . , xn) 7→
(
x1/
√

1 + x2
1, . . . , xn/

√
1 + x2

n
)
,

we can assume that X is bounded. By Wilkie [Wil05] we have that X is a finite union of
globally subanalytic C0-cells V1, . . . ,Vs. We view them as ribbons and argue by induction
on the number of ribbons. The statement is empty for s = 0. The ribbon Vs is by Proposition
5.7 globally Cp-homotopy equivalent to an open globally subanalytic set in Rn−1. By
inductive hypothesis (with respect to n) and Remark 6.2, the constructible de Rham theorem
holds for Vs. By inductive hypothesis (with respect to s), the construtcible de Rham theorem
holds for U = V1 ∪ · · · ∪ Vs−1. Moreover,

U ∩ Vs = (V1 ∩ Vs) ∪ · · · ∪ (Vs−1 ∩ Vs)

is itself a union of s − 1 ribbons by Lemma 5.6. By the Mayer-Vietoris property, see
Lemma 6.3 the constructible de Rham theorem holds for X = U ∪ Vs. This settles the case
of open subsets of Rn.

For the general case let X be a globally subanalytic Cp-manifold with finite atlas (ϕi :
Ui → Wi)1≤i≤r. Note that by above the constructible de Rham theorem holds for Wi and
the diffeomorphic Ui. We argue by induction on r. Let U = U1 ∪ · · · ∪ Ur−1. Note that
U ∩ Ur ⊂ Ur is itself diffeomorphic to a globally subanalytic open subset of Rn, hence
the constructible de Rham theorem holds for U ∩ Ur by the first case. Applying the
inductive hypothesis to U, we deduce the constructible de Rham theorem for X = U ∪ Ur

by Lemma 6.3. □

Corollary 6.5. Let p < ∞ and let 0 ≤ q ≤ p − 1. We have that dim(Hk
dR,con(q)(X)) < ∞ for

all k ∈ N0.

Proof. We have by Theorem 6.4 that dim(Hk
dR,con(q)(X)) = bk(X) where bk denotes the k-th

Betti number of X. These are finite (since sets definable in o-minimal structure can be
finitely triangulated). □

Given a globally subanalytic Cω-manifold X we have the classical de Rham cohomology
groups H•dR(X) stemming from C∞-differential forms and the real analytic de Rham coho-
mology groups H•dR,ω(X). Note that by Beretta [Ber94] the canonical imbedding gives an

isommorphism H•dR,ω(X)
∼
→ H•dR(X).

Corollary 6.6. Assume that X is a globally subanalytic Cω-manifold. Let 0 ≤ q < ∞. We
have a natural isomorphism H•dR,con(q)(X)

∼
→ H•dR(X).

Proof. Let k ∈ N0. As mentioned above the canonical map α : Hsing,sub
k (X,R)→ Hsing

k (X,R)
is an isomorphism, which gives an isomorphism

β : Hk
sing(X,R)→ Hk

sing,sub(X), f 7→ f ◦ α.
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By Theorem 6.4 the map

γ : Hk
dR,con(q)(X)→ Hk

sing,sub(X), [ω] 7→ ([σ] 7→
∫
σ

ω)

is an isomorphism. By the classical de Rham theorem the map

δ : Hk
dR(X)→ Hk

sing(X,R), [ω] 7→ ([σ] 7→
∫
σ

ω)

is an isomorphism. (Note that every ordinary singular cohomology class has a C1-represen-
tative.) Then

φ := δ−1 ◦ β−1 ◦ γ : Hk
dR,con(q)(X)→ Hk

dR(X)

is an isomorphism. □

In the compact case, we can formulate also the case p = ω. Here even the globally
subanalytic de Rham theorem (defined analogously) holds.

Remark 6.7. Let X be a globally subanalytic Cω-manifold that is compact. The following
holds:

(1) The constructible de Rham theorem holds for X. In particular, we have a natural
isomorphism H•dR,con(ω)(X)

∼
→ H•dR(X).

(2) The globally subanalytic de Rham theorem holds for X. In particular, we have a
natural isomorphism H•dR,sub(ω)(X)

∼
→ H•dR(X).

Proof. This follows from the above mentioned result of [Ber94] and the fact that a real
analytic function on a compact globally subanalytic Cω-manifold is globally subanalytic. □

Remark 6.8. Note that the second statement of the previous remark does not hold in the
non-compact case (see Example 2.12). It remains open whether the first statement holds in
the non-compact case.

7. Sheaf-theoretic approach

In this section, we give another proof of the de Rham theorem in the constructible setting
from the point of view of sheaves on the definable site.

We begin with some generalities on the cohomology of sheaves on the definable site of a
definable manifold. We recall thatM is an arbitrary o-minimal expansion of the ordered
field of real numbers. We shall only later specialize to the case thatM = Ran.

Throughout this section, we let (X, [A]) denote a definable Cp-manifold of dimension n.

7.1. Sheaves on the definable site. We follow the approach of Edmundo, Jones and
Peatfield in [EJP06]. Recall that we denote by Def(X) the (finitary) Boolean algebra of
definable subsets of X.

Definition 7.1 (The definable site Xdef). The definable site Xdef of X is the Grothendieck
topology on X with the admissible open subsets being the definable open subsets U of X,
and admissible coverings of a definable open U are defined to be the finite coverings by
definable open subsets. It is not hard to verify that Xdef indeed satisfies the axioms of being
a Grothendieck topology.



ON THE DE RHAM THEOREM IN THE GLOBALLY SUBANALYTIC SETTING 23

Notation 7.2. The category of sheaves of abelian groups on Xdef will be denoted by S h(Xdef).
For a sheaf of abelian groups F on Xdef , we denote by Hi(Xdef ,F ) the ith right-derived
functor of the left-exact global sections functor

Γ(X, ·) : S h(Xdef)→ Z-mod

F 7→ F (X).

Remark 7.3 (The definable spectrum à la [EJP06].). We recall the construction in [EJP06]
of the definable spectrum X̃ of a definable Cp-manifold X.

The underlying set of the definable spectrum is defined as follows:

X̃ := {q ⊂ Def(X) : q is an ultrafilter on Def(X)}.

For a definable subset W ⊂ X, we denote by W̃ ⊂ X̃, the subset W̃ := {q ∈ X̃ : W ∈ q}.
One may verify that for a finite collection {Wi : 1 ≤ i ≤ k} of definable subsets of X,
˜(
⋃k

i=1 Wi) =
⋃k

i=1 W̃i and that ˜(∩k
i=1Wi) = ∩k

i=1W̃i.
The sets of the form Ũ ⊂ X̃ for definable opens U ⊂ X, form a basis for a topology on X̃.

Under this topology X̃ becomes a spectral topological space, with the sets of the form Ũ for
open definable subsets U ⊂ X forming a basis of quasi-compact open subsets of X̃, stable
under finite intersections.

Every sheaf of abelian groups F on Xdef extends uniquely to a sheaf of abelian groups F̃
on X̃, such that for a definable open U ⊂ X, F̃ (Ũ) = F (U). In fact, the association F 7→ F̃
is functorial in F and establishes an equivalence of categories between the category of
sheaves of abelian groups on Xdef and the category of sheaves of abelian groups on the
topological space X̃. We therefore see that Hi(Xdef ,F ) is canonically isomorphic to the
sheaf cohomology Hi(X̃, F̃ ) computed on the spectral topological space X̃.

Lemma 7.4. Let F ∈ S h(Xdef) be an abelian sheaf that is flasque on the definable site (that
is for every inclusion of definable open subsets U′ ⊂ U, the restriction map F (U)→ F (U′)
is surjective). Then F is acyclic for the global sections functor, that is for every k ≥ 1,
Hk(Xdef ,F ) = 0.

Proof. The argument for topological spaces works with little change. We also refer the
reader to [AGV71, Exp. V, §4.8 and Ex. 4.16].

□

7.2. Comparing definable sheaf with singular cohomology. For an abelian group G, we
shall denote by GXdef

the constant sheaf induced by G on the definable site, GX the constant
sheaf on the topological space X, and finally G̃ the constant sheaf induced by G on X̃.

We have morphisms of sites1 i : Xtop → Xdef , and j : X̃top → Xdef . Note that by
Xtop (respectively by X̃top) here we mean the site of open subsets of X (X̃ respectively)
with covers being arbitrary open covers. It is not hard to see that i∗GX = GXdef

2, and
j−1(GXdef

) = G̃Xdef
= G̃.

In the following we shall denote by Hk
sing(X,G), the kth-singular cohomology group of X

with coefficients in G, and by Hk
sing,def(X,G) the kth o-minimal singular cohomology group

of the definable manifold X with coefficients in G (see [EW08, §5, 6] and [Hub24].) Recall

1Note the direction of the arrows. We follow [Sta25, Tag 00X1] for our conventions on morphisms of sites.
2essentially since connected components of a definable open subset are again definable and since a definable

open subset is connected iff it is definably connected

https://stacks.math.columbia.edu/tag/00X1
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that Hk
sing,def(X,G) is computed using the complex of G-valued functions on the free abelian

group of continuous definable simplices in X.

Proposition 7.5. For each k ≥ 0, we have natural isomorphisms

Hk(Xdef ,GXdef
) � Hk

sing(X,G) � Hk(X,GX) � Hk
sing,def(X,G).

Proof. The second isomorphism above is standard, while the comparison Hk
sing(X,G) �

Hk
sing,def(X,G) follows for instance from [EW08] or [Hub24]. The existence of a natural

comparison isomorphism Hk(Xdef ,GXdef
) � Hk

sing(X,G) follows from [EJP06] and [EW08].
We also sketch a direct argument below.

For an open subset U ⊂ X, and k ≥ 0 let S k
G(U) denote the abelian group of G-valued

functions on the set of continuous q-simplices in U, and let Sk
G denote the sheafification of

the flasque presheaf U 7→ S k
G(U). By [War83, Prop. 5.27, §5.31] the complex

0→ GX → S
0
G → S

1
G → . . .

is a flasque resolution of the constant sheaf GX on X.
The pushforward complex

0→ GXdef
→ i∗(S0

G)→ i∗(S1
G)→ . . .

is then a flasque (hence acyclic by Lemma 7.4) resolution of GXdef
on the definable site.

Indeed, one may argue the exactness of the pushforward complex by hand, using [Wil05] to
note that every definable open U ⊂ X is a finite union of open C0-cells which are in turn
contractible (see Corollary 5.8) Hence, Hk(Xdef ,GXdef

) � Hk(Γ(X,S•G)) � Hk
sing(X,G).

This completes the proof of the proposition. □

7.3. Definable partitions of unity.

Definition 7.6. LetA be a sheaf of rings on Xdef . We say thatA admits definable partitions
of unity, if given any open definable subset U ⊂ X and any finite cover of U by open
definable subsets U =

⋃r
i=1 Ui one can find sections fi ∈ A(U), 1 ≤ i ≤ r, such that

(1)
∑r

i=1 fi = 1 and
(2) the support of each fi is contained in some closed definable subset of U contained

in Ui.

Example 7.7 (The sheaf Cq
def of definable Cq-functions). For 0 ≤ q ≤ p, and a definable

open subset U ⊂ X, recall that Cq
def(U) denotes the R-algebra of definable Cq-maps U → R.

For an inclusion U′ ⊂ U of definable open subsets, and a section f ∈ Cq
def(U), the restriction

f |U′ : U′ → R is a section of Cq
def(U

′). The restriction maps Cq
def(U)→ Cq

def(U
′) make Cq

def
a sheaf of R-algebras on the definable site Xdef of X. From Proposition 1.5, we see that when
M is polynomially bounded and admits C∞-cell decomposition and when q < ∞, the sheaf
of rings Cq

def on Xdef admits definable partitions of unity. In particular, this is the case for
Ran.

Lemma 7.8. LetA be a sheaf of rings on Xdef admitting definable partitions of unity. Let
F be a sheaf ofA-modules on Xdef . Then F is acyclic for the global sections functor, that
is Hk(Xdef ,F ) = 0 for all k ≥ 1.

Proof. We adapt the proof in [Voi02, Prop. 4.36]. We let Ã (resp. F̃ ) denote the sheaf of
rings (resp. sheaf of Ã-modules) induced byA (resp. F ) on the definable spectrum X̃. We

pick an injective resolution 0 → F̃ → I(0) d0

−→ I(1) d1

−→ . . . in the category of sheaves of



ON THE DE RHAM THEOREM IN THE GLOBALLY SUBANALYTIC SETTING 25

Ã-modules on X̃. We note that I(i) are flasque [Sta25, Lemma 01EA] and hence acyclic for
the global sections functor evaluated on S h(X̃). Therefore, for k ≥ 1,

Hk(Xdef ,F ) �
ker(Γ(X̃,I(k))

dk

−→ Γ(X̃,I(k+1)))

dk−1(Γ(X̃,I(k−1)))
.

Given α ∈ ker(dk), using the quasi-compactness of X̃, we see that there is a finite definable
open cover X =

⋃l
i=1 Ui, and sections βi ∈ Γ(Ũi,I

(k−1)), such that dk−1(βi) = α|Ũi
. Pick a

definable partition of unity { fi ∈ Γ(X,A) : 1 ≤ i ≤ l} subordinate to the cover {Ui : 1 ≤ i ≤
l}. For each i, we set Vi to be the complement in X of the support of fi, so that X = Ui ∪ Vi

is a definable open cover of X, and fi|Vi = 0. Let γi ∈ Γ(X̃,I(k−1)) be the unique section
such that γi|Ũi

= fi · βi, and γi|Ṽi
= 0. Setting γ :=

∑l
i=1 γi ∈ Γ(X̃,I(k−1)) one may verify that

d(k−1)(γ) = α. This proves that for k ≥ 1, Hk(Xdef ,F ) = 0. □

Remark 7.9 (The sheaves Ei
def(q) and Ωi

def(q)). Suppose that p ≥ 1, 0 ≤ q ≤ p − 1 and
i ≥ 0. For each open definable subset U ⊂ X, we have defined earlier the subspaces
Ωi

def(q)(U) ⊂ Ei
def(q)(U) (see Definition 2.1 and Definition 2.3). The association U 7→

Ei
def(q)(U) (respectively U 7→ Ωi

def(q)(U)) endowed with the usual restriction maps gives rise

to a sheaf Ei
def(q) (respectively Ωi

def(q)) of Cq
def-modules (respectively of Cq+1

def -modules, see
Remark 2.5 (1)) on the definable site Xdef . Furthermore, the exterior derivative operator (see
Definition 2.8 for the case q = 0) defines a complex of sheaves of abelian groups on Xdef ,

0→ RXdef
→ C

q+1
def

D
−→ Ω1

def(q)
D
−→ Ω2

def(q)
D
−→ . . .

D
−→ Ωn

def(q) → 0.

Corollary 7.10. Let M be a polynomially bounded o-minimal structure admitting C∞-
cell decomposition. Let q < ∞. Then for any sheaf F of Cq

def-modules and k ≥ 1,
Hk(Xdef ,F ) = 0. In particular, for i, k, p ≥ 1, and q ≤ p − 1 with q < ∞, we have
Hk(Xdef ,E

i
def(q)) = 0, and Hk(Xdef ,Ω

i
def(q)) = 0.

7.4. Comparing constructible de Rham with singular cohomology. Henceforth, we
shall specialize to the setting where the o-minimal structure M under consideration is
Ran. In particular, henceforth (X, [A]) shall denote a globally subanalytic Cp-manifold of
dimension n for some p ∈ N ∪ {ω}. Note that in particular p ≥ 1.

Notation 7.11. In the case thatM = Ran, we denote by Xsub the definable site Xdef , by Cq
sub

the sheaf Cq
def , by Ei

sub(q) the sheaf Ei
def(q), and by Ωi

sub(q) the sheaf Ωi
def(q) defined above.

Remark 7.12 (The sheaves Cq
con,E

i
con(q) and Ωi

con(q)). • Let 0 ≤ q ≤ p. The associa-
tion U 7→ Cq

con(U), the R-algebra of constructible real valued Cq-functions on U,
along with usual restriction maps makes Cq

con a sheaf of Cq
sub-algebras on Xsub.

• Let 0 ≤ q ≤ (p − 1). We have defined in Definition 1.12, Definition 2.1 and Defi-
nition 2.3, the subspaces Ωi

con(q)(U) ⊂ Ei
con(q)(U). The association U 7→ Ei

con(q)(U)
(respectively U 7→ Ωi

con(q)(U)) along with the usual restriction maps defines a sheaf

Ei
con(q) (respectively Ωi

con(q)) of Cq
con-modules (respectively of Cq+1

con -modules) on the
subanalytic site Xsub.

• The exterior derivative defined in Definition 2.8 gives rise to a complex Ω•X,con(q) of
sheaves of abelian groups on Xsub:

0→ RXsub
→ Ω0

con(q)
D
−→ Ω1

con(q)
D
−→ . . .

D
−→ Ωn

con(q) → 0.

https://stacks.math.columbia.edu/tag/01EA
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By Remark 3.1 and Theorem 3.4, we see that given a globally subanalytic Cp-map
f : X → Y between globally subanalytic Cp-manifolds X and Y , the pullback of differential
forms induces for each 0 ≤ q ≤ (p − 1), a morphism of complexes of sheaves of abelian
groups on Ysub:

Ω•Y,con(q) → f∗(Ω•X,con(q)).

The ith-cohomology group of the complex Γ(Xsub,Ω
•
con(q)) of global sections is the ith

Cq-constructible de Rham cohomology group of X, denoted by Hi
dR,con(q)(X) earlier in

Definition 2.11.
It follows from the Poincaré lemma for open C0-cells, that is Corollary 5.9, along with

Wilkie’s observation [Wil05] that every globally subanalytic open is a finite union of open
C0-cells, that for every 0 ≤ q ≤ p − 1 the above complex Ω•X,con(q) is a resolution of

the constant sheaf RXsub
. Furthermore, by Remark 2.5 each Ωi

con(q) being a sheaf of Cq+1
con -

modules on Xsub, is in particular a sheaf of Cq+1
sub -modules. Therefore, whenever q < ∞, by

Corollary 7.10 the above complex is an acyclic resolution of the constant sheaf RXsub
. Thus

we have proved the following:

Theorem 7.13. Let X be a globally subanalytic Cp-manifold (for some p ∈ N ∪ {ω}). Then
for all 0 ≤ q ≤ p − 1, we have functorial isomorphisms:

Hi(Xsub,Ω
•
X,con(q)) � Hi(Xsub,RXsub

) � Hi
sing(X,R),

wherein Hi(Xsub,Ω
•
X,con(q)) denotes the ith hypercohomology group of the complex Ω•X,con(q)

on Xsub. Furthermore, if q < ∞, we have functorial isomorphisms:

Hi
dR,con(q)(X) � Hi(Xsub,RXsub

) � Hi
sing(X,R).

Final Remark 7.14. (1) One could generalize the constructible de Rham theorem to
the bigger o-minimal structure RK

an where K denotes the field of real algebraic
numbers (see [Kai12]).

(2) In the semialgebraic case over R or over Q one could obtain the constructible de
Rham theorem by introducing some proper subclasses of the spaces of constructible
differential forms (see [Kai13, Kai24]).

(3) One could even approach the non-archimedean case in the globally subanalytic
setting by the results of [Kai18, Kai22].

But details have to be checked.
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